ISSN: 1823-3287

Johor Bahru, July 26-27, 2006 Universiti Teknologi Malaysia

REGIONAL POSTGRADUATE CONFERENCE ON ENGINEERING & SCIENCE

School of Graduate Studies (SPS) Indonesian Student Association (PPI) Universiti Teknologi Malaysia

RPCES2006

ORGANIZING COMMITTEE

PATRON

Datuk Prof. Ir. Dr. Mohd Zulkifli Tan Sri Mohd Ghazali (Vice Chancellor, Universiti Teknologi Malaysia)

ADVISORY BOARD

Prof. Dr. Rahmalan Ahamad (Dean SPS, Universiti Teknologi Malaysia)

Prof. Dr. Ahmad Fauzi Ismail (Universiti Teknologi Malaysia, Malaysia)

Assoc. Prof. Dr. Nordin Yahaya (Universiti Teknologi Malaysia, Malaysia)

Assoc. Prof. Dr. Waluyo Adi Siswanto (Muhammadiyah University of Surakarta, Indonesia)

Assoc. Prof. Dr. Hishamuddin Jamaluddin (Universiti Teknologi Malaysia, Malaysia)

TECHNICAL COMMITTEE

Prof. Dr. Ahmad Fauzi Ismail (Universiti Teknologi Malaysia, Malaysia)

Assoc. Prof. Dr. Nordin Yahaya (Universiti Teknologi Malaysia, Malaysia)

Assoc. Prof. Dr. Nor Abidah Mohd Omar (Universiti Teknologi Malaysia, Malaysia)

Assoc. Prof. Dr. Waluyo Adi Siswanto (Muhammadiyah University of Surakarta, Indonesia)

> Assoc. Prof. Dr. Abdullah (Diponegoro University, Indonesia)

Dr. Hadi Nur (Universiti Teknologi Malaysia, Malaysia)

Dr. Nurly Gofar (Universiti Teknologi Malaysia, Malaysia)

RPCES2006

WORKING COMMITTEE

Chairman	Tutuk Djoko Kusworo
Deputy Chairman	Reza Firsandaya Malik Abdullah Saand
Secretariat	Kusmiyati Norly Mazlan Ammar Yassin Al-Mukrary Denny Kurniawan
Treasurer	Jarot Setyowiyoto
Paper/Proceeding	Amrifan Saladin Mohruni Megat Aman Zahiri Ngurah Made Dharma Putra Izham bin Mohammad Yusoff
Conference Program	Ardiyansyah Syahrom Djurdjani
Information Technology	Istadi Dahliyusmanto
Publication	Agung Murti Nugroho
Logistics/Accomodation/ Transportation	Prijono Nugroho M. Ni'am Faiqun
Souvenirs	Ahmad Nasirudin
Food & Beverages	Azriyenni Salmiati

D Advanced Material and Materials Processing Technology							
No.	Title	Authors	Corresponding e-mail	Corresponding Address	Page No		
D10	Cutting Force Predictions Models in End Milling Titanium Alloy Ti-6Al-4V	<u>A.S. Mohruni</u> , S. Sharif, M.Y. Noordin	mohrunias@yahoo.com.	Tel./Fac.: +62-31-5922941, Department of Mechanical Engineering, Faculty of Engineering Sriwijaya University, 30662 Indralaya, South Sumatra Indonesia Tel: +60-7-5534850, Fax: +60-7-5566159	337		
D12	Additives in EDM Dielectric	<u>Norliana Mohd</u> <u>Abbas</u> , Darius G. Solomon and Md. Fuad Bahari	<u>chelorot@lycos.com</u>	Faculty of Mechanical Engineering, Universiti Teknologi MARA (UiTM), Shah Alam, Selangor Darul Ehsan, Malaysia Tel: +603-5543 5159, Fax: +603-5543 5160	343		
D13	The effect of moisture on the extraction rate of palm pressed fiber residue using press machine	<u>Zainoor Hailmee</u> <u>Solihin</u> , Ahmed Jaffar	zainoor8@yahoo.com	Faculty of Mechanical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, MALAYSIA Tel: 6012-2646482	349		
D14	A Modeling and Simulation of Process Improvement in Polyurethane Injection Manufacturing Line	<u>Noriah Yusoff,</u> Ahmed Jaffar	norieyusof@yahoo.com	Faculty of Mechanical Engineering University Technology MARA, 40450 Shah Alam, Selangor, Malaysia	355		
D15	Taguchi Methodology-based Approach to Precision grinding of Silicon.	Alao Abdur- Rasheed, Konneh Mohamed ²	abdur_rash@yahoo.co.uk	Manufacturing and Materials Engineering Department, International Islamic University Malaysia, 53100 Kuala Lumpur, Malaysia Tel: +6-0126865425, Fax: +60-3-61964568,	361		
D16	Evaluation of a Material Flow Stress Model Adopted in Finite Element Modeling of Metal Cutting	M. N. Tamin, S. Izman, V. C. Venkatesh, <u>T.T. Mon</u>	pm033011@siswa.fkm.utm.my	Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia	369		
D17	Microstructure and Creep Behaviour of AS-Cast Binary two phase Gamma TiAl.	E. Hamzah, ¹ M. Kanniah and ² M. Harun	<u>esah@fkm.utm.my</u>	Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Malaysia Tel: 07-5534563 Fax: 07-5566159	375		
D18	Performance of wiper coated carbide tool when turning hardened stainless steel	M. Y. Noordin, D. Kurniawan, S. Sharif, Y. C. Tang	noordin@fkm.utm.my	Faculty of Mechanical Engineering Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia Tel: +60-7-5534697, Fax: +60-7-5566159	381		

E Advanced Manufacturing

No.	Title	Authors	Corresponding e- mail	Corresponding Address	Page No			
E1	Development Of Activity- Based Costing (ABC) Model In Demanufacture Cost Assessments	S.Mugeneswaran a/l Shanmugam , Awaluddin Mohd Shaharoun	muge@oum.edu.my	Faculty of Engineering & Technical, Open University Malaysia, Jalan Tun Ismail, 50480 Kuala Lumpur	387			
25	Condensation of Refrigerant R- 22 in the Annulus of Horizontal Double-Tube Condenser with an Enhanced Inner Tube	<u>R. Tiruselvam</u> , Mohd. Zainal Yusof, Vijay R. Raghavan	vijay@kuittho.edu.my	Fakulti Kejuruteraan Mekanikal & Pembuatan Kojel Universiti Teknologi Tun Hussein Onn, Parit Raja Tel:+60-125698389	393			
26	Studies on Modelling of a Swirling Fluidized Bed	Mohammad Kamil, Mokhtar Yusoff, Vijay Raghavan	<u>vijay@kuittho.edu.my</u>	Department of Plant and Automotive Faculty of Mechanical and Manufacturing Engineering Kolej Universiti Teknologi Tun Hussein Onn, 86400 Parit Raja, Johor, Malaysia Tel: +60-7-4537794, Fax: +60-7-4536080.	399			
E7	Analysis of Flow and Heat Transfer over Louvered Fins in Compact Geometries	<u>Yong Kok Wee</u> , Vijay R. Raghavan	vijay@kuittho.edu.my	Kolej University Teknologi Tun Hussein Onn, 86400 Parit Raja, Batu Pahat, Johor, Malaysia.Tel:+60- 126793735,	405			
Ξ8	Experimental Study on Manoeuvring Characteristics of a Planing Hull	<u>A. Haris Muhammad,</u> Adi Maimun, Omar Yaacob, Agoes Priyanto	andi_haris@ft.unhas.ac.id	Faculty of Mechanical Engineering Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia Tel: +60-7-5535706,	411			
E9	Feasibility Study of Ultrasonic Transducers as Altitude and Attitude Sensors for Flight Control System	<u>T. Indriyanto</u> and U. M. Zaeny	t.indriyanto@ae.itb.ac.id	Aerospace Engineering, Faculty of Industrial Technology Institute of Technology Bandung, Bandung, Indonesia Tel: +62-22-2504529, Fax: +62-22-2534164,	471			
E10	Development of Cavity Defect in Forward Extrusion	Tri Widodo Besar Riyadi, John Atkinson, Waluyo Adi Siswanto	<u>tri_wbr@yahoo.com</u>	Department of Mechanical Engineering Muhammadiyah University of Surakarta, Pabelan, Surakarta, Indonesia. Tel: +62-271-717417 ext 222, Fax. +62-271-715448,	423			
E11	Numerical Simulation of Jet Impingement Cooling on a Smooth Concave Surface	Suzairin bin Md Seri and Vijay R. Raghavan	vijay@kuittho.edu.my	Faculty of Mechanical and Manufacturing Engineering Kolej Universiti Teknologi Tun Hussein Onn(KUiTTHO)86400 Parit Raja, Batu Pahat, Johor, Malaysia Tel: +60-7-4537794, Fax: +60-7-4536080	429			
E13	Particle Swarm Optimization Neural Network Based Modelling of Vehicle Suspension System	Gigih Priyandoko Musa Mailah Hishamuddin Jamaluddin	gigihp@gmail.com	Department of Applied Mechanics, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia	435			
E14	Preliminary study of active noise control method for jet engine noise using secondary multipole resource		<u>kusni@ae.itb.ac.id</u>	Study Program of Aerospace Engineering, Faculty of Industrial Technology Bandung Institute of Technology, Bandung, Indonesia Tel: +62-22-2504529,	441			

E Advanced Manufacturing

No.	Title	Authors	Corresponding e- mail	Corresponding Address	Page No
E15	Optimum Number of Stages of the New Multi-Stage Symmetrical Wobble Plate Compressor	Ardiyansyah Syahrom, Md. Nor Musa , Wan Ali Wan Mat, Ainullotfi Abdul Latif	ardiyansyah@utm.my	Faculty of Mechanical Engineering Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia Tel: +60-7-5534878, Fax: +607-5566159,	447
E21	Ratio control of an electromechanical dual acting pulley – continuously variable transmission (EMDAP-CVT) system using PD fuzzy logic controller	Bambang Supriyo, Kamarul Baharin Tawi, Hishamuddin Jamaluddin and Sugeng Ariyono	bsupriyo7763@yahoo.com	Department of Electronic Engineering, Politeknik Negeri Semarang Jl. Prof.H. Sudarto, S.H. Tembalang, Semarang 50329, Indonesia	455
E22	Micro/Meso Mechanical Manufacturing (M ⁴): Opportunities and Challenges - A Review	R. Mehfuz, M. Y. Ali [*]	mmyali@iiu.edu.my	Department of Manufacturing and Materials Engineering Faculty of Engineering, International Islamic University Malaysia 53100, Jalan Gombak, Selangor Darul Ehsan, Malaysia	463
E23	Development of Symmetrical Double Sided Linear Wobble Plate Compressor for Bus A/C System	Mohd Suffian, Imran Sairaji, Md. Nor Musa	mdnor@fkm.utm.my	Faculty of Mechanical Engineering UTM Skudai, Johor. Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia Tel: +60-7-5534567, Fax: +60-7-5536688,	469

Papers

Cutting Force Predictions Models in End Milling Titanium Alloy Ti-6Al-4V

A.S. Mohruni^{1*2}, S. Sharif², M.Y. Noordin²

¹ Department of Mechanical Engineering, Faculty of Engineering Sriwijaya University,30662 Indralaya, South Sumatra Indonesia Tel: +60-7-5534850, Fax: +60-7-5566159, E-mail: mohrunias@yahoo.com.

² Department of Manufacturing and Industrial Engineering Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia Tel: +60-7-5534850, Fax: +60-7-5566159, E-mail: safian@fkm.utm.my

Abstract

This paper presents a study of the development of predicted mathematical models for average tangential cutting force in end milling titanium alloy Ti-6Al-4V using uncoated solid carbide tools under flood conditions. In developing the cutting force models, the primary machining parameters such as cutting speed, feed and radial rake angle, were used as independent variables for factorial design of experiment coupled with response surface methodology (RSM). Results from the 3D-response surface contour showed that an almost constant level of cutting force was obtained during machining this advanced material. An optimum cutting conditions was also identified for a particular range of cutting force values. The models were tested by analysis of variances and were found to be adequate.

Keywords: Cutting force, End milling, Titanium Alloys, Factorial design, RSM.

1 Introduction

Titanium and its alloys are used extensively in the aerospace industry for turbine and compressor blades in the cooler parts of the engine. They are known to have excellent strength to weight ratios and corrosion resistance coupled with good elevated temperatures properties and an oxidation limit of ~ 600 °C. The α - β alloy, Ti-6Al-4V is the most common and accounts for over half of the world's sales of titanium alloys.

Numerous studies have shown titanium and its alloys are difficult to machine, regardless of the various types of cutting tools used. This has been attributed to their low thermal conductivity, which concentrates heat in the cutting zone (typically less than 25% that of steel), retention of strength at elevated temperatures and high chemical affinity for all cutting tool materials.

Although the cutting forces generated are not excessively high (almost similar to those with steel), they are confined to a small area due to the short chip contact length which leads to high stresses. The combination of high stress and temperature resulted in plastic deformation of the tool edge. Depth of cut notching and chipping at the flank can also be a problem with intermittent cutting operations. [1]

End milling is one of the most widely used machining operation and the aerospace industry places heavy demand on this process due to both the shape and complexity of the parts and the dimensional accuracy required. Recent

* Corresponding Author. E-mail: mohrunias@yahoo.com, Tel: +60-7-5534770, Fax: +60-7-5566159 approaches to the problem of designing a suitable data selection system for Computer Integrated Manufacturing (CIM) application are to use machinability database systems in the form of mathematical model which have considerable advantages over simple data retrieval systems [2]. For this purpose, an approach to develop a mathematical model for the average tangential cutting force in end milling Ti-6Al-4V by factorial design of experiment coupled with RSM was conducted.

2 Cutting Forces in End Milling

The basic geometry of the end milling process for down milling is presented in Figure 1. The cutting force components acting on one tooth of the end mill cutter are shown in Figure 2. There are two cutting force components system. The first is the table system (F_x , F_y , F_z , F_R), its indices illustrated the direction of the cutting force in x-y-z coordinate respectively and the resultant force. The second is known as the cutter system of cutting forces which consists of four components F_t , F_r , F_a and F_R ', they are tangential, radial, axial and projection of the resultant force respectively [3][4].

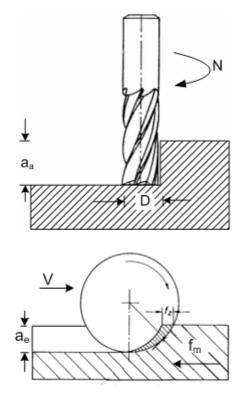


Figure 1 Basic Geometry of an End Milling Process (Down Milling)

2.1 Average Cutting Force in multi-tooth End Milling

The average cutting force is very useful for engineers in designing machine tools and in setting up the cutting system, although it is not the maximum cutting force occurred in an end milling process. If several teeth are cutting simultaneously, then the total average cutting forces acting on the teeth of the cutter per cut in table system are

$$F_{XT} = \sum_{i=1}^{\infty} \delta(i) \cdot F_{xi}(\Psi_i)$$
⁽¹⁾

$$F_{YT} = \sum_{i=1}^{z_c} \delta(i) \cdot F_{yi}(\Psi_i)$$
⁽²⁾

$$F_{ZT} = \sum_{i=1}^{z_c} \delta(i) . F_{zi}(\Psi_i)$$
(3)

where

$$\delta(i) = 1 \quad if \ \Psi_1 \quad \Psi \quad \Psi_2$$
$$= 0 \quad otherwise$$

 F_{XT} , F_{YT} and F_{ZT} are the total average cutting forces acting on the teeth of the cutter per cut in the X, Y, and Z direction respectively, and F_x , F_y and F_z are the instantaneous cutting force on an individual tooth per cut in X, Y and Z direction respectively while Ψ_i is the instantaneous angle of the cutter.

For a multi tooth milling cutter of uniform pitch the average cutting force components in table system per tooth are

$$F_{xa} = \frac{F_{XT}}{z_c} \tag{4}$$

$$F_{ya} = \frac{F_{YT}}{z_c} \tag{5}$$

$$F_{za} = \frac{F_{ZT}}{z_c} \tag{6}$$

where z_c is the number of teeth cutting simultaneously, z_c is not being rounded off to the nearest whole number and it can be determined as

$$z_c = \frac{z \, x \, \Psi_s}{360} \tag{7}$$

in which z is the number of teeth in the cutter and Ψ_s is the swept angle $(\Psi_2 - \Psi_l)$, which can be determined in term of cutting parameters [3][4].

In cutter system for a multi-tooth milling process, the average tangential force F_{ta} per tooth and average radial force per tooth F_{ra} are

$$F_{ta} = F_t \ x \ z_c \tag{8}$$

$$F_{ra} = F_r \ x \ z_c \tag{9}$$

where F_t and F_r are the instantaneous tangential and radial forces acting per tooth of the cutter per cut.

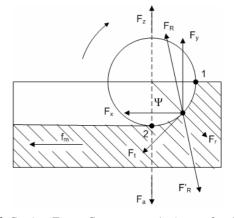


Figure 2 Cutting Force Components Acting onOne Tooth of an End Mill Cutter (Down Milling).

2.2 Table and Cutter System Relationship of Cutting Force

Figure 2 shows that the average resultant cutting force acting on the workpiece in table system F_{Ra} can be determined as

$$F_{Ra} = \sqrt{F_{xa}^2 + F_{ya}^2 + F_{za}^2}$$
(10)

The average resultant cutting force acting on the cutter in the cutter system F_{Ra} ' can be formulated as

$$F'_{Ra} = \sqrt{F_{ta}^2 + F_{ra}^2 + F_{aa}^2}$$
(11)

For static equilibrium it is assumed that $F_R = F_R'$ (or $F_{Ra} = F_{Ra}'$) and when the cutter is mounted correctly, the cutter axis and the spindle axis coincide each other, then it is commonly assumed that $F_z = F_a$ (or $F_{za} = F_{aa}$).

Assuming that a plane system exist, it is possible to relate the forces on the milling table to those on the cutter for down milling process as

$$F_{ta} = F_y \sin(\Psi_i) - F_x \cos(\Psi_i)$$

$$F_{ra} = F_y \cos(\Psi_i) + F_x \sin(\Psi_i)$$
(12)

3 Development the Mathematical Model for Cutting Forces

In machinability study investigations, statistical design of experiment is used quite extensively. Statistical design of experiment refers to the process of planning the experiment so that the appropriate data can be analyzed by statistical methods, resulting in valid and objective conclusions. Design and method such as factorial design of experiment and RSM are nowadays widely used to replace one-factor-at-a-time experimental approach which is time and cost consuming.[5]

For this purpose, the mathematical model relating to the machining response and their factor were developed to facilitate the optimization of the machining process. They have been developed stepwise using 3F1-factorial design and RSM using experimental results.

3.1 Postulation of the Mathematical Models

It is assumed that the proposed model for the cutting force is merely a function of cutting speed V, feed f_z and radial rake angle γ . Other factors such as machine tools stability, entry and exit condition etc are kept constant. Thus the proposed models for cutting force in end milling Ti-6Al-4V can be expressed as

$$F_{ta} = CV^k f_z^l \gamma^m \varepsilon' \tag{13}$$

where F_{ta} is the calculated average tangential cutting force (N), f_z is the feed per tooth (mm.tooth⁻¹), γ is the radial rake angle (°), ε ' is the experimental error and *C*, *k*, *l*, *m* are parameters to be estimated using experimental data.

By performing a natural logarithmic transformation equation 13 can be converted into first order polynomial as

$$\ln F_{ta} = \ln C + k \ln V + l \ln f_z + m \ln \gamma + \ln \varepsilon'$$
(14)

which can also be formed as

$$y = b_0 x_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + \varepsilon$$
(15)

and finally can be written as

$$\hat{y}_1 = y \cdot \varepsilon = b_0 x_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 \tag{16}$$

where *y* is the calculated average tangential force on a natural logarithmic scale, \hat{y}_1 is the natural logarithmic value of predictive (estimated) tangential cutting force, $x_0 = 1$ (a dummy variable), x_1 , x_2 and x_3 are the coded variables of *V*, f_z , and γ respectively, $\varepsilon = \ln \varepsilon'$ and b_0 , b_1 , b_2 and b_3 are the model parameters to be estimated using the experimental data. [6]

In extended observation region, the second-order model is also useful when the second order effect of V, f_z, γ and the two way interactions amongst V, f_z , and γ are significant. The second order can be extended from the first-order model in equation 16 as

$$\hat{y}_{2} = y - \varepsilon$$

$$= b_{0}x_{0} + b_{1}x_{1} + b_{2}x_{2} + b_{3}x_{3}$$

$$+ b_{12}x_{1}x_{2} + b_{13}x_{1}x_{3} + b_{23}x_{2}x_{3}$$

$$+ b_{11}x_{1}^{2} + b_{22}x_{2}^{2} + b_{33}x_{3}^{2}$$
(17)

where the *b* values are the parameters, which are to be estimated by method of least squares and \hat{y}_2 is the estimated

response on logarithmic scale.

Validity of the models used for optimizing the process parameters has to be tested using ANOVA.

3.2 Experimental Works

Before commencing the experimental trials, thorough planning was essential in order to obtain the relevant data in developing the mathematical models. By taking into consideration the factors for experimentation and analysis such as cutting speed, feed and radial rake angle, the design of experiments (DOE) were used stepwise from 2^3 -factorial design to central composite design (CCD), which is easily gained by augmentation 2^3 -design with replicated star points.

3.2.1 Experimental Design

In this study, the 2^3 -factorial design shown in Figure 3, was used as screening trials of the experiments. This is one of which all levels of a given factor are combined with all levels of every other factor in the experiment. This design is necessary when interactions between variables are to be investigated. Furthermore, factorial design allow the effects of a factor to be estimated at several levels of other factors, giving conclusions that are valid over a range of experimental conditions [7][8].

To observe the effect of non linearity in the region and to construct an estimate of error with $n_c - 1$, it is useful to use additional center points in screening with 2 level factorial designs when the factorial points in the designs are not replicated [6][8].

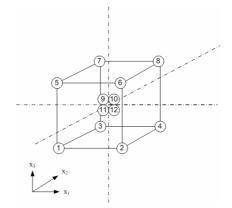


Figure 3 3F1-Factorial Design Augmented with 4 Center Points and First-Order CCD for k = 3.

An extended design of 2^3 -design is a second order CCD design, which is augmented with replicated star points as shown in Figure 4. The numbers of such repeated measurements affect the distance of the "axial star points" within the factor space. According to previous study [6] the distance of axial star points to the center points α is 1.4142.

3.2.2 Coding of the Independent Variables

The variables were coded by taking into account the capacity and limiting cutting conditions of the milling machine. The following transforming equation was used.

$$x = \frac{\ln x_n - \ln x_{n0}}{\ln x_{n1} - \ln x_{n0}}$$
(18)

where x is the coded variable of any factor corresponding to

its natural x_n , x_{nl} is the natural value at the +1 level and x_{n0} is the natural value of the factor corresponding to the base or zero level [2][3][6][7]. The level of the independent variables and coding identification are illustrated in Table 1.

Figure 4 Second Order CCD for k = 3.

(21)(22

Table 1 Levels of Independent Variables for Ti-6Al-4V

Independent	Level in coded form						
Variable	-α	-1	0	+1	$+\alpha$		
$\frac{V (m.mm^{-1})}{x_1}$	124.53	130.00	144.22	160.00	167.03		
$f_z (mm.tooth^{-1})$ x_2	0.025	0.03	0.046	0.07	0.083		
γ (°) x ₃	6.2	7.0	9.5	13.0	14.8		

3.2.3 Experimental Set-Up

(5

For the experimentation, a CNC MHO 700S milling machine was used for side milling process, which was carried out with a constant a_a (axial depth of cut) 5 mm and a_e (radial depth of cut) 2 mm under flood conditions with a 6% concentration of water base coolant. The grade-K30 solid carbide end mill cutter with different radial rake angle according to design of experiment, were used in the experiments.

The cutting forces were measured at the first cut of the whole cutting process of each end mill cutter using multi component force measuring system consisting of the following elements:

- A 3-component dynamometer comprising of basic unit (Kistler, Type 9265B) and a screwed-on working adapter for milling (Kistler, Type 9443B).
- A multi channel charge amplifier (Kistler, Type 5019A).
- A data acquisition system consisting of a personal computer (PC) equipped with an A/D board as well as the DynoWare software (Kistler, Type 2825 D1-2, version 2.31).

The reference workpiece material of Ti6Al-4V was a rectangular block of 110 mm x 110 mm x 400 mm and the

analysis for the developed models were carried out using a Design Expert 6.0 package.

4 Experimental Results and Discussion

4.1 The 3F1-Model of the Cutting Force

- - --

Using the experimental results in Table 2, the cutting force prediction model can be formulated as

$$y = 4.237 - 0.01052x_1 + 0.3123x_2 - 0.0546x_3 + 0.02611x_1x_3 - 0.03472x_2x_3$$
(19)

This equation shows that the cutting force decreases with increasing cutting speed and radial rake angle, and in contrary it increases with increase in feed. From the interaction terms, it was observed that the combination of speed and radial rake angle contributes to the increase in cutting force. However the combination of feed and radial rake angle adversely reduces the cutting force, whilst the feed alone tends to increase in cutting force. The response surface of the cutting force distribution in relation to cutting speed and rake angle is shown graphically in Figure 5.

Table 2 Experimental Results for 3F1-Factorial and LinearCCD-Model with k = 3

Std	Туре	V f _z		γ	Calculated Fc
		m.min ⁻¹	mm/tooth	deg.	Ν
1	Fact	-1	-1	-1	53.66
2	Fact	1	-1	-1	49.75
3	Fact	-1	1	-1	107.16
4	Fact	1	1	-1	99.83
5	Fact	-1	-1	1	48.87
6	Fact	1	-1	1	50.45
7	Fact	-1	1	1	85.20
8	Fact	1	1	1	87.84
9	Center	0	0	0	76.70
10	Center	0	0	0	74.84
11	Center	0	0	0	73.15
12	Center	0	0	0	79.99

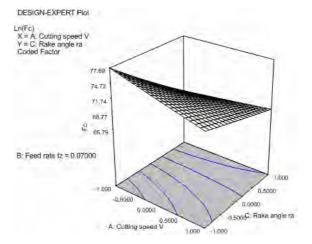


Figure 5 Response Surface for 3F1-Factorial Model

By using ANOVA, the validation of this equation is shown in Table 3. From he results, it is evident that the 3F1-model is valid for the observation region, because the lack of fit (LOF) of this model is not significant.

Table 3 ANOVA for 3F1-Factorial Model

Response: ANOVA	Fc for Select	Tra ed Factori	nsform: al Model	Natural log	Constant:	0.0000				
Analysis of v	Analysis of variance table [Partial sum of squares]									
	Sum of			Mean	F					
Source	Squares	DF		Square	Value	Prob > F				
Model		0.8201	4	0.1640) 204.6	< 0.0001	significant			
A0.00088	57	1	0.0008857	7 1.105	5 0.3413	1	-			
B 0.78	03	1	0.7803	3 973.4	4 < 0.0001					
C 0.023	85	1	0.02385	5 29.75	5 0.002816	5				
AC 0.0054	52	1	0.005452	6.801	0.04775)				
BC 0.0096	43	1	0.009643	3 12.03	3 0.01788	}				
Curvature0.027	32	1	0.02732	2 34.08	3 0.002086	significant				
Residual0.0040	08	5	0.0008016	5						
Lack of Fit6.19	2E-006	2	3.096E-000	6 0.002321	0.9977	not significant				
Pure Error0.00	4002	3	0.001334	1						
Cor Total 0.85	15	11								

4.2 The First-Order CCD-Model

The same data in Table 2 was used for developing the first order CCD-model. The first order model for cutting force is

$$\hat{y} = 4.271 - 0.01052x_1 + 0.3123x_2 - 0.05460x_3 \tag{20}$$

Equation 20 can be presented in the following form:

$$F_c = 1711.6736V^{-0.10133} f_z^{0.73717} \gamma^{-0.1764}$$
(21)

The results generated from equations 19 and 20 showed that they have the same coefficient in the linear region. The difference between both equations in the linear region is merely on their intercepts, i.e 4.237 and 4.271 for 3F1 model and linear CCD model respectively. It means that same effect are obtained from both equations in the observation region, however the 3F1-factorial model provides more information about the intersection effect between the cutting speeds combined with radial rake angle and between the feed combined with radial rake angle.

More information resulted in CCD linear model is shown by the response surface in Figure 6. From this figure it can be recognized that with increasing cutting speed, the cutting force decreases very slightly. Similar finding was reported by other researchers [9][10] for the observation region of cutting speed.

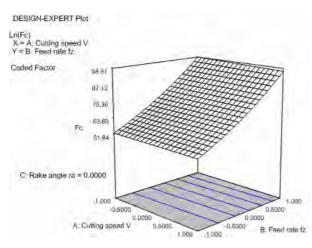


Figure 6 Response Surface for Linear CCD-Model

For validation of the linear CCD-model, ANOVA was used and the results are shown in Table 4. It shows that the LOF of the first order CCD model is not significant, thus the model can be accepted within the observation region.

Table 4 ANOVA for the First Order CCD-Model

Response: ANOV	Fc for Resp	Tra onse Surfac		Natural odel	log	Const	ant:	0.0000	
Analysis of v									
	Sum of			Mean		F			
Source	Squares	s DF		Square		Value		Prob > F	
Model	-	0.8050	3	-	0.2683	;	46.24	< 0.0001	significar
A0.00088	57	1	0.0008857	, ,	0.1526	ĩ	0.7062		
B 0.78	03	1	0.7803		134.5	ī	< 0.0001		
C 0.023	85	1	0.02385		4.110)	0.07718		
Residual 0.046	43	8	0.005803						
Lack of Fit0.04	242	5	0.008485		6.361	,	0.07937	not significant	
Pure Error0.00	4002	3	0.001334	ſ					
Cor Total 0.85	15	11							

4.3 The Second-Order CCD-Model

A second-order model was postulated to extend the variables range in obtaining the relationship between the cutting force and the machining variables. The model is based on the second order CCD for k=3 (Figure 4) and 24 set of experiments given in Table 5. The result is presented in the following form:

$$\hat{y} = 4.35 + 0.008803x_1 + 0.2587x_2 - 0.09927x_3 - 0.02905x_1^2 - 0.05502x_2^2 - 0.01716x_3^2 + 0.0004374x_1x_2 + 0.02611x_1x_3 - 0.03472x_2x_3$$
(22)

Table 5 Experimental Results of the Second OrderCCD-Model for k = 3

Std	Туре	v	$\mathbf{f}_{\mathbf{z}}$	Г	Calculated Fc
		m.min ⁻¹	mm/tooth	Deg.	N
1	Fact	-1	-1	-1	53.66
2	Fact	1	-1	-1	49.75
3	Fact	-1	1	-1	107.16
4	Fact	1	1	-1	99.83
5	Fact	-1	-1	1	48.87
6	Fact	1	-1	1	50.45
7	Fact	-1	1	1	85.20
8	Fact	1	1	1	87.84
9	Center	0	0	0	76.70
10	Center	0	0	0	74.84
11	Center	0	0	0	73.15
12	Center	0	0	0	79.99
13	Axial	-1.4142	0	0	74.84
14	Axial	-1.4142	0	0	67.53
15	Axial	1.4142	0	0	68.56
16	Axial	1.4142	0	0	86.43
17	Axial	0	-1.4142	0	51.22
18	Axial	0	-1.4142	0	53.90
19	Axial	0	1.4142	0	100.82
20	Axial	0	1.4142	0	87.41
21	Axial	0	0	-1.4142	95.33
22	Axial	0	0	-1.4142	90.45
23	Axial	0	0	1.4142	55.69
24	Axial	0	0	1.4142	68.59

It was interesting to observe that when the region was extended, the contour of cutting force in the cutting speed range changes from linear (Figure 6) to a slightly curve form (Figure 7). This was also confirmed by other researchers [9][10] for low and high cutting speeds region. They found that the cutting force was very high at low cutting speed and reduced rapidly at medium cutting speed and finally increased slightly with further increase in cutting speed. It was also observed in Figure 7 that there was a significant increase in cutting force with increase in feed.

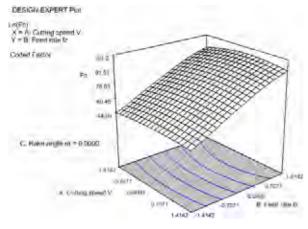


Figure 7 Response Surface for the Second Order CCD-Model

From ANOVA results, it was also found that the second order CCD model can be used as the mathematical model in the region of observation, since the LOF of this model is not significant as shown in Table 6.

Table 6 ANOVA for the Second Order CCD-Model

Response:	Fc	Tra	nsform:	Natural log	Consta	int:	0.0000	
	for Respons	e Surfac	e Quadrati	c Model				
Analysis of va	riance table	[Partial	sum of squ	ares				
	Sum of			Mean	F			
Source	Squares	DF		Square	Value		Prob > F	
Block	0.00	3271	1	0.00327	1			
Model	1	.285	9	0.142	7	12.01	< 0.0001	significant
40.001240		1	0.001240	0.104	3	0.7518		
B1.071		1	1.071	90.1	4	< 0.0001		
C0.1577		1	0.1577	13.2	7	0.002980		
A:0.01012		1	0.01012	0.852	0	0.3728		
B:0.03632		1	0.03632	3.05	7	0.1040)	
C:0.003532		1	0.003532	0.297	3	0.5948		
AB1.531E-006		1	1.531E-006	0.000128	8	0.9911		
AC0.005452		1	0.005452	0.458	8	0.5101		
BC0.009643		1	0.009643	0.811	4	0.3841		
Residual	0.	1545	13	0.0118	8			
Lack of Fit	0.0	8381	4	0.0209	5	2.668	0.1020	not significan
Pure Error	0.0	7068	9	0.00785	3			
Cor Total	1	.442	23					

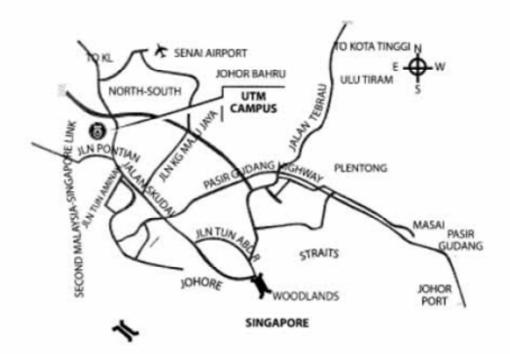
5 Conclusions

- There are three appropriate prediction models namely 3F1-, linear CCD and second order CCD model to formulate the relationship amongst the machining parameters such as cutting speed (130-160 m/min), feed (0.03-0.07 mm/tooth), radial rake angle (7-13 °).
- With increasing cutting speed, the cutting force decreases slightly in the region of observation.
- Feed is the most significant factor that influences the cutting force. It increases significantly with increasing feed in the observation region.

• Increasing the radial rake angle gradually reduced the cutting force.

Acknowledgements

The authors wish to thank the research Management Center, UTM and the Ministry of Science, Technology and Innovation Malaysia for their financial support to the above project through the IRPA funding 03-02-02-0068 PR0074/03-01 – Vote no. 74545.


References

- [1].Niemann, H.; Eu-gene Ng.; Loftus, H.; Sharman, A.; Dewes, R. and Aspinwall, D. 2002, The Effect of Cutting Environment and Tool Coating when High Speed Ball Nose End Milling titanium Alloy, In *Metal Cutting and High Speed Machining*, edited by Dudzinski, D.; Molinari, A.; Schulz, H., Kluwer Academic/Plenum Publisher.
- [2]. Alauddin, M.; El Baradie, M.A.; Hashmi, M.S.J. 1996, Modelling of Cutting Force in End Milling Inconel 718, *Journal of Material Processing Technology* 58: 100-108.
- [3]. Alauddin, M. 1993, End Milling Machinability of Steel, a Nickel-base Alloy (Inconel 718) and a Metal Matrix Composite. PhD Thesis, Dublin City University.
- [4]. Paucksch, E. 11th eds. 1996, *Zerspantechnik*, Viewegs-Fachbuecher der Technik, Braunschweig.
- [5].Noordin, M.Y.; Venkatesh, V.C.; Sharif, S.; Elting, S.; Abdullah, A. 2004, Application of Response Surface Methodology in Describing the Performance of Coated Carbide Tools when Turning AISI 1045 Steel, *Journal* of Materials Processing Technology 145: 46–58.
- [6].Sharif, S.; Mohruni, A.S.; Noordin, M.Y. 2006, Modeling of Tool life when End Milling on Titanium Alloy (Ti-6Al-4V) using Response Surface Methodology, In Proceeding of the 1st International Conference & 7th AUN/SEED-Net Fieldwise Seminar on Manufacturing and Material Processing, 14-15 March: 127-132.
- [7]. Choudhury, I.A.; El-Baradie, M.A. 1999, Machinability assessment of Inconel 718 by Factorial Design of Experiment Coupled with Response Surface Methodology, *Journal of Materials Processing Technology*, 95: 30-39.
- [8]. Meyrs, R.H.; Montgomery, D.C. 2nd eds. 2002, Response Surface Methodology: Process and Product Optimization using Designed Experiments, John Wiley & Sons, Inc.
- [9]. Trent, E.M.; Wright, P.K. 4th eds. 2000, *Metal Cutting*, Butterworth-Heinemann
- [10].Xu, J.H.; Ren, K.Q.; Geng, G.S. 2004, Cutting Forces in High Speed Milling of a Close Alpha Titanium Alloy, In *Key Engineering Materials Vols.* 259-260: 451-455.

LOCATION

-zet ez

RPCES2006

The Organizing Committee would like to express our heartfelt thanks and greatest appreciation

To

Deputy Vice Chancellor (Academic) of Universiti Teknologi Malaysia Prof Ir Dr Siti Hamisah Binti Tapsir

for graciously officiating the opening ceremony of the 1st Regional Postgraduate Conference on Engineering and Science 2006

&

Prof. Dr. Rahmalan Ahamad Dean, School of Graduate Studies, Universiti Teknologi Malaysia

For Officiating The Closing Ceremony.

We would also like to take this opportunity to express our greatest appreciation and thanks to the following:

> Staff and Students, School of Graduate Studies, UTM Faculty of Education, UTM Indonesian Student Association All Speakers and Paper Presenters Chairpersons and Rapporteurs Sponsors

And everyone who has given their time and invaluable assistance in organizing this auspicious and successful event.

