ANALISIS SENTIMEN MENGGUNAKAN METODE SUPPORT VECTOR MACHINE DAN QUERY EXPANSION

MELATI, RIMA and Yusliani, Novi and Rodiah, Desty (2021) ANALISIS SENTIMEN MENGGUNAKAN METODE SUPPORT VECTOR MACHINE DAN QUERY EXPANSION. Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_55201_09021181621011.pdf] Text
RAMA_55201_09021181621011.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (2MB) | Request a copy
[thumbnail of RAMA_55201_09021181621011_TURNITIN.pdf] Text
RAMA_55201_09021181621011_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (10MB) | Request a copy
[thumbnail of RAMA_55201_09021181621011_0008118205_8802870018_01_front_ref.pdf]
Preview
Text
RAMA_55201_09021181621011_0008118205_8802870018_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Preview
[thumbnail of RAMA_55201_09021181621011_0008118205_8802870018_02.pdf] Text
RAMA_55201_09021181621011_0008118205_8802870018_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (597kB) | Request a copy
[thumbnail of RAMA_55201_09021181621011_0008118205_8802870018_03.pdf] Text
RAMA_55201_09021181621011_0008118205_8802870018_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Request a copy
[thumbnail of RAMA_55201_09021181621011_0008118205_8802870018_04.pdf] Text
RAMA_55201_09021181621011_0008118205_8802870018_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Request a copy
[thumbnail of RAMA_55201_09021181621011_0008118205_8802870018_05.pdf] Text
RAMA_55201_09021181621011_0008118205_8802870018_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (566kB) | Request a copy
[thumbnail of RAMA_55201_09021181621011_0008118205_8802870018_06.pdf] Text
RAMA_55201_09021181621011_0008118205_8802870018_06.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (13kB) | Request a copy
[thumbnail of RAMA_55201_09021181621011_0008118205_8802870018_06_ref.pdf] Text
RAMA_55201_09021181621011_0008118205_8802870018_06_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (134kB) | Request a copy
[thumbnail of RAMA_55201_09021181621011_0008118205_8802870018_07_lamp.pdf] Text
RAMA_55201_09021181621011_0008118205_8802870018_07_lamp.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (167kB) | Request a copy

Abstract

Sentiment analysis is used to determine someone's opinion on a topic, then classify the comments into positive or negative sentiments. Support Vector Machine (SVM) is one of thealgorithms supervised learning that predicts classes based on models or patterns from the results of theprocess training. Themethod Support Vector Machine (SVM) in general still has shortcomings when applied toshort text, one of the challenges of using short text as a case of text classification is ambiguity. One technique that can be used to help with this problem is to add afeature or query newcalled query expansion(QE). In this study, the data used are comments about LRT SUMSEL on Twitter. The test results show that the application of query expansion with the value of window size 2 has an accuracy of 76% while the value of window size 3 is 74%. Sentiment analysis using support vector machine without query expansion has an accuracy of 83%

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Analisis sentiment, Support vector machine, Query expansion, Window size.
Subjects: P Language and Literature > P Philology. Linguistics > P98-98.5 Computational linguistics. Natural language processing
Divisions: 09-Faculty of Computer Science > 55201-Informatics (S1)
Depositing User: RIMA MELATI
Date Deposited: 20 Sep 2021 08:00
Last Modified: 20 Sep 2021 08:00
URI: http://repository.unsri.ac.id/id/eprint/54257

Actions (login required)

View Item View Item