# 3-Phase Matheuristic Model in Two-Dimensional Cutting Stock Problem of Triangular Shape Items

by Dr. Laila Hanum, M.si

Submission date: 21-Apr-2020 11:35AM (UTC+0700) Submission ID: 1303393623 File name: -Dimensional\_Cutting\_Stock\_Problem\_of\_Triangular\_Shape\_Items.pdf (1.33M) Word count: 2550 Character count: 11690

#### Science and Technology Indonesia

*e*-ISSN:2580-4391 *p*-ISSN:2580-4405 Vol. 5, No. 1, January 2020



**Research Paper** 

# 3-Phase Matheuristic Model in Two-Dimensional Cutting Stock Problem of Triangular Shape Items

Putra Bahtera Jaya Bangun<sup>1</sup>, Sisca Octarina<sup>1\*</sup>, Sisca Puspita Sepriliani<sup>1</sup>, Laila Hanum<sup>2</sup>, Endro Setyo Cahyono<sup>1</sup>

<sup>1</sup>Mathematics Department, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indralaya 30662, South Sumatera, Indonesia <sup>2</sup>Biology Department, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indralaya 30662, South Sumatera, Indonesia \*Corresponding author: sisca\_octarina@unsri.ac.id

#### Abstract

Cutting Stock Problem (CSP) is a problem of cutting stocks with certain cuttag rules. This study used the data of rectangular stocks, which cut into triangular shape items with various order sizes. The Modified Branch and Bound Algorithm (MBBA) was used to determine the optimum cutting pattern then formulated t into the 3-Phase Matheuristic model which consisted of constructive phase, improvement phase, and compaction phase. Based on the results, it showed that the MBBA produces three optimum cutting patterns, which was used six times, eight times, and four times respectively to fulfill the consumer demand. Then the cutting patterns were formulated into the 3-Phase Matheuristic model whereas the optimum solution was the minimum trim loss for the first, second and third patterns.

#### Keywords

Triangular, Modified Branch and Bound Algorithm, Matheuristic

Received: 22 December 2019, Accepted: 18 January 2020 https://doi.org/10.26554/sti.2020.5.1.23-27

#### 1. INTRODUCTION

Raw materials are important in the production process where the material will be converted into desired goods and then sold. Production activities require a variety of raw materials, including paper, wood marn, marble and so on. The cutting problem in optimization is known as the Cutting Stock Problem (CSP). CSP is divided into three types namely one-dimensional CSP, twodimensional CSP, and three-dimensional CSP. These three types of CSP are not only seen from the cutting results but also the residue, which is called trim loss. The smaller of the trim loss obtained, the objective function will be more optimum. Cutting patterns with the smallest trim loss will be used as the optimum cutting pattern.

This research discusses two-dimensional CSP. Rodrigo et al. (2012) created the Pattern Generation algorithm to find cutting patterns. Then, they improved the algorithm to become Modified Branch and Bound Algorithm (Rodrigo et al., 2013). Octarina et al. (2017) explained that in a two-dimensional CSP, the cutting pattern was seen in terms of the length and width of the raw material. CSP is known as cutting raw materials into smaller forms or it also can be interpreted as one of the optimization methods by minimizing the remaining raw materials and maximizing the profits (Rodrigo and Shashikala, 2017). Previous research about two-dimensional CSP has been done, but most of the item

with in square or rectangle. Bangun et al. (2019) implemented a branch and cut method on the n-sheet model in solving twodimensional CSP. Octarina et al. (2018) implemented the Pattern Generation algorithm in forming Gilmore and Gomory model for two-dimensional CSP. Then the research was developed to multiple stock sizes (Octarina et al., 2019).

In this research, we cut the stock into a triangular shape. Cherri et al. (2016) explained that in the 3-Phase Matheuristic model, there were 3 phases including a constructive phase which is useful to get an initial solution, an improvement phase to improve the initial solution and a compaction phase to increase the initial solution to best solution. The 3-Phase Matheuristic model has 2 models namely the Dotted Board model that has been described by Gomes and Oliveira (2006) and the Mixed Integer Linear model that has been described by Toledo et al. (2013). The Dotted Board model is in the constructive and improvement phases. Whereas the Mixed Integer Linear model is in the compaction phase.

This study used data from Rodrigo et al. (2013) that cut raw materials into triangular items 2 various sizes but they used the Gilmore and Gomory model. Based on this background, this study used the Modified Branch and Bound Algorithm to find cutting patterns then modeled them to a 3-Phase Matheuristic model.

#### 2. EXPERIMENTAL SECTION

#### 2.1 Method

Steps in this research are as follows:

- 1. Describe the length and the width of the stock includes the side length of triangular items.
- 2. Define the variables and parameters as follows: L is the length of stock, L= 50 cm
- W is the width of stock, W=15 cm

 $l_i$  is the length of item i, where i=1,2,3,4 so  $l_1$ =40,25,8,4 cm  $w_i$  is the width of item i, where i=1,2,3,4 so  $w_i$ =13,12,5,2 cm

 $e_i$  is the width of iter 5, where i=1,2,3,4 so  $e_i$ =30,24,2,2 cm  $\delta_t^d$ =0 or 1 whereas 1 if the reference point of item *t* is positioned in *d* and 0 if otherwise *t* is the number of item

*d* is the positioned of tem

- 3. Find cutting patterns using the Modified Branch and Bound Algorithm
- 4. Formulate the B-Phase Matheuristic Model by:
  - Define the objective function to find the minimum initial solution using the Dotted Board Model.
  - Improvise the initial solution using the Dotted Board Model.
  - Get the best solution using the Mixed Integer Linear Model.
- 5. Solve the 3-Phase Matheuristic Model.

#### 3. RESULTS AND DISCUSSION

#### 3.1 Modified Branc and Bound Algorithm

The data of item size and the number of demand for each item can be seen in Table 1.

| Table 1. | . Item | size | dan | number | of | demand |
|----------|--------|------|-----|--------|----|--------|
|----------|--------|------|-----|--------|----|--------|

| Type of Item             | 1  | 2  | 3   | 4   |
|--------------------------|----|----|-----|-----|
| BC (cm)                  | 40 | 25 | 8   | 4   |
| AD (cm)                  | 13 | 12 | 5   | 2   |
| BD (cm)                  | 30 | 24 | 2   | 2   |
| Demand $((d_i)(pieces))$ | 6  | 30 | 125 | 500 |

These cuts can be categorized as non-oriented cuts, where cuts between the length and width can be reversed. All cutting patterns that were generated from the Modified Branch and Bound Algorithm can be seen in Table 2.

Based on Table 2, there are 28 cutting patterns in the form of triangular items. Next, the optimal pattern will be chosen by looking at a minimal trim loss. The 20th pattern only fulfills the 3rd item and 4th item. So to get the 1st item and 2nd item, the pattern which has a mining m trim loss is taken to produce the item. The optimal pattern can be seen in Table 3.

Based on Table 3. three optimal patterns have a minimal trim loss which can then be used on the model. Furthermore, the 14th cut is called the 1st pattern, the 17th cut is called the 2nd pattern

| -                           |     |     |      |        |       |     |     |
|-----------------------------|-----|-----|------|--------|-------|-----|-----|
| i <sup>th</sup> Item        |     |     | Cutt | ing Pa | ttern |     |     |
|                             | 1   | 2   | 3    | 4      | 5     | 6   | 7   |
| 1                           | 1   | 1   | 1    | 1      | 1     | 1   | 1   |
| 2                           | 1   | 0   | 0    | 0      | 1     | 0   | 1   |
| 3                           | 4   | 8   | 4    | 7      | 3     | 3   | 3   |
| 4                           | 27  | 27  | 63   | 32     | 32    | 71  | 34  |
| Cut loss (cm <sup>2</sup> ) | 152 | 168 | 158  | 222    | 152   | 146 | 144 |
| <i>i</i> <sup>th</sup> Item | 8   | 9   | 10   | 11     | 12    | 13  | 14  |
| 1                           | 1   | 1   | 1    | 1      | 1     | 1   | 1   |
| 2                           | 1   | 0   | 0    | 1      | 0     | 0   | 1   |
| 3                           | 2   | 7   | 6    | 1      | 5     | 1   | 0   |
| 4                           | 44  | 34  | 42   | 51     | 52    | 88  | 59  |
| Cut loss (cm <sup>2</sup> ) | 124 | 214 | 202  | 116    | 182   | 118 | 104 |
| <i>i</i> <sup>th</sup> Item | 15  | 16  | 17   | 18     | 19    | 20  | 21  |
| 1                           | 1   | 0   | 0    | 0      | 0     | 0   | 0   |
| 2                           | 0   | 3   | 3    | 1      | 1     | 0   | 0   |
| 3                           | 0   | 4   | 0    | 19     | 15    | 33  | 27  |
| 4                           | 95  | 25  | 48   | 14     | 39    | 8   | 35  |
| Cut loss (cm <sup>2</sup> ) | 110 | 120 | 108  | 164    | 144   | 58  | 70  |
| <i>i</i> <sup>th</sup> Item | 22  | 23  | 24   | 25     | 26    | 27  | 28  |
| 1                           | 0   | 0   | 0    | 0      | 0     | 0   | 0   |
| 2                           | 0   | 0   | 0    | 0      | 0     | 0   | 0   |
| 3                           | 21  | 15  | 10   | 6      | 3     | 1   | 0   |
| 4                           | 63  | 91  | 112  | 125    | 152   | 154 | 172 |
| Cut loss (cm <sup>2</sup> ) | 78  | 86  | 102  | 98     | 82    | 82  | 91  |

Table 2. Cutting Patterns

and the 20th cut is called the 3rd pattern. After obtaining the optimal cutting pattern, then the pattern can be made according to the existing cutting pattern. Furthermore, to meet the demand for item 1, the 1st cutting pattern is used. Items 2 are fulfilled by using 6 times of the first pattern and 8 times of the second pattern. Items 3 are fulfilled by using 4 times of the third pattern. Items 4 are fulfilled by using 6 times of the first pattern, 8 times of the second pattern, and 4 times of the third pattern.



Figure 1. The First Pattern

Figure 1 shows there are 1 piece each of item 1 and item 2 and 59 pieces of item 4. Then, the second cutting pattern on the dotted board can be seen in Figure 2.

Figure 2 shows there are 3 pieces of item 2 and 48 pieces of item 4. The last, the third cutting pattern on the dotted board

#### Table 3. Optimal Cutting Patterns

| <i>i</i> <sup>th</sup> Item | Opti | mal Pa | ttern | Demand | C       |  |
|-----------------------------|------|--------|-------|--------|---------|--|
| l-item                      | 14   | 17     | 20    | Demand | Surplus |  |
| 1                           | 1    | 0      | 0     | 6      | 0       |  |
| 2                           | 1    | 3      | 0     | 30     | 0       |  |
| 3                           | 0    | 0      | 33    | 125    | 7       |  |
| 4                           | 59   | 48     | 8     | 500    | 270     |  |
| Cut loss (cm <sup>2</sup> ) | 104  | 108    | 58    | -      | -       |  |
| Usage                       | 6    | 8      | 4     | -      | -       |  |

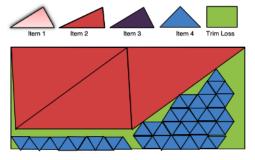



Figure 2. The Second Pattern

can be seen in Figure 3. Figure 3 shows there are 33 pieces of item 3 and 8 pieces of item 4.

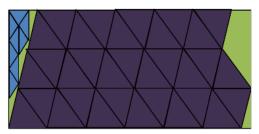



Figure 3. The Third Pattern

#### 3.2 3-phase Matheuristic Model

This formulation has 3 phases including the constructive phase, improvement phase, and compaction phase. This research assumes that item rotation is allowed but the values of  $l_i$ ,  $w_i$  and  $e_i$  are assumed not to change even though the item has a rotation. The board used is rectangular with a length of L= 50 cm and a width of W=15 cm (50.15) where there are 4 types of items placed on the board.

#### 3.2.1 3-Phase Matheuristic Model For The First Pattern

The constructive phase for the first pattern can be seen in Model (1).

Minimize

#### Science and Technology Indonesia, 5 (2020) 23-27

$$\begin{split} z &= 41. \ \delta_1^{656} + 39. \ \delta_2^{639} + 2. \ \delta_4^{54} + 8. \ \delta_4^{74} + 2. \ \delta_4^{40} + 8. \ \delta_4^{70} + 12. \ \delta_4^{96} + 18. \ \delta_4^{100} + 2. \ \delta_4^{36} + \\ & 4. \ \delta_4^{64} + 8. \ \delta_4^{132} + 8. \ \delta_4^{128} + 20. \ \delta_4^{123} + 12. \ \delta_4^{193} + 14. \ \delta_4^{227} + 16. \ \delta_4^{257} + 18. \ \delta_4^{391} + 20. \ \delta_4^{321} + \\ & 22. \ \delta_4^{365} + 24. \ \delta_4^{395} + 26. \ \delta_4^{429} + 28. \ \delta_4^{459} + 30. \ \delta_4^{493} + 32. \ \delta_4^{523} + 34. \ \delta_5^{577} + 36. \ \delta_4^{587} + \\ & 38. \ \delta_6^{511} + 40. \ \delta_6^{441} + 41. \ \delta_6^{468} + 41. \ \delta_6^{466} + 46. \ \delta_6^{479} + 86. \ \delta_4^{798} + 86. \ \delta_4^{598} + \\ & 43. \ \delta_6^{599} + 45. \ \delta_7^{736} + 90. \ \delta_7^{724} + 90. \ \delta_4^{728} + 90. \ \delta_4^{724} + 94. \ \delta_7^{766} + 94. \ \delta_7^{762} + 94. \ \delta_7^{759} + \\ & 47. \ \delta_2^{754} + 98. \ \delta_4^{28} + 49. \ \delta_4^{792} \end{split}$$

| Subject to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| $\delta_1^{656} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (1. <i>a</i> ) |
| $\delta_2^{639} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (1.b)          |
| $\delta_{4}^{45} + \delta_{4}^{74} + \delta_{4}^{40} + \delta_{4}^{70} + \delta_{4}^{96} + \delta_{4}^{100} + \delta_{4}^{36} + \delta_{4}^{68} + \delta_{4}^{132} + \delta_{4}^{128} + \delta_{4}^{163} + \delta_{4}^{193} + \delta_{4}^{227}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +              |
| $\delta_{4}^{257} + \delta_{4}^{291} + \delta_{4}^{321} + \delta_{4}^{365} + \delta_{4}^{395} + \delta_{4}^{429} + \delta_{4}^{459} + \delta_{4}^{493} + \delta_{4}^{523} + \delta_{4}^{557} + \delta_{4}^{587} + \delta_{4}^{511} + $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +              |
| $\delta_{4}^{641} + \delta_{4}^{668} + \delta_{4}^{664} + \delta_{4}^{660} + \delta_{4}^{702} + \delta_{4}^{698} + \delta_{4}^{694} + \delta_{4}^{690} + \delta_{4}^{736} + \delta_{4}^{732} + \delta_{4}^{728} + \delta_{4}^{72}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 +            |
| $\delta_{4}^{766} + \delta_{4}^{762} + \delta_{4}^{758} + \delta_{4}^{754} + \delta_{4}^{788} + \delta_{4}^{792} = 43$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (1.c)          |
| $(1 - \delta_1^{656}) \le 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (1.d)          |
| $(1 - \delta_2^{639}) \le 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (1.e)          |
| $ \left(1-\delta_{4}^{45}\right)+ \left(1-\delta_{4}^{74}\right) + \left(1-\delta_{4}^{40}\right) + \left(1-\delta_{4}^{70}\right) + \left(1-\delta_{4}^{96}\right) + \left(1-\delta_{4}^{100}\right) + \left(1-\delta_{4}^{36}\right) + \left(1-\delta_{4}^{100}\right) + \left(1-\delta_{4}^$                                                                                                                                                                |                |
| $(1-\delta_4^{58})+(1-\delta_4^{122})+(1-\delta_4^{128})+(1-\delta_4^{163})+(1-\delta_4^{193})+(1-\delta_4^{227})+\left(1-\delta_4^{257}\right)+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})+(1-\delta_4^{257})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F              |
| $(1-\delta_4^{291}) + (1-\delta_4^{321}) + \left(1-\delta_4^{365}\right) + \left(1-\delta_4^{395}\right) + (1-\delta_4^{429}) + \left(1-\delta_4^{459}\right) + (1-\delta_4^{493})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +              |
| $\left(1-\delta_{4}^{523}\right)+\left(1-\delta_{4}^{557}\right)+\left(1-\delta_{4}^{587}\right)+\left(1-\delta_{4}^{611}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{668}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{564}\right)+\left(1-\delta_{4}^{56}\right)+\left(1-\delta_{4}^{56}\right)+\left(1-\delta_{4}^{56}\right)+\left(1-\delta_{4}^{56}\right)+\left(1-\delta_{4}^{56}\right)+\left(1-\delta_{4}^{56}\right)+\left(1-\delta_{4}^{56}\right)+\left(1-\delta_{4}^{56}\right)+$ | +              |
| $(1 - \delta_4^{660}) + (1 - \delta_4^{702}) + (1 - \delta_4^{698}) + (1 - \delta_4^{694}) + (1 - \delta_4^{690}) + (1 - \delta_4^{736}) + (1 - \delta_4^{736}) + (1 - \delta_4^{698}) + (1 - \delta_4^{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 732) +         |
| $(1 - \delta_4^{728}) + (1 - \delta_4^{724}) + (1 - \delta_4^{766}) + (1 - \delta_4^{762}) + (1 - \delta_4^{758}) + (1 - \delta_4^{754}) + (1 - \delta_4^{788})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +              |
| $(1 - \delta_{4}^{792}) \le 59$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1. <i>f</i> ) |
| $\delta^{e}_{u} + \delta^{d}_{t} \leq 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (1.g)          |
| $\delta^d_t \in \{0,1\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (1. h)         |
| $z \ge 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (1. <i>i</i> ) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |

Constraint (1.a) and (1.b) in Model (1) indicate that there are 1 piece each of first item and second item which positioned in board. Constraint (1.c) indicate that there are 43 pieces of item 4. Constraints (1.d), (1.e) and (1.f) limit the displacement between variables along the width. Constraints (1.g) indicate that each item placed on the board does not overlap one another. Constraints (1.h) indicate that each item is positioned on the board.

The improvement phase for the first pattern can be seen in Model (2).

| Minimize (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Subject to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (2)            |
| (1.a), (1.b), (1.c), (1.g), (1.h), (1.i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| $\delta_{tr}^{d} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (2. <i>a</i> ) |
| Constraint (2.a) in Model (2) indicate that each item is positioned in the board.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| The Compaction Phase for the first pattern can be seen in Model (3).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
| Minimize (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
| Subject to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (3)            |
| (1.a), (1.b), (1.c), (1.d), (1.e), (1.f), (1.g), (1.h), (1.i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
| $\delta_1^{656} + \delta_2^{639} + \delta_4^{45} + \delta_4^{74} + \delta_4^{40} + \delta_4^{70} + \delta_4^{96} + \delta_4^{100} + \delta_4^{36} + \delta_4^{68} + \delta_4^{132} + \delta_4^{128} + \delta_4^{163} +$ | +              |
| $\delta_{4}^{193} \ + \ \delta_{4}^{227} \ + \ \delta_{4}^{257} \ + \ \delta_{4}^{291} \ + \ \delta_{4}^{321} \ + \ \delta_{4}^{365} \ + \ \delta_{4}^{395} \ + \ \delta_{4}^{429} \ + \ \delta_{4}^{459} \ + \ \delta_{4}^{493} \ + \ \delta_{4}^{523} \ + \ \delta_{4}^{557}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +              |
| $\delta_{4}^{587} + \delta_{4}^{611} + \delta_{4}^{641} + \delta_{4}^{668} + \delta_{4}^{664} + \delta_{4}^{660} + \delta_{4}^{702} + \delta_{4}^{698} + \delta_{4}^{694} + \delta_{4}^{690} + \delta_{4}^{736} + \delta_{4}^{73}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ² +            |
| $\delta_4^{728} + \delta_4^{724} + \delta_4^{766} + \delta_4^{762} + \delta_4^{758} + \delta_4^{754} + \delta_4^{788} + \delta_4^{792} \geq 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (3. <i>a</i> ) |
| Operatorists (0, c) is direct, that each item placed on the broad data and surder and sources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | har            |

Constraints (3.a) indicate that each item placed on the board does not overlap one another.

**3.2.2 3-Phase Matheuristic Model For The Second Pattern** The constructive phase for the second pattern can be seen in Model (4).

#### Minimize

$$\begin{split} z &=& 25.\delta_2^{416}+26.\delta_2^{420}+50.\delta_2^{816}+4.\delta_4^{67}+6.\delta_4^{37}+8.\delta_4^{131}+10.\delta_4^{161}+12.\delta_4^{195}+14.\delta_4^{225}\\ &16.\delta_4^{259}+18.\delta_2^{269}+20.\delta_4^{333}+22.\delta_4^{353}+24.\delta_4^{387}+26.\delta_4^{417}+60.\delta_4^{483}+32.\delta_4^{517}+32.\delta_4^{513}+68.\delta_4^{547}+72.\delta_4^{511}+40.\delta_4^{641}+80.\delta_4^{645}+40.\delta_4^{646}+84.\delta_4^{675}+84.\delta_4^{679}+44.\delta_4^{505}+88\delta_4^{709}+88.\delta_4^{213}+92.\delta_4^{233}+92.\delta_4^{233}+92.\delta_4^{243}+92.\delta_4^{247}+96.\delta_4^{277} \end{split}$$

(4) Subject to  $\delta_2^{416} + \delta_2^{420} + \delta_2^{816} = 3$ (4.a)  $\delta_{4}^{67} + \delta_{4}^{97} + \delta_{4}^{131} + \delta_{4}^{161} + \delta_{4}^{195} + \delta_{4}^{225} + \delta_{4}^{259} + \delta_{4}^{289} + \delta_{4}^{333} + \delta_{4}^{353} + \delta_{4}^{387} + \delta_{4}^{417} + \delta_{4}^{483} + \delta_{4}^{417} + \delta_{4}^{483} + \delta_{4}^{484} + \delta_$  $\delta_{4}^{517} + \delta_{4}^{513} + \delta_{4}^{547} + \delta_{4}^{581} + \delta_{4}^{577} + \delta_{4}^{615} + \delta_{4}^{611} + \delta_{4}^{641} + \delta_{4}^{645} + \delta_{4}^{649} + \delta_{4}^{675} + \delta_{4}^{679} +$  $\delta_{4}^{705} + \delta_{4}^{709} + \delta_{4}^{713} + \delta_{4}^{739} + \delta_{4}^{743} + \delta_{4}^{747} + \delta_{4}^{773} + \delta_{4}^{777} = 33$ (4.b)  $(1-\delta_2^{416})+(1-\delta_2^{420})+(1-\delta_2^{816}) \leq 3$ (4.c)  $(1-\delta_4^{67})+(1-\delta_4^{97})+(1-\delta_4^{131})+(1-\delta_4^{161})+\left(1-\delta_4^{195}\right)+\left(1-\delta_4^{225}\right)+\left(1-\delta_4^{259}\right)+$  $(1-\delta_4^{289})+(1-\delta_4^{333})+\left(1-\delta_4^{353}\right)+(1-\delta_4^{387})+(1-\delta_4^{417})+(1-\delta_4^{483})+\left(1-\delta_4^{517}\right)+$  $\left(1-\delta_{4}^{513}\right)+\left(1-\delta_{4}^{547}\right)+\left(1-\delta_{4}^{581}\right)+\left(1-\delta_{4}^{577}\right)+\left(1-\delta_{4}^{615}\right)+\left(1-\delta_{4}^{611}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^{641}\right)+\left(1-\delta_{4}^$  $\left(1-\delta_{4}^{645}\right)+\left(1-\delta_{4}^{649}\right)+\left(1-\delta_{4}^{675}\right)+\left(1-\delta_{4}^{679}\right)+\left(1-\delta_{4}^{705}\right)+\left(1-\delta_{4}^{709}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^{713}\right)+\left(1-\delta_{4}^$  $(1 - \delta_4^{739}) + (1 - \delta_4^{743}) + (1 - \delta_4^{747}) + (1 - \delta_4^{773}) + (1 - \delta_4^{777}) \le 48$ (4.d)  $\delta_u^e + \delta_t^d \leq 1$ (4.e) € {0,1}  $\delta_t^d$ (4.f) ≥ 0 (4.g) z

Constraint (4.a) in Model (4) indicate that there are 3 pieces of second item which positioned in board. Constraint (4.b) indicate that there are 33 pieces of item 4. Constraints (4.c) and (4.d) limit the displacement between variables along the width. Constraints (4.e) indicate that each item placed on the board does not overlap one another. Constraints (4.f) indicate that each item is positioned on the board.

The improvement phase for the second pattern can be seen in Model (5).

Minimize (4)

| Subject to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (5)                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| (4. a), (4. b), (4. e), (4. f), (4. g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| $\delta^d_{tr} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (5.a)              |
| Constraint (5.a) in Model (5) indicate that each item is positioned in the board.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |
| The compaction phase for the second pattern can be seen in Model (6).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |
| Minimize (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| Subject to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (6)                |
| (4. a), (4. b), (4. e), (4. f), (4. g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| $\delta_2^{416} + \delta_2^{420} + \delta_2^{816} + \delta_4^{67} + \delta_4^{97} + \delta_4^{131} + \delta_4^{161} + \delta_4^{195} + \delta_4^{225} + \delta_4^{259} + \delta_4^{289} + \delta_4^{333} + \delta_4^{353} + \delta_4^{35} + \delta_4^{35} + \delta_4^{35} + \delta_4^{35} + \delta_4^{35} +$ | $+ \delta_4^{387}$ |
| $+\delta_{*}^{417}+\delta_{*}^{483}+\delta_{*}^{517}+\delta_{*}^{513}+\delta_{*}^{547}+\delta_{*}^{581}+\delta_{*}^{577}+\delta_{*}^{615}+\delta_{*}^{611}+\delta_{*}^{641}+\delta_{*}^{645}+\delta_{*}^{645}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9 +                |

 $\begin{array}{c} + \sigma_{4}^{-1} + \sigma_{4}^{-1$ 

**3.2.3 3-Phase Matheuristic Model For The Third Pattern** The constructive phase for the third pattern can be seen in Model (7).

Minimize

Constraint (7.a) in Model (7) indicate that there are 22 pieces of third item which positioned in board. Constraint (7.b) indi-

© 2020 The Authors

$$\begin{split} & z = \left((8\,.1)+0\right)\,.\,\delta_{3}^{2\,29}+\left((20.1)+0\right)\,.\,\delta_{3}^{166}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{233}+\left((14\,.1)+0\right)\,.\,\delta_{3}^{240}+\left((16\,.1)+0\right)\,.\,\delta_{3}^{257}+\left((36\,.1)+0\right)\,.\,\delta_{3}^{294}+\left((40\,.1)+0\right)\,.\,\delta_{3}^{311}+\left((22\,.1)+0\right)\,.\,\delta_{3}^{368}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{348}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{34}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{34}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{34}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{34}+\left((24\,.1)+0\right)\,.\,\delta_{3}^{3$$

 $\delta^{38}_4 \, + \, \delta^{42}_4 \ + \, \delta^{46}_4 + \, \delta^{76}_4 + \, \delta^{80}_4 = 5$ (7.b)  $(1-\delta_3^{129}) + (1-\delta_3^{166}) + (1-\delta_3^{203}) + (1-\delta_3^{240}) + (1-\delta_3^{257}) + (1-\delta_3^{294}) + (1-\delta_3^{331}) + (1-\delta_3^{331}$  $(1-\delta_3^{368}) + \left(1-\delta_3^{385}\right) + \left(1-\delta_3^{422}\right) + \left(1-\delta_3^{459}\right) + \left(1-\delta_3^{496}\right) + \left(1-\delta_3^{513}\right) + \left(1-\delta_3^{550}\right) + \left(1-\delta_3^{55}$  $\left(1-\delta_{3}^{587}\right)+\left(1-\delta_{3}^{624}\right)+\left(1-\delta_{3}^{641}\right)+\left(1-\delta_{3}^{678}\right)+\left(1-\delta_{3}^{715}\right)+\left(1-\delta_{3}^{752}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{769}\right)+\left(1-\delta_{3}^{76}\right)+\left(1-\delta_{3}^{76}\right)+\left(1-\delta_{3}^{76}\right)+\left(1-\delta_{3}^{76$  $(1 - \delta_3^{806}) \le 33$ (7.c)  $(1-\delta_4^{38})+(1-\delta_4^{42})+(1-\delta_4^{46})+(1-\delta_4^{76})+(1-\delta_4^{80})\leq 8$ (7.d)  $\delta^e_u + \delta^d_t \leq 1$ (7.e)  $\delta_i^d$ € {0.1} (7.f)  $\geq 0$ z (7.g)

cate that there are 5 pieces of item 4. Constraints (7.c) and (7.d) limit the displacement between variables along the width. Constraints (7.e) indicate that each item placed on the board does not overlap one another. Constraints (7.f) indicate that each item is positioned on the board.

The improvement phase for the second pattern can be seen in Model (8).

Minimize (7)

| Subject to                        | (8)            |
|-----------------------------------|----------------|
| (7.a), (7.b), (7.e), (7.f), (7.g) |                |
| $\delta^d_{tr}=0$                 | (8. <i>a</i> ) |

Constraint (8.a) in Model (8) indicate that each item is positioned in the board. The compaction phase for the second pattern can be seen in Model (9).

Minimize (7)

| Subject to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (9)   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| (7. a), (7. b), (7. c), (7. d), (7. e), (7. f), (7. g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| $\delta_3^{129} + \delta_3^{166} + \delta_3^{203} + \delta_3^{240} + \delta_3^{257} + \delta_3^{294} + \delta_3^{331} + \delta_3^{368} + \delta_3^{385} + \delta_3^{422} + \delta_3^{459} + \delta_3^{496} + \delta_3^{513}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +     |
| $\delta_3^{550} + \delta_3^{587} + \delta_3^{624} + \delta_3^{641} + \delta_3^{678} + \delta_3^{715} + \delta_3^{752} + \delta_3^{769} + \delta_3^{806} + \delta_4^{38} + \delta_4^{42} + \delta_4^{46} + \delta_4^{76} + $ | 6 +   |
| $\delta_4^{30} \ge 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (9.a) |

Constraints (9.a) indicate that each item placed on the board does not overlap one another. Based on the 3-Phase Matheuristic model, the minimum trim loss from the first pattern, second pattern and third pattern are  $1,774 \text{ cm}^2$ ,  $1749 \text{ cm}^2$ , and  $980 \text{ cm}^2$ , respectively which used to minimize the use of stock length and width.

#### 4. CONCLUSIONS

From the result and discussion, it can be concluded that 3 optimal cutting patterns were got from Modified Branch and Bound

Algorithm. All of the three patterns can be seen in Figure 1-3. The 3-Phase Matheuristic model is used to minimize the use of stock length and width. The minimum trim loss from the first pattern, second pattern and third pattern are  $1,774 \text{ cm}^2$ ,  $1749 \text{ cm}^2$ , and  $980 \text{ cm}^2$  respectively.

#### 5. ACKNOWLEDGEMENT

This research is supported by Universitas Sriwijaya through Sains, Teknologi dan Seni (SATEKS) Research Grant Scheme, 2019.

#### REFERENCES

- Bangun, P. B., S. Octarina, and A. P. Pertama (2019). Implementation of branch and cut method on n-sheet model in solving two dimensional cutting stock problem. In *Journal of Physics: Conference Series*, volume 1282. IOP Publishing, page 012012
- Cherri, L. H., M. A. Carravilla, and F. M. B. Toledo (2016). A model-based heuristic for the irregular strip packing problem. *Pesquisa Operacional*, 36(3); 447–468
- Gomes, A. M. and J. F. Oliveira (2006). Solving irregular strip packing problems by hybridising simulated annealing and linear programming. *European Journal of Operational Research*, **171**(3); 811–829
- Octarina, S., V. Ananda, and E. Yuliza (2019). Gilmore and gomory model on two dimensional multiple stock size cutting stock problem. In *Journal of Physics: Conference Series*, volume 1282. IOP Publishing, page 012015

- Octarina, S., P. B. Bangun, and S. Hutapea (2017). The Application to Find Cutting Patterns in Two Dimensional Cutting Stock Problem. *Journal of Informatics and Mathematical Sciences*, 9(4)
- Octarina, S., M. Radiana, and P. B. Bangun (2018). Implementation of pattern generation algorithm in forming Gilmore and Gomory model for two dimensional cutting stock problem. In *IOP Conference Series: Materials Science and Engineering*, volume 300. IOP Publishing, page 012021
- Rodrigo, N. and S. Shashikala (2017). One-Dimensional Cutting Stock Problem with Cartesian Coordinate Points. International Journal of Systems Science and Applied Mathematics, 2(5); 99
- Rodrigo, W., W. Daundasekera, and A. Perera (2012). Pattern generation for two-dimensional cutting stock problem with location. *Indian Journal of Computer Science and Engineering* (IJCSE), 3(2); 354–368
- Rodrigo, W., W. Daundasekera, and A. Perera (2013). A Method for Two-Dimensional Cutting Stock Problem with Triangular Shape Items. *Journal of Advances in Mathematics and Computer Science*; 750–771
- Toledo, F. M., M. A. Carravilla, C. Ribeiro, J. F. Oliveira, and A. M. Gomes (2013). The dotted-board model: a new MIP model for nesting irregular shapes. *International Journal of Production Economics*, 145(2); 478–487

### 3-Phase Matheuristic Model in Two-Dimensional Cutting Stock Problem of Triangular Shape Items

| ORIGIN      | ALITY REPORT                     |                                                                                                 |                                                   |                              |
|-------------|----------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------|
| 8<br>SIMILA | %<br>ARITY INDEX                 | <b>3%</b><br>INTERNET SOURCES                                                                   | 9%<br>PUBLICATIONS                                | <b>1</b> %<br>STUDENT PAPERS |
| PRIMAR      | Pertama.<br>method o<br>dimensio | Bangun, Sisca C<br>" Implementatio<br>on -sheet model i<br>nal cutting stock<br>Conference Seri | n of branch an<br>n solving two<br>problem ", Jou | d cut                        |
| 2           | "Gilmore<br>multiple s           | tarina, Vinny Ana<br>and gomory mod<br>stock size cutting<br>of Physics: Confe                  | del on two dim<br>stock problen                   | ensional<br>າ",              |
| 3           | WWW.SCie                         |                                                                                                 |                                                   | 1                            |
| 4           | article.ijs                      | • • • • • • • • • • • • • • • • • • •                                                           |                                                   | 1                            |
| 5           | Alves de algorithm               | R. Mundim, Mari<br>Queiroz. "A bias<br>for open dimens<br>fit raster", Exper                    | ed random ke<br>sion nesting pr                   | y genetic<br>oblems          |

## Applications, 2017

On

Publication

Exclude quotes

Exclude bibliography On

Exclude matches < 1%

#### LEMBAR HASIL PENILAIAN SEJAWAT SEBIDANG (PEER REVIEW) KARYA ILMIAH: JURNAL ILMIAH

| Judul Artikel Ilmiah<br>Penulis Artikel Ilmiah |                                                                                                                                                 | el in Two-Dimensional Cutting Stock Problem of Triangular Shape Items<br>n, Sisca Octarina, Sisca Puspita Sepriliani, <b>Laila Hanum</b> , Endro Setyo                            |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Identitas Jurnal Ilmiah                        | : a. Nama Jurnal<br>b. ISSN/ISBN<br>c. Nomor/Volume/Hal<br>d. Edisi (Bulan/Tahun)<br>e. Penerbit<br>f. Jumlah Halaman<br>g. Jurnal terindeks di | : Science and Technology Indonesia<br>: 2580-4405<br>: 1 / 5 / 23 - 27<br>: Januari / 2020<br>: FMIPA Universitas Sriwijaya<br>: 5<br>: Sinta Dikti (S3), DOAJ, Crossref dan ISJD |

(Beri √ pada kategori yang tepat) □Jurnal Internasional terindeks pada basis data internasional bereputasi

Kategori Publikasi Jurnal Ilmiah : Durnal Internasional Bereputasi (terindeks database internasional dan berfaktor dampak)

Jurnal Internasional terindeks pada basis data internasional

Jurnal Nasional Terakreditasi peringkat 1 dan 2

V Jurnal Nasional Terakreditasi peringkat 3 dan 4

| No. | ASPEK             | URAIAN/KOMENTAR PENILAIAN |  |  |  |
|-----|-------------------|---------------------------|--|--|--|
| 1   | Indikasi Plagiasi | 8 20                      |  |  |  |
| 2   | Linieritas        | Kurang linier             |  |  |  |

I. Hasil Penilaian Peer Review:

|                                                                   | Nilai Maksimal Jurnal Ilmiah =                                                                         |                                                                                            |                                                                              |                                                   |                                  |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------|
| Komponen Yang Dinilai                                             | Internasional<br>Bereputasi(terindeks<br>database<br>internasional dan<br>berfaktor dampak)<br>Maks=40 | Internasional<br>terindeks<br>pada basis<br>data<br>internasional<br>bereputasi<br>Maks=30 | Internasional<br>terindeks<br>pada basis<br>data<br>internasional<br>Maks=20 | Nasional<br>Terakredit<br>asi<br>peringkat<br>3&4 | Nilai Akhir<br>Yang<br>DIperoleh |
| Kelengkapan dan Kesesuaian unsur isi<br>jurnal (10 %)             |                                                                                                        |                                                                                            |                                                                              | 2                                                 | 2                                |
| Ruang Lingkup dan kedalaman<br>pembahasan (30 %)                  |                                                                                                        |                                                                                            |                                                                              | 6                                                 | 6                                |
| Kecukupan dan Kemutahiran<br>data/Informasi dan metodologi (30 %) |                                                                                                        |                                                                                            |                                                                              | 6                                                 | 6                                |
| Kelengkapan unsur dan Kualitas<br>penerbit (30 %)                 |                                                                                                        |                                                                                            |                                                                              | 6                                                 | 6                                |
| Total = (100 %)                                                   |                                                                                                        |                                                                                            |                                                                              | 20                                                | 20                               |
| Kontribusi Pengusul (Penulis<br>Pertama/Anggota Utama)            | Anggota                                                                                                | 1                                                                                          |                                                                              | 0,/x 20                                           | = &,0                            |

2

| OMENTAR/ULASAN PEER REVIEW                     |                                         |
|------------------------------------------------|-----------------------------------------|
| Kelengkapan dan Kesesuaian Unsur               | Isi jurnal lengkap dan sesuai           |
| Ruang Lingkup dan Kedalaman<br>Pembahasan      | Pembahasan mendalam                     |
| Kecukupan dan Kemutakhiran Data<br>&Metodologi | Data cukup lengkap, metodologi mutakhir |
| Kelengkapan Unsur & Kualitas<br>Penerbit       |                                         |
|                                                | Inderalaya, Juni 2020<br>Penilai        |

1 e - \*

Nama NIP Unit Kerja

Instansi

: Dy. Hary Widjajanti, M.Si. : 196112121987102001

: Fakultas MIPA

: Universitas Sriwijaya : Biologi

Bidang Ilmu Jabatan/Pangkat : Lektor Kepala / Pembina (IV/a)

#### LEMBAR HASIL PENILAIAN SEJAWAT SEBIDANG (PEER REVIEW) KARYA ILMIAH: JURNAL ILMIAH

| Judul Artikel Ilmiah<br>Penulis Artikel Ilmiah |                        | lel in Two-Dimensional Cutting Stock Problem of Triangular Shape Items<br>n, Sisca Octarina, Sisca Puspita Sepriliani, <b>Laila Hanum</b> , Endro Setyo |
|------------------------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Identitas Jurnal Ilmiah                        | : a. Nama Jurnal       | : Science and Technology Indonesia                                                                                                                      |
|                                                | b. ISSN/ISBN           | : 2580-4405                                                                                                                                             |
|                                                | c. Nomor/Volume/Hal    | :1/5/23-27                                                                                                                                              |
|                                                | d. Edisi (Bulan/Tahun) | : Januari / 2020                                                                                                                                        |
|                                                | e. Penerbit            | : FMIPA Universitas Sriwijaya                                                                                                                           |
|                                                | f. Jumlah Halaman      | :5                                                                                                                                                      |
|                                                | g. Jurnal terindeks di | : Sinta Dikti (S3), DOAJ, Crossref dan ISJD                                                                                                             |
|                                                |                        |                                                                                                                                                         |

Kategori Publikasi Jurnal Ilmiah : 
□Jurnal Internasional Bereputasi(terindeks database internasional dan berfaktor dampak) (Beri√pada kategori yang tepat) □Jurnal Internasional terindeks pada basis data internasional bereputasi IJurnal Internasional terindeks pada basis data internasional UJurnal Nasional Terakreditasi peringkat 1 dan 2 √ Jurnal Nasional Terakreditasi peringkat 3 dan 4

Hasil Penilaian Validasi:

. .

| No. | ASPEK             | URAIAN/KOMENTAR PENILAIAN |  |
|-----|-------------------|---------------------------|--|
| 1   | Indikasi Plagiasi | 8 %                       |  |
| 2   | Linieritas        | Kurang Linier             |  |

I. Hasil Penilaian Peer Review:

|                                                                   | Nilai Maksimal Jurnal Ilmiah =                                                                         |                                                                                            |                                                                              |                                                   |                                  |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------|
| Komponen Yang Dinilai                                             | Internasional<br>Bereputasi(terindeks<br>database<br>internasional dan<br>berfaktor dampak)<br>Maks=40 | Internasional<br>terindeks<br>pada basis<br>data<br>internasional<br>bereputasi<br>Maks=30 | Internasional<br>terindeks<br>pada basis<br>data<br>internasional<br>Maks=20 | Nasional<br>Terakredit<br>asi<br>peringkat<br>3&4 | Nilai Akhir<br>Yang<br>DIperoleh |
| Kelengkapan dan Kesesuaian unsur isi<br>jurnal (10 %)             |                                                                                                        |                                                                                            |                                                                              | 2                                                 | 2                                |
| Ruang Lingkup dan kedalaman<br>pembahasan (30 %)                  |                                                                                                        |                                                                                            |                                                                              | 6                                                 | 6                                |
| Kecukupan dan Kemutahiran<br>data/Informasi dan metodologi (30 %) |                                                                                                        |                                                                                            |                                                                              | 6                                                 | 6                                |
| Kelengkapan unsur dan Kualitas<br>penerbit (30 %)                 |                                                                                                        |                                                                                            |                                                                              | 6                                                 | 6                                |
| Total = (100 %)                                                   |                                                                                                        |                                                                                            |                                                                              | 20                                                | 20                               |
| Kontribusi Pengusul (Penulis<br>Pertama/Anggota Utama)            | Anggota                                                                                                | 1                                                                                          |                                                                              | 6,1 × 20                                          | = 2.0                            |

| Kelengkapan dan Kesesuaian Unsur               |                                           |
|------------------------------------------------|-------------------------------------------|
|                                                | 16 Jurnal Lengrap dan servai              |
| Ruang Lingkup dan Kedalaman<br>Pembahasan      | Pembahasan Mendalam                       |
| Kecukupan dan Kemutakhiran Data<br>&Metodologi | Data Curup Lengrap, Metodelogi mutarchir. |
| Kelengkapan Unsur & Kualitas<br>Penerbit       |                                           |

Inderalaya, Juni 2020 Penilai

Nama: Dr. Salni, M.Si.NIP: 196608231993031002Unit Kerja: Fakultas MIPAInstansi: Universitas SriwijayaBidang Ilmu: BiologiJabatan/Pangkat: Lektor Kepala / Pembina (IV/a)