Synthesis of Nano-Hydroxyapatite from Snakehead (Channa striata) Fish Bone and its Antibacterial Properties

Article Preview

Abstract:

Nano-hydroxyapatite was synthesized by coprecipitation method and tested its antibacterial properties. Nano-hydroxyapatite was synthesized using CaO precursors from snakehead (Channa striata) fish bones and (NH4)2HPO4. The synthesis was carried out with temperature variations of 30, 60, 80, and 100 °C. Antibacterial activity was determined using two types of bacteria, namely gram-positive and gram-negative. The XRD spectra show that the highest peak is hydroxyapatite synthesized at a temperature of 100 °C. Hydroxyapatite produced from various synthesis temperatures has the size of nanoparticles in the range 37.32-49.27 nm. The nano-hydroxyapatite functional groups are characterized using FTIR, the analysis indicate the presence of OH, CO32‒ and PO43‒. The molar ratio Ca/P is obtained of 1.71 approaching theoretical hydroxyapatite of 1.67. The resulted nano-hydroxyapatite has significant antibacterial properties to Escherichia coli and Staphylococcus aureus.

Info:

Periodical:

Edited by:

Dr. Tutik Dwi Wahyuningsih, Roto Roto, Rohana Adnan, Laurent Commeiras, Kuwat Triyana, Indriana Kartini, Dr. Julius Motuzas and Dwi Siswanta

Pages:

293-299

Citation:

Online since:

April 2020

Export:

Price:

* - Corresponding Author

[1] D. Ghahremani, I. Mobasherpour, E. Salahi, M. Ebrahimi, S. Manfi, L. Karamatpour, Potential of nano crystalline calcium hydroxyapatite for tin(II) removal from aqueous solution: equilibria and kinetic processes, Arabian J. Chem. 10 (2017) 461-471.

DOI: 10.1016/j.arabjc.2012.10.006

[2] B.R. Sunil, M. Jagannatham, Production hydroxyapatite from fish bone by heat treatment, Mater. Lett. 185 (2016) 411-414.

[3] J. Kolmas, E. Groszyk, D.K. Rozycka, Substituted hydroxyapatite with antibacterial properties, Biomed. Res. Int. 2014 (2014) 1-15.

[4] E. Pepla, L.K. Besherat, G. Palaia, G. Tenore, G. Migliau, Nano-hydroxyapatite and its applications in preventive, restorative, and regenerative dentistry: a review literature, Ann. Stomatol. 5 (2014) 108-114.

DOI: 10.11138/ads/2014.5.3.108

[5] M.Z.A. Khiri, K.A. Matori, N. Zainuddin, C.A.C. Abdullah, Z.N. Alassan, N.F. Baharuddin, M.H.M. Zaid, The usability of ark clam shell (Anadara granosa) as calcium precursor to produce hydroxyapatite nanoparticle via wet chemical precipitate method in various sintering temperature, SpringerPlus 5 (2016) 1-15.

DOI: 10.1186/s40064-016-2824-y

[6] J. Venkatesan, B. Lowe, P. Manivasagan, K.H. Kang, E.P. Chalisserry, S. Anil, D.G. Kim, S.K. Kim, Isolation and characterization of nano-hydroxyapatite from salmon fish bone, Materials 8 (2015) 5426-5439.

DOI: 10.3390/ma8085253

[7] M.S. Shojai, M.T. Khorasani, E.D. Khoshdargi, A. Jamshidi, Synthesis methods for nanosized hydroxyapatite with diverse structures, Acta Biomater. 9 (2013) 7591-7621.

DOI: 10.1016/j.actbio.2013.04.012

[8] A. Szcześ, L. Hołysz, E. Chibowski, Synthesis of hydroxyapatite for biomedical applications, Adv. Colloid Interface. Sci. 249 (2017) 321-330.

DOI: 10.1016/j.cis.2017.04.007

[9] X. Zhang, Preparation and Characterization of Calcium Phosphate Ceramics and Composites as Bone Substitutes, Dissertation, University of California United State, (2007).

[10] W. Khoo, F.M. Nor, H. Ardhyananta, D. Kurniawan, Preparation of natural hydroxyapatite from bovine femur bones using calcination at various temperatures, Procedia Manuf. 2 (2015) 196-201.

DOI: 10.1016/j.promfg.2015.07.034

[11] M. Boutinguiza, J. Pou, R. Comesana, F. Lusquinos, A. De Carlos, B. Leon, Biological hydroxyapatite obtained from fish bone, Mater. Sci. Eng. C 32 (2012) 478-486.

DOI: 10.1016/j.msec.2011.11.021

[12] S.C. Wu, H.C. Hsu, S.K. Hsu, Y.C. Chang, W.F. Ho, Synthesis of hydroxyapatite from eggshell powder through ball milling and heat treatment, J. Asian Ceram. Soc. 4 (2016) 85-90.

DOI: 10.1016/j.jascer.2015.12.002

[13] A. Pal, S. Paul, A.R. Choudhury, V.K. Balla, M. Das, A. Sinha, Synthesis of hydroxyapatite from lates calcalifer fish bone for biomedical applications, Mater. Lett. 203 (2017) 89-92.

DOI: 10.1016/j.matlet.2017.05.103

[14] J. Zhang, T. Yin, S. Xiong, Y. Li, U. Ikram, R. Liu, Thermal treatments affect breakage kinetics and calcium release of fish bone particles during high-energy wet ball milling, J. Food Eng. 183 (2016) 74-80.

DOI: 10.1016/j.jfoodeng.2016.03.027

[15] N. Jamarun, S. Elfina, S. Arief, A. Djamaan, Mufitra, Hydroxyapatite material: synthesis by using precipitation method from limestone, Der Pharma Chem. 8 (2016) 302-306.

[16] T. Goto, K. Sasaki, Effects of trace elements in fish bones on crystal characteristics of hydroxyapatite obtained by calcination, Ceram. Int. 40 (2014) 10777-10785.

DOI: 10.1016/j.ceramint.2014.03.067

[17] M. Okada, T. Matsumoto, Synthesis and modification of apatite nanoparticles for use in dental and medical applications, Jpn. Dent. Sci. Rev. 51 (2015) 85-95.

[18] Y. Azis, Zultiniar, N. Jamarun, A. Syukrie, H. Nur, Hydrothermal synthesis of hydroxyapatite from cockle shell waste, Proceeding of Ocean, Mechanical and Aerospace -Science and Engineering in the 1st Conference on Ocean, Mechanical and Aerospace Scientists and Engineer, Pekan Baru, Indonesia, ISOMAse, 19-20 November 2014, pp.167-170.

[19] G. Wang, D. Zhao, Y. Ma, Z. Zhang, H. Che, J. Mu, X. Zhang, Z. Zhang, Synthesis and characterization of polymer-coated manganese ferrite nanoparticles as controlled drug delivery, Appl. Surf. Sci. 428 (2018) 258-263.

DOI: 10.1016/j.apsusc.2017.09.096

[20] D.J. Indrani, B. Soegijono, W.A. Adi, N. Trout, Phase composition and crystallinity of hydroxyapatite with various heat treatment temperatures, Int. J. App. Pharm. 9 (2017) 87-91.

DOI: 10.22159/ijap.2017.v9s2.21

[21] S. Santhosh, S.B. Prabu, Synthesis and characterization of nanocrystalline hydroxyapatite from sea shells, Int. J. Biomed. Nanosci. Nanotechnol. 2 (2012) 276-282.

[22] N.A.M. Barakat, M.S. Khil, A.M. Omran, F.A. Sheikh, H.Y. Kim, Extraction of pure natural hydroxyapatite from the bovine bones bio waste by three different methods, J. Mater. Process. Technol. 209 (2009) 3408-3415.

DOI: 10.1016/j.jmatprotec.2008.07.040

[23] L.T. Bang, B.D. Long, R. Othman, Carbonate hydroxyapatite and silicon-substituted carbonate hydroxyapatite: synthesis, mechanical properties, and solubility evaluations, Sci. World J. 2014 (2014) 1-9.

DOI: 10.1155/2014/969876

[24] P. Kamalanathan, S. Ramesh, L.T. Bang, A. Niakan, C.Y. Tan, J. Purbolaksono, H. Chandran, W.D. Teng, Synthesis and sintering of hydroxyapatite derived from eggshells as a calcium precursor, Ceram. Int. 40 (2014) 16349-16359.

DOI: 10.1016/j.ceramint.2014.07.074

[25] W. Pon-On, P. Suntornsaratoon, N. Charoenphandhu, J. Thongbunchoo, N. Krishnamra, I.M. Tang, Hydroxyapatite from fish scale for potential use as bone scaffold or regenerative material, Mater. Sci. Eng. C 62 (2016) 183-189.

DOI: 10.1016/j.msec.2016.01.051

[26] S.V. Raj, M. Rajkumar, N.M. Sundaram, A. Kandaswamy, Synthesis and characterization of hydroxyapatite/alumina ceramic nanocomposites for biomedical applications, Bull. Mater. Sci. 41 (2018) 1-8.

DOI: 10.1007/s12034-018-1612-4

[27] G.S. Kumar, E.K. Girija, Flower like hydroxyapatite nanostructures obtained from eggshell: a candidate for biomedical applications, Ceram. Int. 39 (2013) 8293-8299.

[28] P.L. Hariani, Desnelli, Fatma, I.P. Rizki, Salni, Synthesis and characterization of Fe3O4 nanoparticles modified with polyethylene glycol as antibacterial material, J. Pure App. Res. 7 (2018) 122-129.

DOI: 10.21776/ub.jpacr.2018.007.02.393

[29] G.S. Kumar, S. Rajendran, S. Karthi, R. Govindan, E.K. Girija, G. Karunakaran, D. Kuznetsov, Green synthesis and antibacterial activity of hydroxyapatite nanorods for orthopedic applications, MRS Commun. 7 (2017) 183-188.

DOI: 10.1557/mrc.2017.18

[30] A. Safitri, A. Srihardyastutie, A. Roosdiana, S. Sutrisno, Antibacterial activity and phytochemical analysis of edible seaweed eucheuma spinosum against staphylococcus aureus, J. Pure App. Res. 7 (2018) 308-315.

DOI: 10.21776/ub.jpacr.2018.007.03.389

[31] H.S. Ragab, F.A. Ibrahim, F. Abdallah, A.A. Al-Ghamdi, F. El-Tantawy, N. Radwan, F. Yakuphanoglu, Synthesis and in vitro antibacterial properties of hydroxyapatite nanoparticles, IOSR-Journal of Pharmacy and Biological Sciences 9 (2014) 77-85.

DOI: 10.9790/3008-09167785

[32] M. Simões, S. Rocha, M.A. Coimbra, M.J. Vieira, Enhancement of escherichia coli and staphylococcus aureus antibiotic susceptibility using sesquiterpenoids, Med. Chem. 4 (2008) 616-623.

DOI: 10.2174/157340608786242016