

Original Article | Artículo Original

Immunomodulatory effect of *Parkia speciosa* Hassk. pods extract on rat induced by *Salmonella typhimurium*

[Efecto inmunomodulador del extracto de vainas de *Parkia speciosa* Hassk. en ratas inducidas por *Salmonella typhimurium*]

Fitrya Fitrya^{1*}, Annisa Amriani¹, Rennie Puspa Novita¹, Elfita², Dewi Setiorini¹

¹Pharmacy Department, Sriwijaya University, Palembang, Indonesia. ²Chemistry Department, Sriwijaya University, Palembang, Indonesia. *E-mail: fitrya@unsri.ac.id

Abstract

Resumen

Context: Parkia speciosa, which has phenolic compounds and Contexto: Parkia speciosa, que tiene compuestos fenólicos y actividades pharmacology activities, is a plant having potential immunomodulatory farmacológicas, es una planta que tiene agentes inmunomoduladores agents from the extract of its pod. potenciales del extracto de su vaina. Aims: To evaluate the potential of P. speciosa as an immunomodulatory Objetivos: Evaluar el potencial de P. speciosa como agente agent tested on albino rats induced by the bacteria Salmonella inmunomodulador en ratas albinas inducidas por la bacteria Salmonella typhimurium leading to typhoid fever. typhimurium que conduce a la fiebre tifoidea. Methods: The animals were divided into six groups: normal non-infected Métodos: Los animales se dividieron en seis grupos: grupo normal no group, negative control group, positive control, and three test groups infectado, grupo de control negativo, control positivo y tres grupos de with doses of 200, 400 and 800 mg/kg BW. The test groups were treated prueba con dosis de 200, 400 y 800 mg/kg de peso corporal. Los grupos by the extract for 12 days. The control and test groups were induced de prueba fueron tratados con el extracto durante 12 días. El control y with the S. typhimurium on the 8th day. On day 12th, CD4+, total los grupos de prueba fueron inducidos con S. typhimurium en el octavo leukocytes, differential cell count, and histology of the spleen organ día. El día 12, se evaluaron los CD4+, los leucocitos totales, el recuento were evaluated. Statistical analysis was performed by using one-way diferencial de células y la histología del órgano del bazo. El análisis ANOVA followed post hoc LSD test (a 0.05). estadístico se realizó mediante el uso de ANOVA unidireccional seguido de la prueba post hoc LSD (a 0,05). Results: The result showed that the ethanol extract of P. speciosa pod could increase the number of CD4+. The extract to 200 and 400 mg/kg Resultados: El extracto etanólico de la vaina de P. speciosa podría BW doses increased in the parameters of leukocyte, neutrophil, aumentar el número de CD4+. El extracto a dosis de 200 y 400 mg/kg de lymphocyte and monocyte with insignificant differences compared to peso corporal aumentó en los parámetros de leucocitos, neutrófilos, that of the positive control group (p>0.05). However, there were linfocitos y monocitos con diferencias insignificantes en comparación significant differences between the two first parameters between the test con el grupo de control positivo (p>0,05). Sin embargo, hubo diferencias group with 800 mg/kg BW doses compared to the positive control significativas entre los dos primeros parámetros entre el grupo de group. Moreover, more necroses in the spleen were observed from prueba con dosis de 800 mg kg de peso corporal en comparación con el histological analysis on 800 mg/kg BW doses than 400 mg/kg BW. grupo de control positivo. Además, se observaron más necrosis en el bazo a partir del análisis histológico con dosis de 800 mg/kg de peso Conclusions: In general, P. speciosa ethanolic extract can increase the corporal que con 400 mg/kg de peso corporal. immune system based on the CD4+ count, leukocyte, monocyte, and neutrophil, and causes normal necroses in low doses. Conclusiones: En general, el extracto etanólico de P. speciosa puede aumentar el sistema inmunitario en función del recuento de CD4+, leucocitos, monocitos y neutrófilos, y causa necrosis normales en dosis bajas. Palabras Keywords: Parkia speciosa; immunomodulator; Salmonella typhimurium; Clave: Parkia speciosa; inmunomodulador; Salmonella typhoid fever. typhimurium; fiebre tifoidea.

Funding: This work was supported by funding from Research and Community Service Institution of Sriwijaya University (Indonesia) by mean the project "Hibah Penelitian Unggulan Kompetitif 2019" [No. 0149.159/UN9/SB3.LP2M.PT/2019].

ARTICLE INFO

Received: March 21, 2020. Received in revised form: May 29, 2020.

Accepted: May 31, 2020.

Available Online: June 11, 2020.

Declaration of interests: The authors declare no conflict of interest.

INTRODUCTION

Infectious diseases are the second leading cause of death in worldwide after cardiovascular disease (WHO, 2004). Infection can be caused by viruses, bacteria, protozoa, worms, and parasitic fungi entering the body or growing on the body surface. An infectious disease with a high occurrence in several Asian countries is typhoid fever (Purba et al., 2016). This acute fever is caused by bacterium Salmonella enterica infection, especially its derivative, Salmonella typhimurium (Alba et al., 2016). Based on WHO data, the number of typhoid fever patients in Indonesia is relatively high, reaching 81,000 of 100,000 inhabitants (Rahmasari and Lestari, 2018). A person with a weak immune system is at a high risk of developing typhoid fever (Kalia et al., 2016).

The innate immune system, which consists of phagocyte cells, is the most important to defense against microorganisms and malignant cells (Harun et al., 2015; Venkatalakshmi et al., 2016). Activation of the immune system is required to help a body destroying antigenic substances, and it can be stimulated using immunomodulators.

Synthetic immunomodulatory drugs have many benefits, but adverse side effects limit their use. Further studies are thus an important way to find safer and more effective immunomodulatory agents (Venkatalakshmi et al., 2016). Plant extracts are commonly considered as potential agents from their immunomodulatory properties, which have smaller side effects (Alamgir and Uddin, 2010). Their properties are generated by activating a function and efficiency of macrophages, granulocytes, complement, and natural killer cells and by producing effector molecules (Jayathirtha and Mishra, 2004). Plant metabolites such as sterols, polysaccharides, alkaloids, flavonoids, lectins, and glycoproteins are used as immunomodulatory agents (Harun et al., 2015). The pod of Parkia speciosa Hassk. (Leguminosae) contains phytochemical compounds such as flavonoids, phenolics, alkaloids, and saponins (Kamisah et al., 2013). Pharmacology activities of P. speciosa have been reported as an antioxidant, anti-carcinogenic and antiinflammatory (Kamisah et al., 2013; Mustafa et al., 2018), antianemia (Nursucihta et al., 2014), antihypertensive and heart problems (Siow and Gan, 2013; Kamisah et al., 2017) and antibacterial (Uyub et al., 2010). However, the immunomodulatory activity of *P. speciosa* has not been found in previous studies. Thus, this study aims to reveal the potential of *P. speciosa* as an immunomodulatory agent by observing CD4⁺ parameters, total leukocytes, differential blood cell counts, and spleen's evaluation of albino rats induced by *Salmonella typhimurium* bacteria.

MATERIAL AND METHODS

Vegetal material and chemicals

P. speciosa was collected from Musi Rawas districts, South Sumatera, Indonesia (2.90°S, 103.28°E). This species has been identified by the Indonesian Institute of Science with Register No. 218/IPH.06/HM/I/2018. *Salmonella typhimurium* ATCC 14028 (10⁵ CFU) was obtained from the Central Laboratory of Health, Palembang, South Sumatera, Indonesia. Chemicals as methanol, NaCl (Merck), phosphate buffer pH 6,8 and Giemsa stain (Sigma-Aldrich) were in an analytical grade.

Preparation of *P. speciosa* pod extract

Ethanol extract of *P. speciosa* pod was prepared by a maceration method. Its powder (500 mg) was soaked with 2 L of ethanol 95% for 2 days. A remaceration process of the residue was carried out twice. The maceration result then was evaporated with a rotary evaporator (Yamato®) at a temperature of 65°C to get a concentrated extract (Harun et al., 2015).

Design of test animal experiments

Wistar male white albino rats (150 - 200 g weight) were used in this study. An ethics certificate for the use of test animals was obtained from the Faculty of Medicine, Sriwijaya University, with No. 064/kepkrsmhfkunsri/2019. The test animals

were acclimatized to the laboratory environment at a temperature of 23 ± 2°C and a 12-hour lightdark cycle for one week. During the acclimation process, these rats were given standard ad libitium drink and feed (Johnson et al., 2017). They were divided into 6 groups: the normal group and negative control group were given Tween-80 0.5 mL/kg BW; the positive control group was given 0.54 mL (dose 2.5 mg/kg BW) of Stimuno® syrup (containing extracts of *Centella asiatica*, 5 mg/mL); the test groups I-III received 200, 400 and 800 mg/kg BW of the extract, respectively. All groups (except the normal group) were also given 0.5 mL Salmonella typhimurium 10⁵ CFU (intraperitoneal) on the 8th day of treatment as the agent inducer of the typhoid fever.

Antigen preparation

S. typhimurium bacterial culture was bred in slant *Salmonella-Shigella* Agar (SSA) media, and it was then incubated at a temperature of 37°C for 48 h. The bacterial culture was suspended with 10 mL of 0.9% NaCl solution in a tube until the concentration reached 10⁵ CFU/mL, which was measured using a densitometer.

Immunomodulatory effects test

After the acclimatization period, the test animals were orally treated with the extract once a day. The animals were induced by giving antigen suspension of *S. typhimurium* dose of 10⁵ CFU as much as 0.5 mL on the 8th day. Before and 24 h after the induction, the body temperature of the albino rats was measured. Furthermore, blood was taken, and spleen was observed on the 12th day (Susanti et al., 2012).

Evaluation of leukocytes and differential cells

Test animals were intraperitoneally anesthetized with phenobarbital 40 mg/kg BW. By using cardiac puncture, the blood sample was collected as much as 1 mL to transfer it into the EDTA vacutainer tube. Then, the total determination of leukocytes was counted by using a hematology analyzer (Sysmex® KX-21). Meanwhile, CD4⁺ counts were analyzed using a flow cytometer (Alere® Pima *analyzer*) (Yapo et al., 2011). The differential blood cells were manually analyzed by peripheral blood smear observation under a microscope (Olympus CX21[®]).

Evaluation of spleen organs

Peritoneal and thoracic cavities were opened after euthanizing by cervical dislocation. Spleen organs were isolated and washed with *distilled* water and 0.9% NaCl, consecutively. A macroscopic examination was observed based on size, weight, color, and consistency of spleen organs. Then the spleen was fixed with 10% formalin for histological analysis.

Statistical analysis

The CD4⁺ and the differential counts were analyzed using SPSS for Windows. Macroscopic findings of the spleen of each test group were compared to the control group. The normality test was performed by using a Shapiro-Wilk analysis followed by one way ANOVA. A *post hoc* LSD test was performed to determine the significance between groups with α 0.05.

RESULTS

Evaluation of CD4+ counts

The result of the CD4⁺ count measurement showed in Table 1. ANOVA test showed that the ethanol extract of *P. speciosa* pod could increase the number of CD4⁺ compared to those of the normal group (p<0.05). Administration of the ethanol extract of *P. speciosa* pod in the doses of 400 and 800 mg/kg body weight were sufficient doses to increase CD4⁺ significantly.

Differential blood cell evaluation

The statistical analysis results of leucocyte and differential blood cell measurements of three test groups (I, II, and III), and the control groups (normal, positive, and negative) based on the significant values are presented in Table 2. Based on these results, even though there are statistically significant differences in leukocyte and lymphocyte counts between all test groups and two control (normal and negative) groups, differences between the two first test groups and the positive group are insignificant. In addition, the significant value of the difference between the test group III and the positive one was less than 0.05. These values of the significant differences imply that the leukocyte counts can be stimulated in all test groups; however, the group III can increase the leukocyte counts higher than the groups I and II.

Furthermore, the statistically significant values of differences between the test groups (I and II) and the positive control group were higher than 0.05 for two parameters of the differential blood cell, i.e., lymphocyte and monocyte. Therefore, they did not show statistically significant differences in these parameters. Contrary, the comparison between test group III and the positive group showed statistically significant differences (p<0.05) for the last parameter (neutrophils).

Spleen evaluation

The shape of a normal spleen is likely an elongated bean with the sharp in one of the edges and red to dark red. Damaged spleen will be blackish, and the edges will tend to be rounded or blunt (Cesta, 2006). The macroscopic spleen of rats can be presented in Fig. 1. It can be clearly seen that the spleen of the negative group has a black-bigger shape and harder consistency than that of other groups. The statistical analysis showed that group III had significantly heavier spleens compared to the positive control group (p<0.05) (Table 3). Based on the histological observations, levels of necrosis occurred in the spleens of the positive control group and the test group were lower than those of the negative control group. The lowest level of necrosis was found in the group I and the positive group. The results of this histological and macroscopic observation of the spleens are in good agreement, which showed group I exhibited a weight, color, and consistency relatively similar to the normal group.

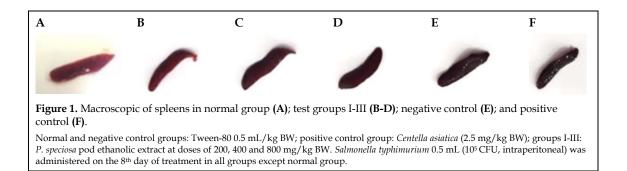
Fig. 2A shows that in the spleen histology of the normal group, many follicles were found, but no necrosis was observed. Otherwise, the most severe necrosis occurred in the negative control group compared to other groups (Fig. 2C). Like the positive control group (Fig. 2B), the test rats treated with the extract of *P. speciosa* pod at the lowest dose, 200 mg/kg BW (Fig. 2D), had the least necrosis. Therefore, it indicates that the extract can reduce necrosis as observed in the test group as well as in the positive control group. The lower doses the extract was given, the less necrosis occurred, and vice versa.

Moreover, at 400 and 800 mg/kg BW doses of the extract, a considerable amount of the necrosis was observed (Fig. 2E-F). It may suggest that the higher the dose was given, the more accumulation of the lymphocyte and macrophage observed in the spleen, and as a consequence, the effect of hyperplasia is higher.

Group	Treatment	Dose	CD4+ (cells/mm ³)	
Normal	Tween-80	0.5 mL/kg	6.0 ± 0.00	
Negative control	Tween-80	0.5 mL/kg	4.0 ± 0.00	
Positive control	Centella asiatica	2.5 mg/kg	6.5 ± 0.70	
Group I	P. speciosa	200 mg/kg	7.5 ± 4.95^{a}	
Group II	P. speciosa	400 mg/kg	8.5 ± 3.54^{ab}	
Group III	P. speciosa	800 mg/kg	11.0 ± 7.07^{ab}	

Values are presented as mean \pm SD, n=3; ap<0.05 statistically significant differences compared with the positive control group: group I (p=0.016), group II (p=0.001), and group III (p=0.00); bp<0.05 statistically significant differences compared with the normal group with p values for group II (p=0.023), and group III (p=0.00). Salmonella typhimurium 0.5 mL (10⁵ CFU, intraperitoneal) was administered on the 8th day of treatment in all groups except normal group.

Group	Leukocyte (10³/µL)	Lymphocyte (%)	Monocyte (%)	Neutrophils (%)	
Normal	7.83 ± 0.52	78.00 ± 3.60	11.67 ± 2.51	10.33 ± 2.88	
Negative control	11.17 ± 2.14	76.00 ± 2.00	9.67 ± 1.52	10.00 ± 1.00	
Positive control	14.83 ± 5.51	65.00 ± 3.00	13.00 ± 1.73	16.67 ± 1.53	
Group I	15.53 ± 7.30^{ab}	69.00 ± 1.00^{ab}	11.67 ± 0.57^{b}	15.33 ± 0.58^{b}	
Group II	16.57 ± 0.20^{ab}	67.33 ± 1.15^{ab}	$15.00 \pm 1.00^{\text{b}}$	20.00 ± 1.00^{ab}	
Group III	$19.30 \pm 5.54^{\rm ac}$	66.00 ± 3.60^{ab}	18.33 ± 0.57^{ab}	$24.00\pm1.00^{\rm ac}$	


Table 2. Differential blood cell counts in animals with typhoid fever and treated with P. speciosa pod ethanolic extract.

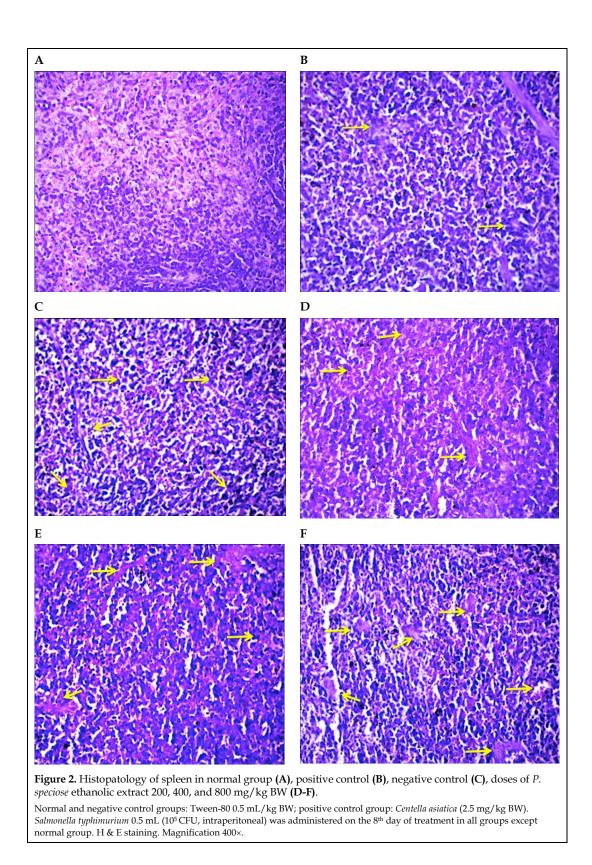

The values are presented as mean \pm SD, n=3; ap<0.05 compared to the normal group; bp>0.05 compared to the positive control group; cp<0.05 compared to the positive control group. There were statistically significant differences between leucocyte (all group: p=0.00), lymphocyte (group I, p=0.006; group II, p=0.002; group III, p=0.001), monocyte (group III, p=0.024) and neutrophils (group II, p=0.03; group III, p=0.00) compare to the normal group. There were no statistically significant differences between in leukocyte (group I, p=0.67; group II, p=0.121); lymphocyte (group I, p=0.177; group II, p=0.419; group III, p=0.726); monocyte (group I, p=0.646; group I, p=0.439; group III, p=0.084); neutrophils (group I, p=0.626; group I, p=0.235) compare to positive control group but there were statistically significant differences between leukocyte (group III, p=0.00) and neutrophils (p=0.018) compare to the positive control group. Normal and negative control groups: Tween-80 0.5 mL/kg BW; positive control group: *Centella asiatica* (2.5 mg/kg BW); groups I-III: *P. speciosa* pod ethanolic extract at doses of 200, 400 and 800 mg/kg BW. *Salmonella typhimurium* 0.5 mL (10⁵ CFU, intraperitoneal) was administered on the 8th day of treatment in all groups except normal group.

Table 3. Spleen morphology of the animals with typhoid fever and treated with P. speciosa pod ethanolic extract.

Morphology	Treatment						
	Normal	Negative control	Positive control	Group I	Group II	Group III	
Color	Red	Red Black	Blackish red	Red with little black	Blackish red	Blackish red	
Shape	Normal	Normal	Normal	Normal	Normal	Normal	
Weight (g)	0.54 ± 0.05	1.03 ± 0.05	0.66 ± 0.01	0.61 ± 0.02	0.75 ± 0.05	0.88 ± 0.03^{a}	
Consistency	Springy	Springy hard	Springy little hard	Springy	Springy	Springy	

Values are presented as means ± SD, n=3. ^ap<0.05 compared to the positive control group. There were statistically significant differences between group I (p=0.00), group II (p=0.00), group III (p=0.017) compare to the normal group. There were no statistically significant differences between group I (p=0.089), group II (p=0.849) compare to the positive control group, but there were statistically significant differences with the group III (p=0.017). Normal and Negative control groups: Tween-80 0.5 mL/kg BW; Positive control group: *Centella asiatica* (2.5 mg/kg BW); groups I-III: *P. speciosa* pod ethanolic extract at doses of 200, 400 and 800 mg/kg BW. *Salmonella typhimurium* 0.5 mL (10⁵ CFU, intraperitoneal) was administered on the 8th day of treatment in all groups except normal group.

http://jppres.com/jppres

DISCUSSION

The CD4⁺ is a marker on the surface of white blood cells of humans, especially lymphocyte cells. It is well known that infection causes a decrease in the immune response by blocking the activity of CD4⁺ and CD8⁺ cells. CD4⁺ has an important role in the immune system. A decrease in its level implies a weak immune system for blocking infection. Therefore, to provide defense against the infection, the immune system needs to be strengthened by stimulating CD4⁺ production (Yapo et al., 2011).

In addition, the activation of immune cells such as T cells of CD4+ and CD8+ is a possible mechanism to stimulate immune activity. An increase in the activity of the immune cells is considered a good indicator of a better prognosis and active immune response to tumors and infections (Gautam et al., 2009; Ayeka et al., 2017). In this research, an increase in the number of CD4⁺ is allegedly triggered by flavonoid and phenolic compounds contained in the ethanol extract of Parkia speciosa. Flavonoid compounds activate T cells to differentiate into CD8+ or CD4+ cells. The CD4+ cells have no direct killing activity in infected cells but direct other immune cells to act against cells infected with pathogens, mainly by secreting some cytokines (Grigore, 2017).

The levels of the CD4+ cells, leukocyte, monocyte, and neutrophil in the blood circulation can increase due to the activation of immunepromoting compounds. The extract-contained flavonoid stimulates the proliferation of the number of differential T and B lymphocyte (Ketema et al., 2015). This flavonoid increases the secretion of cytokine interleukin-2 (IL-2), acting as proliferation and differentiation factors (Middleton et al., 2000). Meanwhile, phenolic compounds can stimulate the immune system from its hydroxyl groups. These compounds influence enzymes or electron transfer systems to produce immunomodulatory properties, especially a phagocytic activity (Manosroi et al., 2003).

The decrease in the lymphocyte count in this study was affected by two factors. Firstly, the abil-

ity of flavonoids to stimulate lymphocyte proliferation resulted in the acceleration of a lymphocyte formation to increase the lymphocyte count. However, as the lymphocyte was formed too quickly, it would die quickly. Therefore, the total number of lymphocytes in the spleen finally decreased. Another factor was the infection, which retained lymphocyte in lymphoid organs such as the spleen. As a consequence, lymphocyte and macrophage would accumulate in the spleen, and the spleen then swelled. (Fahrimal et al., 2014).

The spleen is an organ where immune cells, especially phagocyte cells, carry antigens, interact with, and then produce T lymphocyte. Thus, an increase in the spleen weight is an indicator of the stimulation in the immune system (Ketema et al., 2015). The higher the extract dose was given, the higher ability of the extract stimulated lymphocyte and macrophage cells. As this stimulation affected the accumulation of antigens, hyperplasia due to infection took place in the spleen. This spleen produced more lymphocyte and macrophage to deal with antigen attacks (Cesta, 2006; Vásquez et al., 2015).

CONCLUSIONS

This study proved that the ethanol extract of *Parkia speciosa* pod increases the CD4⁺ count and the differential cells so that it is potential as an immunomodulatory agent. However, an increase in its doses caused a decrease in lymphocyte count. In addition, necrosis and hyperplasia occurred in the spleen. The extract with 200 mg/kg BW dose can stimulate the immune system even though it creates low necrosis.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGMENTS

The authors would like to thank you to the Research and Community Service Institution of Sriwijaya University (Indonesia) for research funding through "Hibah Penelitian Unggulan Kompetitif 2019" [No. 0149.159/UN9/SB3.LP2M.PT-/2019].

REFERENCES

- Alamgir M, Uddin SJ (2010) Recent advances on the ethnomedicinal plants as immunomodulatory agents in Chattopadhyay D (ed.) Ethnomedicine: A Source of Complementary Therapeutics. Kerala, India. pp. 227–244.
- Alba S, Bakker MI, Hatta M, Scheelbeek PFD, Dwiyanti R, Usman R, Sultan AR, Sabir M, Tandirogang N, Amir M, Yasir Y, Pastoor R, Van BS, Smits HL (2016) Risk factors of typhoid infection in the Indonesian archipelago. PLoS ONE 11(6): 1–14.
- Ayeka PA, Bian YH, Githaiga PM, Zhao (2017) The immunomodulatory activities of licorice polysaccharides (*Glycyrrhiza uralensis* Fisch.) in CT 26 tumor-bearing mice. BMC Complement Alternat Med 17(1): 1–9.
- Cesta MF (2006) Normal structure, function, and histology of the spleen. Toxicol Pathol 34(5): 455–465.
- Fahrimal Y, Eliawardani, Rafina A, Azhar A, Asmilia N (2014) Blood profile of rats (*Rattus norvegicus*) infected with *Trypanosoma evansi* treated with willow tree bark extract (*Salix tetrasperma* Roxb). J Kedokteran Hewan 8(2): 164– 168.
- Gautam M, Saha S, Bani S, Kaul A, Mishra S, Patil D, Satti NK, Suri KA, Gairola S, Suresh K, Jadhav S, Qazi GN, Patwardhan B (2009) Immunomodulatory activity of *Asparagus racemosus* on systemic Th1/Th2 immunity: Implications for immunoadjuvant potential. J Ethnopharmacol 121(2): 241–247.
- Grigore A (2017) Plant phenolic compounds as immunomodulatory agents. In: Phenolic Compounds -Biological Activity. Ed. Soto-Hernandez M, Palma-Tenango M, del Rosario Garcia-Mateos M. IntechOpen. pp. 75–98.
- Harun N, Septama A, Jantan I (2015) Immunomodulatory effects of selected Malaysian plants on the CD18/11a expression and phagocytosis activities of leukocytes. Asian Pac J of Trop Biomed 5(1): 48–53.
- Jayathirtha MG, Mishra SH (2004) Preliminary immunomodulatory activities of methanol extracts of *Eclipta alba* and *Centella asiatica*. Phytomedicine 11(4): 361– 365.
- Johnson J, Ekpo G, Ugwuoke J (2017) Immunomodulatory potentials of ethanolic leaf extract of *Phyllantus amarus* in Wistar rats. Pharm Chem J 4(5): 83–88.
- Kalia P, Kumar NR, Harjai K (2016) Effect of propolis extract on hematotoxicity and histological changes induced by *Salmonella enterica* serovar *typhimurium* in BALB/c mice. Arch Biol Sci 68(2): 385–391.
- Kamisah Y, Othman F, Qodriyah HMS, Jaarin K (2013) *Parkia speciosa* Hassk.: A potential phytomedicine. Evid Based Complement Altern Med 2013: ID Article 709028.
- Kamisah Y, Zuhair JSF, Juliana AH, Jaarin K (2017) Parkia speciosa empty pod prevents hypertension and cardiac

damage in rats given N(G)-nitro-L-arginine methyl ester. Biomed Pharmacother 96: 291–298.

- Ketema T, Yohannes M, Alemayehu E, Ambelu A (2015) Evaluation of immunomodulatory activities of methanolic extract of khat (Forsk) and cathinone in Swiss albino mice. BMC Immunol 16(1): 1–11.
- Manosroi A, Saraphanchotiwitthaya A, Manosroi J (2003) Immunomodulatory activities of *Clausena excavata* Burm. wood extracts. J Ethnopharmacol 89: 155–160.
- Middleton E, Kandaswami C, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol Rev 52(4): 673–751.
- Mustafa NH, Ugusman A, Jalil J, Kamisah Y (2018) Antiinflammatory property of *Parkia speciosa* empty pod extract in human umbilical vein endothelial cells. J Applied Pharm Sci 8(1): 152–158.
- Nursucihta S, Thai'in HA, Putri DM, Utami DN, Ghani AP (2014) Antianemia activity of *Parkia speciosa* Hassk seed ethanolic extract. Trad Med J 19: 49–54.
- Purba EI, Wandra T, Nugrahini N, Nawawi St, Kandun N (2016) Typhoid fever control program in Indonesia: Challenges and opportunities [Indonesian]. Media Libangkes 26(2): 99–108.
- Rahmasari V, Lestari K (2018) Manajemen terapi demam tifoid: Kajian terapi farmakologis dan non farmakologis. Farmaka 16(1):184–194.
- Siow HL, Gan CY (2013) Extraction of antioxidative and antihypertensive bioactive peptides from *P. speciosa* seeds. Food Chem 141: 3435–3442.
- Susanti R, Yuniastuti A, Iswari RS (2012) Aktivitas reactive oxigen species macrofag akibat stimulasi gel lidah buaya pada infeksi *Salmonella typhimurium*. J MIPA 35(1): 1–10.
- Uyub AM, Azlan A, Fariza SS, Nwachukwu IN (2010) In-vitro antibacterial activity and cytotoxicity of selected medicinal plant extracts from Penang Island Malaysia on some pathogenic bacteria. Ethnobot Res Appl 8: 95–106.
- Vásquez B, Sandoval C, Smith RL, Sol MD (2015) Effects of early and late adverse experiences on morphoquantitative characteristics of Sprague-Dawley rat spleen subjected to stress during adulthood. Int J Clin Exp Pathol 8(4): 3624-3635.
- Venkatalakshmi P, Vadivel V, Brindha P (2016) Role of phytochemicals as immunomodulatory agents: A review. Int J Green Pharm 10(1): 1–18.
- WHO (2004) The global burden of disease 2004. Update. World Health Organization. Switzerland: WHO Press.
- Yapo FA, Yapi FH, Ahiboh H, Hauhouot-Attounbre ML, Guédé NZ, Djaman JA, Monnet D (2011) Immunomodulatory effect of the aqueous extract of *Erigeron floribundus* (Kunth) Sch beep (Asteraceae) leaf in rabbits. Trop J Pharm Res 10(2): 187–193.

Contribution	Fitrya F	Amriani A	Novita RP	Elfita	Setiorini D
Concepts or ideas	x			x	
Design	x				
Definition of intellectual content	x	x	x	x	
Literature search	x	x	x	x	x
Experimental studies	x	x	x	x	x
Data acquisition	x	x	x	x	x
Data analysis	x	x	x	x	x
Statistical analysis	x				x
Manuscript preparation	x	x	x	x	x
Manuscript editing	x	x	x	x	x
Manuscript review	x	x	х	x	х

AUTHOR CONTRIBUTION:

Citation Format: Fitrya F, Amriani A, Novita RP, Elfita, Setiorini D (2020) Immunomodulatory effect of *Parkia speciosa* Hassk. pods extract on rat induced by *Salmonella typhimurium*. J Pharm Pharmacogn Res 8(5): 457–465.

侴

Source details

Journal of Pharmacy and Pharmacognosy Research Open Access ① Scopus coverage years: from 2013 to Present	CiteScore 2019 0.9 Add CiteScore to your site		
Publisher: Asociacion Academica de Ciencias Farmaceuticas de Antofagasta (ASOCIFA) E-ISSN: 0719-4250 Subject area: (Pharmacology, Toxicology and Pharmaceutics: Pharmaceutical Science)	SJR 2019 0.178	Ō	
(Pharmacology, Toxicology and Pharmaceutics: Pharmacology)			
Pharmacology, Toxicology and Pharmaceutics: Drug Discovery	SNIP 2019 0.482	(j)	
View all documents >			
CiteScore CiteScore rank & trend Scopus content coverage			
i Improved CiteScore methodology CiteScore 2019 counts the citations received in 2016-2019 to articles, reviews, conference papers, book chapters and data papers published in 2016-2019, and divides this by the number of publications published in 2016-2019. Learn more >		×	
CiteScore 2019			
$0.9 = \frac{125 \text{ Citations 2016 - 2019}}{145 \text{ Documents 2016 - 2019}}$ Calculated on 06 May, 2020 $1.0 = \frac{170 \text{ Citations to date}}{171 \text{ Documents to date}}$ Last updated on 02 October, 2020 · Updated monthly			
Calculated on 06 May, 2020 Last updated on 02 October, 2020 • Updated monthly			
Category Rank Percentile			
Pharmacology, Toxicology and #103/169 39th Pharmaceutics			
Pharmaceutical Science			
Pharmacology, Toxicology and #239/301 20th Pharmacology			
View CiteScore methodology > CiteScore FAQ > 2			

About Scopus

What is Scopus Content coverage Scopus blog Scopus API Privacy matters

Language

日本語に切り替える 切换到简体中文 切換到繁體中文 Русский язык

Customer Service

Help Contact us