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AB CT Feature selection (FS) is one of the important tasks of data preprocessing in data analytics. The
data with a large number of features will affect the compu@al complexity, increase a huge amount of
resource usage and time consumption for data an: 5. The objective of this study is to analyze relevant and
significant features of huge network traffic to be used to impr accuracy of traffic anomaly detection
and to decrease its execution time. Information Gain is the most feature selection technique used in Intrusion
Detection System (IDS) research. This study uses Information Gain, ranking and grouping the features
according to the minimum weight values to select relevant and significant features, and then implements
Random Forest (RF), Bayes Net ( Random Tree (RT), Naive Bayes (NB) and J48 classifier algorithms
in experiments on CICIDS-2017 dataset. The experiment results show that the number of relevant and
significant features yielded by Information Gain affects significantly the improvement of detection accuracy
and execution time. Specifically, the Random Forest algorithm has the highest accuracy of 99.86% using the
relevant selected features of 22, whereas the J48 classifier algorithm provides an accuracy of 99.87% using
52 relevant selected features with longer execution time.

INDEX TERMS Feature selection, anomaly detection, information gain, CICIDS-2017 dataset, classifier

algorithm.

I. INTRODUCTION

The anomaly-based Intrusion detection is one of the
techniques used to recognize zero-day attacks. Although
various anomaly detection techniques have been developed,
yet there are challenges and issues in the area, namely
high dimensionality of data [1], impact on computational
complexity [2], [3], and computational time [4].

One approach used by researchers to deal with the
data dimensionality issue is feature selection technique.
Feature selecl%lcchniquc eliminates features, helps in
understanding dafa, reduces computing time, reduces “curse
of dimensionality” effects, and improves predictive machine
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performance [5]. Fe selection is a part of dimensional
reduction, known as a process of selecting an optimal feature
subset that represents the entire met [6].

Many research works that use feature selection techniques
to improve the accuracy of anomaly detection have been
car out such as works in [7]-[11]. Most of the works use
the Network Security Laboratory-Knowledge Discovery and
Data Mining (NSL-KDD) dataset, a refined version of its pre-
decessor KDD Cup 99 dataset. Methods and measurements
have been proposed that show the ability in improving detec-
tion accuracy including Chi-Square, Information Gain, Cor-
relation Based aive Bayes and Decision Table Majority
Classifier [12], Support Vector Machine (SVM) [13] and
Random Forest [1 evertheless, those methods were not
tested on a large dataset with a large number of features.
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As mentioned in [14], data with @gc number of features
can affect the learning model that tends to overfit and will
decrease the performance, increasing memory use, and com-
putational cost for analytic. In fact, very rare researchers
which consider computational time in their works, especially
in anomaly detection.

On the other hand, Information Gain has been widely used
by researchers to analyze significant and relevant features.
According to works in [15]-[21] the Information Gain is
used to reduce dimensionality by selecting more relevant
features through feature weight calculation. Eliminating irrel-
evant features may improve the performance of the detection
system. Many research works implement Information Gain
on the dataset with limited features to analyze. In this study,
the CICIDS-2017 dataset with more complex features is used.
The CICIDS-2017 dataset contains a high volume of traffic
and a large number of features to be observed for anomalies
detection.

Previous works which use the CICIDS-2017 dataset and
also use Information Gain feature selection technique do not
mention the basis on how to determine the score value used
for feature selection. Each researcher uses different score
value. In this paper, the authors investigate and analyze the
ability of the Information Gain in determining relevant fea-
tures for network traffic classification, especially for traffic
with bigger number of features. The authors distribute the
features into groups based on their minimum score values.
Then each feature group is used as a filter for the five
classifier algorithms; Random Forest, Bayes Network, Ran-
dom Tree, Naive Bayes and J48 to perform anomaly/attack
detection on the dataset. Then, the detection results are
compared with the aim is to validate the significance and
relevance of the selected feature groups. The more accu-
rate the detection results the more significance and relevant
the feature group. Thus, the authors analyze the effect of
weighted features resulted from the Information Gain Q_nst
the anomaly/attack detection performance as well as to
the most significant and relevant features to be used to
in@sc the performance of anomaly/attack detection.

e rest of the paper is organized as follows. Section 2
presents the relevese;u‘ches, Section 3 briefly discusses
the dataset and experimental setup used in this study.
Section 4 explains m(_@clails on the experiments and results
findings of this study. Finally, Section 5 provides a conclusion
and potential future works.

Il. RELEVANT RESEARCHES

Research on feature selection has been carried out especially
in network attack detection. Wang et al. [22] analyze the
features of large rk traffic, by choosing the most sig-
nificant features, using a combination of filtered-based and
wrapper-based algorithms. The method produces 10 signifi-
cant features and can increase the detection rate up to 99.8%
and false alarm of 0.34%. Ambufipli er al. [23] propose a
supervised filtered-based features selection algorithm called
Flexible Mutual Information Feature Selection (FMIFS).
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The algorithm contributes to the Least-squares support-vector
machines (LS-SVM) IDS with a better accuracy and lower
computational rates than the previous methods.

Authors in [24] propose a feature identification approach
by combining filtered-based and wrapper-based methods
with clustering method to provide weight for each fea-
lur& proposed method is able to identify features that
can 1mprove thef@kuracy of attack detection. Chen ef al.
[25] introduce a tree-seed algorithm (TSA) that is used to
extract effective features. The proposed algorithm reduces
the dimension of data, by eliminating redl.mll features,
which in turn improve the accuracy of the K-Nearest
Neighbor (KNN) classifier. The work in [10] discusses a
Discrete Differential Evolution (DDE) technique and the
C4.5 Machine Learning algorithm. The proposed technique
produces 16 relevant features with a classificatifffhccuracy
of 99.92%. While Peng et al. [26] combine the Ant-Colony
Optimization algorithm and feature selection, called FACO.
The proposed work is able to produce features that improve
the classification algorithm accfiky. Finally, researchers
in [27] propose an IDS called FWP-SVM-GA, based on
the genetic algorithm af®)SVM. The proposed algorithm
increases detection rate, accuracy, true positive rate (TPR)
and reduces false-positive rate (FPR) and SVM training
time.

Having done reviewing plms works, the authors come
up with a hypothesis that feature selection can improve
the performance of classification algorithms by q:ting
non-useful and redundant features. Even a small number of
selected features may increase the detection accuracy. Up to
now researchers mainly use the KDD CUP 99 dataset that
only has 41 features as test data. The use of a large dataset
still rare. Therefore, the reliability of the proposed methods
have not been tested on larger dimension dataset (with more
features and number of records). Table 1 summarizes feature
selection research works on intrusion detection field for the
last five (5) years. 50

Yulianto et al. [56] combine the Synthetic Minority
Oversampling Technique (SMOTE), Principal Component
Analysis (PCA), and Ensemble Feature Selection (EES) to
improve the performance of AdaBoost-based IDS on the
CICIDS-2017 Dataset. The authors claim that the combined
hod outperforms the S VM-based method with regards to
accuracy, precision, recall and F1 Score.

On the other hand, despite many researchers using
Information Gain as a feature selection technique, there are
very limited discussions on how to determine the minimum
weight or rank score from the Information Gain result. This
score determines how much the features are relevant to the
class label. Researchers in [18] and in [21] use a score feature
above 0.4 and a score above 0.001, respectively. Meanwhile,
research work in [28] considers the minimum weight score
of 0.8. In contrast, researchers in [29] remove features one
by one and apply the classifier algorithm to find the best
accumch work is very time-consuming especially with
a large number of features in the dataset.
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TABLE 1. Summary of related studies.

TABLE 2. CICIDS-2017 dataset summary.

[[:,"Ef‘;f) Dataset :‘;:L FS Algorithm Result
[22] KDD 41 Information Gain ~ Detection rate as high
(2015} Cup (filtered) enhanced as 99.8% with false
99 with Bayesian positive rate as 0.34%.
Network
(wrapper) and
C4.5 (wrapper).
23] KDD 41, Flexible Mutual Improve the accuracy
(2016)  Cup 99, 41 Information and lower
NSL-  and Feature Selection  computational cost
KDD, 24 (FMIFS) compared to the state-
Kyoto of-the-art methods,
2006+
dataset
[24] KDD 41 Multi Measure Better detection
(2016)  Cup Mult Weight FS  accuracy with reduced
1 99 (Filtered-hased detection time
&Wrapped-
hased)
[10] NSL- 41 DDE, C4.5 ML 16 relevant features
(2017) KDD algorithm with 99.92% of
classification accuracy
[25] KDD 41 Tree-Seed+ Removal of redundant
(2018)  Cup Algorithm (TSA)  features, improve
99 with KNN accuracy and
classifier efficiency of network
intrusion detection
[26] KDD 41 Ant Colony Improve classification
(2018) Cup efficiency with 98%.
99 accuracy
[27] KDD 41 feature selection,  Increase detection rate,
(2018)  Cup weight, and acecuracy rate and true
99 parameter positive rate; decrease
optimization false positive rate; and
(FWP) to reduces SVM training

support Genetic time

Algorithm and

SVM
[56] CICIDS 78 PCA.SMOTE, Improve IDS
(2018) -2017 (EFS) performance on

CICIDS2017 dataset

lll. METHODOLOGY

This section describes the dataset, experimental configuration,
feature selection technique, classification algorithms, and
experimental tools.

A. DATASET
This study uses MachineLearningCSV data, which is
part of the CICIDS-2017 dataset from ISCX Consortium.
Machinebeamingcmonsists of eight (8) traffic monitor-
ing sessions, each i1s in the form of a comma separated
value (CSV) file. This file contains normal traffic defined
as “‘Benign™ traffic and anomaly traffic called as “Attacks™
traffic. The attack traffics are detailed more as in the second
mn of Table 2. Other than normal traffic and benign
tratfic, there are 14 types of attacks in this dataset.

In this work, the authors consider complex features that
represent sophisticated attacks on modern network based
on its traffic attributes. For examples, features that exist in
CICIDS-2017 but are not available in NSL-KDD include:
Subflow Fwd Bytes and Total Length Fwd Package which are
required to detect Infiltration and Bot attack types. The Bwd
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Type of Number
File Name Traffic of Record
Maonday- )
WorkingHours,peap ISCX.csv Benign 529,918
Tuesday- .
WorkingHours.pcap_ISCX.csv Benign 432,074
SSH-Patator 5,897
FTP-Patator 7,938
Wednesday- .
WorkingHours.peap ISCX.csv Benign 440,031
DoS Hulk 231,073
DoS GoldenEye 10,293
DoS Slowloris 5,796
DoS Slowhitptest 5,499
Heartbleed 11
Thursday-WorkingHours-Morning- .
WebAttacks.peap 1SCX.csv Benign 168,186
Web Attack-
Brute Force 1,507
Web Attack-Sql 2
Injection
Web Attack-XSS 652
Thursday-WorkingHours-
Afternoon- Benign 288,566
Infilteration.pcap ISCX.csv
Infiltration 36
Friday-WorkingHours- )
Morning.peap 1SCX.csv Benign 189,067
Bot 1.966
Friday-WorkingHours-Afternoon- o
PortScan.pcap_ISCX.csv Benign 127,537
Portscan 158,930
Friday-WorkingHours-Afternoon- . .
DDos.peap_ISCX.csv Benign 97,718
DdoS 128,027
Total Instance/ Record 2,830,743

Packet Lenght Std feature is required to detect the types of
DDoS, DoS Hulk, DoE GoldenEye, and Heartbleed attacks.
The Init Win Fwd Bytes feature is required to detect the
types of Web-Attack, SSH-Patator, and FTP-Patator attacks.
Whereas the Min Bwd Package Length feature and Fwd Aver-
age Package Length features are required to recognize normal
traffic [58].

CICIDS-2017 has more complex types of attacks as
fripknted in Table 2. The rational of choosing CICIDS-2017
dataset is to have a dataset that represents closely the current
real world network traffic in the experiments.

B. EXPERIMENTAL SETUP
In general, there are four stages in the experimental settings
shown in Fig. 1, which can be explained as follows.

1) Only 20% of MachineLearningCSV data from the
CICIDS-2017 dataset are used in this experiment.
Since the dataset has redundant features, it is needed
to remove the redundant ones. Then relabeling process
is perfor@¥d. The 20% of MachineLearningCSV data
are then split into 70% for training data and 30% for

g data.

2) Feature selection is performed on the training data
using Information Gain. Then selected features are
grouped according to their weights.
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20% of
MachineLeamingCSV
(CICIDS-2017)

Remove Redundant
Feature & Relabeling

Spiit to Training .
(T0%) and Testing Tﬁ;gg /
(30%) Data

Training
Data

Select Fealure
with Information Next 0 be
o used for
testing

Grouped by
Their Weight
m
Group-1 Group-2 Group-n
[Grow] L'_/ [oramn]

‘ Classification with RF, NB, RT, ‘

NB & J4g
L'{ Analyze }» Conclusion }

/ Perlun‘nance
TPR, FPR, Precision, Recall
Accuracy & Execution Time

3) Then each feature group or feature subset is classified
using Random Forest (RF), Bayes Net (BN), Random
Tree (RT), Naive Bayes (NB), and J48 classifiers.
The analysis considers the following parameters: TPR,
FPR, Precision, Recall, Accuracy, percenlagem:or-
rectly classified, and execution time for the analysis.
10-fold cross-validation is used in this stage.

4) Next, compare and analyze the TPR, FPR, Precision,
Recall, Accuracy, percentage of incorrectly classified,
and execution time of each classifier algorithm. All
learning and testing steps are executed with 10-fold
cross-validation. Lastly, draw conclusions.

FIGURE 1. Experimental design.

C. mORMATION GAIN

Information Gain is the most used feature selection technique.
It is a filter-based feature selection [28], [30]. Information
Gain uses a simple attribute rank and reduces noise that
caused by irrelevant features then detects a feature that have
most of information base in specific cff#Z8 The best feature
is determined by calculating feature’s entropy. Entropy is a
measure of uncertainty that can be used to infer the distribu-
tion of features in a concise form [31]. The entropy can be
calculated using (1).

Entropy (5) = Z —Pilog,P; (1

@Lh ¢ is the number of values in the classification class
P; is the number of samples for class i. After getting
entropy value, the Information Gain value is calculated

g (2).
L2} 5.

Gain (S, A) = Entropy (s) — ¥ . 22 Entropy(Sy)

(2

Values(A) |5

132914

where § is sample,?is an attribute, v is a possible value for
attribute A, Values(A) are a set of possible values for A. | §,|
is the number of samples for value v. |§| is the number of
samples for all data samples and Entropy (Sy) is entropy for
sample that have a value of v.

This work chooses Information Gain as feature sel n
since it is a filtered-based technique which provides more
stable sets of select atures due to its robust nature against
overfitting. Overall, ¢ tational complexity of filter-based
technique is O(m -nz), where m 1s the numbcrqaining data,
and n is number the of attributes/features. It 1s less as com-
pared to embedded and wrapper-based techniques [55]. The
complex nature of wrapper-based techniques creates the high
risk of overfitting. Thus, using feature selection technique
that produces significant, relevant, less number of features
and less computational complexity will reduce the execution
time of classification algorithms used in the anomaly/attack
detection process.

Th ures are given IDs from 1 to 77. The Information
Gain ranks the features based on their weight values and
the minimum weight is determined manually using try and
error approach. In this work, the researchers propose to rank
and group the features according to the minimum weight
values. Thus, groups of features btained and each feature
group will be having different number of features as shown
later in Table 6. Further, all feature groups will be validated
by using the five classifier algorithms, so we can determine
which feature groups are effective enough to be used for
attacks’ types classification.

D. CLASSIFICATION ALGORITHM

The main consideration on parameters for selecting classifier
algorithms in this work is good performance in term of
accuracy, learning ability, scalability, and speed. Having done
some researches on several previous works that support
the consideration, five algorithms are considered, they are:
Random Forests, Bayesian Network, Random Trees, Naive
Bayes and J48 classifiers to be experimented in this work.
Research work by Hadi [20] states that random forest trees
are strong learners and have good performance in detecting
attacks based on the features resulted by Information Gain
feature selection. Niranjan er al. [39] reveals that the ability
of Bayesian Network in classifying attacks outperforms other
algorithms. According to Sindhu et al. [57], Random Tree is
an algorithm that has scalability and efficiency. Naive Bayes
is a classification algorithm that is able to identify class labels
faster than other algorithms because it has a low complex-
ity of the model [55]. Sahu and Mehtre [15] conclude that
J48 algorithm has good accuracy in classifying attacks. Thus,
the five classification algorithms are used to validate the
significance of the selected features resulted during feature
selection stage.

1) RANDOM FOREST (RF)
Random Forest is offf@f the ensemble classifier methods.
If a classifier in an ensemble is a decision tree classifier,
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then the collection of classifiers is a “forest’. Each decision
tree is created through arandom selection of attributes at each
node for separation [32]. The random forest algorithm was
proposed by Breich in 2001 [33]. Some anomaly detection
studies that use random forest include research conducted by

[20], [34] and [35].

BAYES NETWORK (BN)

Bayesian Network (BN) is a model that encodes gbabilistic
relationships between variables of interest. The accuracy of
this method depends on assumptions which are usually based
on the model behavior of the target system. So any significant
deviation from the assumption will cause a decrease in detec-
tion accuracy [36]. Some anomaly detection studies that use
Bayesian networks include works by Reazul et al. [37] and
Ding et al. [38].

3) RANDOM TREE (RT) B

Basically, Random Tree 1s a decision tree that is built on
a collection of random attributes (random). A decision tree
is a group of nodes and branches. A node represents a test
attribute @branches represent the results. Decision leaves
show the final decision taken after calculating all attributes in
the form of class labels [39]. Some anomaly detection studies
using this method include [40], [41] and [42].

4) NAIVE BAYES (NB)

Bay classification is a statistical classification that is
able to predict@robability of class membership. Bayesian
classification 1s based on the Bayes theorem [43]. The
Bayesian classification is better known as the Naive Bayes
classification. Naive Bayes assumes that the influence of
attribute values on class is independent of other attribute

values. Some anomaly detection studies using Naive Bayes
include works by Goeschel [44], and Shakya and Sigdel [45].

5) J4

J48 or C4.5 is a widely used machine learning algorithm and
is included in the dec tree algorithm. This algorithm
builds a decision tree from a set of training data with the
entropy concept [43]. It differs from IDE3 in that it builds a
decision tree, where J48 or C4.5, can receive continuous and
categorical attributes [46]. Some anomaly detection studies
using this algorithm include works by Sahu and Mehtre [15]
and Muniyandi et al. [47].

E. ANALYSIS TOOLS

All simulations in this experiment are executed on a computer
specification of Intel Core i7 processor with 2.70 GHz

8 GB RAM, running Windows 10 as Operating System. For

analysis purposes, the Weka 3.9 with heap size of 3072 MB,

as machine learning software is used.

IV. EXPERIMENTS, RESULTS AND ANALYSIS
This section presents the data preparation, detail of
experimenting with feature selection classification, and lastly,
results and discussions of the experimentations.
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TABLE 3. Data distribution of labeled attack on 20% Machinelearningcsv

data.
#of Fraction to Fraction to
New Labels Old Labels  Instances Majority Total
Class Instance

Mormal Benign 454 396 100,00 80,25
Bot Bot 367 0.081 0.06
Brute Force FTP- Patator, 2,717 0,508 048

SSH-Patator
Dos/DdoS DDoS, DoS, 76,445 16.82 13.50

GoldenEye,

DoS Hulk, DoS

Slow, httptest,

DoS slowlons,

Heartbleed
Infiltration Infiltration 6 0,001 0,00
Poriscan PortScan 31,882 T.061 5.63
Web Attack  Web Attack 426 0.094 0.08

Brute Force,

Web Attack—

Sql Injection,

Web Attack

XSS
Total Instances 566,239

TABLE 4. The distribution of training & testing data.

Instances # of  Instances # of

New Labels Training Data Testing Data
Normal 318,087 136,219
Bot 265 102
Brute Force 1,904 813
Dos/DdoS 53,427 23.018
Infiltration 5 1
Port Scan 22324 0,558
Web Attack 292 134
Total 396,304 169,845
instances

A. DATASET PREPARATION

The eight CSV files as listed in Table 2 are combined into one
CS8V file. Next, to process the dataset using Weka software,
this CSV file is converted into the ARFF file. The experiment
uses only 20% of MachineLearningCSV data. There are
78 regular features and one class label used in this study.
The dataset contains two features or colunms named “Fwd
Header Length” that make it as redundant features, so one
of those columns must be removed. Thus, after removing
the redundant features, only 77 features are available to
be analyzed. As described in the CICIDS-2017 data prone
to high-class imbalance will impact low detection accu-
racy and high false alarm. By adopting solution suggested
by Karimi et al. [30] and Panigrahi and Borah [48] a new
labeling attack traffic is introduced as listed in Table 3.
The 77 features are already in numerical data type, so no
data transformation is required to feed the data into Weka
software.

After relabeling the attack classes, the 20% of Machine-
LearningCSV data ar it into two portions as 70% and
309%. The 70% portion 1s used for training data and the other
30% portion is used for testing data as tabulated in Table 4.
The 70:30 data portion was used in [49]. The experimental
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TABLE 5. Feature rank generated by information gain.

No. Feat. 1D Feature Names Weight  No. Feat. 1D Feature Names Weight
1 41 Packet Length Std 0,638 40 17 Fwd Packet Length Std 0,280
2 13 Total Length of Bwd Packets 0,612 41 20 Bwd IAT Mean 0,271
3 65  Subflow Bwd Bytes 0612 42 5 Fwd IAT Std 0,268
4 & Destination Port 0,609 43 15 Fwd Packet Length Min 0,234
5 42 Packet Length Variance 0,577 44 38  Min Packet Length 0,231
6 20 Bwd Packet Length Mean 0,567 45 70 Active Mean 0,231
7 54 Avg Bwd Segment Size 0,567 46 27 Fwd IAT Min 0,229
t 18  Bwd Packet Length Max 0,560 47 73 Active Min 0,228
9 67 Init_Win_bytes backward 0,554 48 69 min_seg size forward 0,227

10 12 Total Length of Fwd Packets 0,546 49 72 Active Max 0,226
11 63 Subflow Fwd Bytes 0.546 50 31  Bwd IAT Min 0,226
12 66 Init_ Win_bytes forward 0,542 51 23 Flow IAT Min 0,216
13 52 Average Packet Size 0.535 52 76 Idle Max 0,205
14 40 Packet Length Mean 0,526 53 74 Idle Mean 0,197
15 39 Max Packet Length 0,512 54 77 Idle Min 0,195
16 14 Fwd Packet Length Max 0.495 55 68 act_data_pkt_fwd 0,186
17 22 Flow IAT Max 0,467 56 6 Bwd IAT Sud 0,179
I8 36 Bwd Header Length 0.448 57 46 PSH Flag Count 0,106
19 9  Flow Duration 0,443 58 51  Dewn/Up Ratio 0,088
20 26 Fwd IAT Max 0,438 59 47 ACK Flag Count 0,069
21 55  Fwd Header Length 0.431 60 75 Idle Std 0,036
22 24 Fwd IAT Total 0415 61 43 FIN Flag Count 0,033
23 25 Fwd IAT Mean 0,390 62 48  URG Flag Count 0,028
24 21 Flow IAT Mean 0,379 63 71 Active Std 0,025
25 2 Flow Bytes/s 0,379 6 44 SYN Flag Count 0,012
26 1 Bwd Packet Length Std 0.360 65 32 Fwd PSH Flags 0,012
27 64  Subflow Bwd Packets 0,355 66 45 RST Flag Count 0
28 11 Total Backward Packets 0.355 67 50 ECE Flag Count 0
29 16 Fwd Packet Length Mean 0,351 68 61  Bwd Avg Bulk Rate 0
30 53 Avg Fwd Segment Size 0,351 69 49 CWE Flag Count 0
31 19 Bwd Packet Length Min 0.324 70 57  Fwd Avg Packets/Bulk 0
32 3 Flow Packets/s 0311 71 56 Fwd Avg Bytes/Bulk 0
33 37  Fwd Packets/'s 0,309 T2 34  Fwd URG Flags 0
34 30 Bwd IAT Max 0.306 73 33 Bwd PSH Flags 0
35 7 Bwd Packets/s 0,304 74 35 Bwd URG Flags 0
36 10 Total Fwd Packets 0,291 75 60  Bwd Avg Packets/Bulk 0
37 62 Subflow Fwd Packets 0,291 76 58  Fwd Avg Bulk Rate 0
38 28  Bwd IAT Total 0,287 77 59  Bwd Avg Bytes/Bulk 0
39 4 Flow IAT Std 0.281

results in [50] shows that the use of the 70:30 portion of train-
ing and testing data leads to the same level of accuracy as the
portions of 80:20 and 60:40. Meanwhile, experimental result
of using 70:30 data portion in other work by Abualkibash [51]
results hig ‘uracy. Therefore in this study, the researchers
divide the training and testing data with a portion of 70:30.
Although the dataset is transformed into a new attack label,
the “Infiltration™ #@¥fficks have a very small portion of data
compared to other types of attacks. Later, the data will be
analyzed by the feature selection technique.

B. FEATURE SELECTION USING INFORMATION GAIN
As mentioned in Section 1, the main issue in a @dataset
is dimensionality. Feature selection technique reduces the
dimensionality of data by selecting relevant features. The
Information Gain evaluates the features by calculating their
entropies. In this study, feature selection is implemented by
Weka software and the process is shown in algorithm 1.
Table 5 presents the feature rank as the result of feature
selection by Information Gain. As mentioned in sub-section
3.C, the feature selection in this experiment uses a filter-
based approach. In other words, the feature selection filters

132916

Algorithm 1 Calculate Feature Rank
1: procedure Feature_Rank()
2: Input Fn = Training dataset, processing 77
features f1.£2.13... 77
3:For every feature Fn
4:Calculated Feature Information Weight with
Information Gain
5: Rank feature with their Weight
6: Store Rank, Feature 1D, Feature name and feature
Weight on Feature_Ranked data

throughout the weight scores, in which features are grouped
based on the score of the feature’s weight. As listed in Table 6,
there are seven groups of features and we called as new
features subsets.

C. EXPERIM, L RESULT

To analyze the performance of the feature selection
performed by Information Gain and the five (5) classifier
algorithms, seven (7) measurement metrics are used, they are:
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TABLE 6. Selected features by information gain.

Feature N:;' mber of Selected Features (New
o, Selected .
Weight F Feature Subset)
ecature
=0.6 4 41, 13,65, 8
_ - 41, 13, 65, 8, 42, 20, 54, 18,
>0.5 15 67, 12, 63, 66, 52, 40, 39
41, 13,65, 8,42, 20, 54, 18,
=04 22 67, 12, 63, 66, 52, 40, 39, 14,
22,36.9, 26, 55,24
41, 13,65, 8,42, 20, 54, 18,
67, 12, 63, 66, 52, 40, 39, 14,
=0.3 35 22,36,9,26,55, 24,25, 21, 2,
1,64, 11, 16,53, 19, 3, 37, 30,
7
41,13, 65, 8,42, 20, 54, 18,
67, 12,63, 66, 52, 40, 39,
14,22, 36,9, 26, 55, 24, 25,
=02 52 21,2,1,64, 11, 16, 53, 19,
3,37,30,7, 10,62, 28, 4,
17,29, 5,15, 38, 70, 27, 73,
69,72,31,23, 76
41, 13, 65, 8, 42, 20, 54, 18,
67, 12, 63, 66, 52, 40, 39, 14
22,36,9,26,55,24,25,21,2
=0.1 57 1,64, 11,16,53,19, 3,37, 30
7.10,62,28, 4, 17,29, 5, 15,
38,70,27,73,69,72, 31, 23,
76,74, 77, 68, 6, 46
All a7 All Feature

ﬂc Positive Rate (TPR), False Positive Rate (FPR), Preci-
sion, Recall, Accuracy, percentage of incorrectly classified
and execution time. The execution time is measured during
the training time (the time measured from the classification
process starts until the classification process stops). In the
experiment, each feature subset is classified by RT, BN,
RT, NB and JE¥lassifiers. The overall process is shown in
Algorithm 2. To evaluate the performance of classification
alg ms, this research uses 10-fold cross-validation. The
10-fold cross-validation is used because it reduces computing
time while maintains the performance of the classification
algorithms in term of accuracy. Hence, the input dataset will
be randomly divided into 10 folds with exactly the same
For each of the 10 fold data, cross-validation will use
old for training and 1 fold for testing. This process is
repeated for 10 times until each fold becomes a test fold.
This cross-validation method has been widely used in IDS
researches, such as in [52], [53]. and [54].

Performances of classifiers using four (4) features selected
by Information Gain are listed in Table 7. The RF and RT have
the highest accuracy of 96.48% compared to other classifiers.
Nonetheless, RF has NaN value. NaN is defined as Not a
Number or undefined. Compare to the other classifiers, NB
is able to detect DoS/DDoS attack up to 0.999 of TPR,
however achieves low TPR in detecting Normal and
Infiltration traffics. Surprisingly BN has the lowest FPR
of 0.010 compared to others. Overall, with these four (4)
selected features, the classifiers only can detect DoS/DDoS,
PortScan and Brute Force attacks. For Normal traffic only NB
suffers for that.

VOLUME B, 2020

Algorithm 2 Overall Process

1: procedure Process()

2:Input: Fr = Feature_Ranked data

3:Output: Features Subsets, TPR, FPR, Accuracy,
Recall, Precision

4: Reduce77 features to n features based on a feature
weight

5: For every feature Fr in Feature_Ranked data

6: Start to Select feature with Feature Weight and

store on Feature Groups

7: Group! = all feature with weight == 0.6
8: Group2 = all feature with weight == 0.5
9: Group3 = all feature with weight == 0.4
10: Group4 = all feature with weight >= 0.3
11: Group5 = all feature with weight >= 0.2
12: Group6 = all feature with weight == 0.1
13: Group7 = all features

14: For each Feature groups

15: Feed Selected Features to RF, BN, RT, NB, J48
using CICIDS-2017-20%

16: Apply Classifier

10: C1 = Random Forest model accuracy
11: C2 = Bayes Network model accuracy
12: C3 = Random Tree model accuracy
13: C4 = Naive Bayes model accuracy
14: C5 = J48 model accuracy

15: Caleulate TPR, FPR Accuracy, Recall, Precision
16: Compare the Accuracy of C1, C2, C3, C4 and C5

TABLE 7. Performance metric using four features.

Detection RF BN RT NB J48

Normal 0.960 0.943 0.960 0.174 0.961
DoS/ DDoS 0.992 0.996 0.992 0.999 0.991
Port Scan 0.995 0.992 0.995 0.983 0.995
Bot 0.438 0.642 0.430 0.687 0.381
Web Attack 0.072 0.031 0.072 0.000 0.072
Infiltration 0.000 0.000 0.400 0.400 0.000
Brute Force 0.792 0.991 0.792 1.000 0.790

Recall 0.965 0.962 0.970 0.903 MNaM
Precision NaN 0.953 0.965 0.335 0.965
FPR 0.016 0.010 0.016 0.026 0.016

The performances of classifiers with 15 features are
tabulated in Table 8. The RF achieves the highest accuracy
of 99.81% compared to other classifiers. The result shows RF,
RT and J48 have good ability to detect Normal, DoS/DdoS,
Bot and Brute Force traffic, however suffer in detecting Web
Attack and Infiltration traffics. Furthermore, RF, RT and
J48 have a low FPR of (0.005, and the lowest FPR achieved

N with FPR of 0.002. The RE, RT and J48 have good
Precision and Recall with value of 0.998.
mexl, the classifiers” performances with 22 selected
eatures are listed in Table 9. The result shows RF again has
the highest accuracy of 99.86% compared to others. Even
this classifier has a good recall value of 0.999 and low FPR
value of 0.003, unfortunately the precision value indicates
a NaN. On the other hand, RF cannot detect Infiltration using
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TABLE 8. Performance metric with 15 features.

Detection RF BN RT NB J48

Normal 0.999 0.874 0.999 0.304 0.999
Dos/ DDoS 0.999 0.97 0.999 0.965 0.999
Port Scan 0.997 0.995 0.997 0.992 0.997

Bot 0.706 0.985 0.725 0.457 0.713
Web Attack 0.116 0.993 0.116 0.829 0.110
Infiltration 0.200 0.400 0.600 0.600 0
Brute Force 0.995 0.996 0.995 0.999 0.996
Recall 0.998 0.996 0.998 (1.436 0.998
Precision 0.99% 0.895 0.998 0.913 0.998
FPR 0.005 0.002 0.005 0.031 0,005

TABLE 9. Performance metric with 22 features.

Detection RF BN RT NB J48

Normal 0.999 0.927 0.999 (.358 0.999
DoS/DDoS  0.999 0.981 0.997 0.723 0.999
Port Scan 0.996 0.992 0.994 0,991 0.999

Bot 0.762 0.989 0377 0.570 0.698
Web Attack  0.738 0.986 0.743 0.846 0.130
Infiltration 0 0.600 0.400 0.800 0

Brute Force  0.997 0.994 0.996 0.983 0.995
Recall 0.999 0.938 0.998 0.447 0.998
Precision NaN 0.995 0.998 0.925 NaN
FPR 0.003 0.004 0.004 0.017 0.004

TABLE 10. Performance metric with 35 features.

Detection RF BN RT NB J48
Normal 0.999 0.92 0.998 0.693 0.999
Dos/ DDoS 0.998 0.983 0.998 0.673 0.999
Port Scan 0.994 0.99]1 0.993 0,989 0.999
Bot 0.713 0.985 0.755 0.494 0.691
Web Attack 0.651 0.990 0.716 0.955 0.116

Infiltration 0.000 0.600 0.200 (L800 0.200
Brute Force 0.993 0.989 0.993 0.947 0.993

Recall 0.998 0.933 0.998 0.708 0.998
Precision NaN 0.993 0.998 0.923 0.998
FPR 0.004 0.006 0.004 0.013 0.004

the selected features. With 22 selected features, all classifiers
have good TPR to detect DoS/DDoS. PortScan and Brute
Force. For Normal traffic RF, BN, RT and J48 achieve good
TPR, only NB has a low TPR.

The performances of the classifiers with 35 selected
features are listed in Table 10. Similar to the previous results,
RF has the highest accuracy of 99.83%, the recall of 0.998,
and FPR of 0.004. Nevertheless, the precision noted as
NaN. This result shows that RF cannot detect Infiltration.
Surprisingly NB achieves better performance than before
with 70.84% accuracy, even this achievement lower than
other methods, however, it has a good precision with a value
of 0.923.

The performances of classifiers with 52 selected features
are tabulated in Table 11. It 1s shown that J48 has a better
performance with accuracy of 99.87%, recall of 0.999, pre-
cision of 0.999 and low FPR of 0.002 compared to other
classifiers.

The performances of classifiers using 57 selected features
are listed in Table 12. BN is able to detect all types of traffic
with good TPR values.
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TABLE 11. Performance metric with 52 features.

Detection RF BN RT NB J48
Normal 0.999 0.932 0.998 0.400 0.999
Dos/ DDoS 0.998 0978 0.997 0.715 0.999
Port Scan 0.994 0.991 0.993 0.931 0.999
Bot 0.668 0.989 0.732 0.774 0.698

Web Attack 0.942 0.990 0.925 0.993 0.949
Infiltration 0.000 1.000 0.000 0.800 0.000
Brute Force 0.993 0.994 0.992 0.963 0.993

Recall 0.998 0.942 0.998 0.476 0.999
Precision NaN 0.994 0.998 0.880 0.999
FPR 0.004 0.009 0.004 0.035 0.002

TABLE 12. Performance metric with 57 features.

Detection RF BN RT NB J48

Normal 0.999 0.932 0.999 0.358 0.999
Dos/ DDoS 0.998 0.973 0.997 0.724 0.999
Port Scan 0.994 0.991 0.993 0.489 0.999

Bot 0.668 0.989 0.751 0377 0.721
Web Attack 0.932 0.990 0.911 0.993 0.949
Infiltration 0.000 1.000 0.200 0.800 0.000
Brute Force 0.993 0.994 0.990 0.963 0.993
Recall 0.998 0.942 0.998 0.871 0.999
Precision NaN 0.994 0.998 0.871 0.999
FPR 0.004 0.011 0.004 0.037 0.002

TABLE 13. Performance metric with 77 (all) features.

Detection RF BN RT NB J48

Normal 0.999 0.940 0.998 0.333 0.999
Dos/ DDoS 0.998 0.974 0.996 0.731 0.999
Port Scan 0.994 0.991 0.993 0,660 0.999
Bot 0.653 0.989 0.675 0.774 0.740
Web Attack 0.935 0.990 0.894 0.983 0.966
Infiltration 0.000 1.000 0.200 0.800 0.000
Brute Force 0.994 0.995 0.992 0.979 0.995

Recall 0.998 0.948 0.997 0.409 0.999
Precision NaN 0.993 0.997 0.874 NaN
FPR 0.004 0.010 0.005 0.040 0.002

Lastly, the performances of classifiers using all features
are tabulated in Table 13. By using all features, BN is able
fMyatect all types of traffic with good TPR. Observation on
Table 11, Table 12, and Table 13 leads to conclusion that RE,
RT, and J48 with 53, 57, and all features have a good ability
to detect Normal, Dos/DDoS, Brute Force as well as Bot
attacks traffics. However, RF, RT, and J48 suffer in detecting
Infiltration attack traffic, whereas BN and NB have a good
ability to detect it.

D. ANALYSIS
Implementation of the proposed Information Gain feature
selection in the experiments yields ranked features according
to their weight scores. Features with higher weight scores
represent more relevant and significant features of an attack.
As can be observed from Table 5, the top four features
(out of 77) with their scores are resulted from the experiment.
Thus, features with IDs 41, 13, 65, and 8 are the most relevant
and significant features for detecting any attacks and appear
in any of features subsets.
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FIGURE 2. Accuracy of selected features.

Owerall, RF, BN, RT and J48 clas are able to detect
well the normal traffic, DoS/DDoS, Port Scan, Brute Force
and Web attacks traffic using the features subsets of 35,
52, and 77. Literatures study supports this finding as the
classifiers use robust decision tree learning algorithm.

For the case of Infiltration attack traffic detection, NB
is able to detect with TPR value of 0.800 using features
subsets of 22 and 35, and perfectly detect (with TPR value
of 1.000) using features subsets of 52, 57 and 77. The rea-
son 1s, because significant features representing infiltration
attack traffic appears in the features subsets of 52, 55, 77.
Unfortunately, other classifiers; RE BN, RT and J48 are
unable to detect well the Infiltration attack traffic. The small
amount of this type of attack traffic in the dataset may cause
the bad performance of its detection. As mentioned in sub-
section 4. A, CCIDS-2017 contains imbalanced data, which
is a big challenge in detecting anomalies/attacks.

Similar to the case of Infiltration attack, all classifiers are
not able to detect well the Web Attack traffic using features
subset of 4. Then, only BN and NB classifiers are able to
detect the Web Attack traffic using features subset of 15 with
the TPR value of (0.993 and 0.829, respectively.

As for Bot Attack traffic detection. RF, BN, RT, and J48
are able to detect the traffic using certain features subsets,
but with lower TPR values.

Furthermore, considering the Precision and Recall values,
in general the five classifiers detect the traffic relatively well.
Nevertheless, in some cases the classifiers produce NaN val-
ues. cases may happen because of the implementation
of 10-Fold Cross Validation in the experiment, which divides
the dataset into ten folds (data portion). As the amount of
attack traffics for Infiltration, Bot and Web attacks are rel-
atively small, thus, some folds do not contain those traffics.
Therefore, it affects the ability to detect the attack during the
training stage. Specifically, for the Itration attack traffic
which has very small amount in the dataset.

The experiment results show that the type ar ber of
selected features may impact significantly the performance
of the detection. Fig. 2 Shows the summary of classifiers’
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FIGURE 4. Execution time.

accuracy impacted by the number of selected features resulted
by th sed Information Gain. The proposed Information
Gain achieves the highest accuracy of 99.86% for RF and
99.78% for RT, using features subset of 22.

On the other hand, the proposed Information Gain
improves NB’s accuracy by up to 70.84% with 35 selected
features. BN and J48 do not have any significant
improvement compared with the use of all features in the
analysis.

Besides the accuracy, selected features impact the FPR,
as shown in Fig. 3. As for the FPR, the use of 22 selected
features affected RF’s FPR up to 0.003. It is slightly decrease
compared to the use of all features. In the case of BN,
15 selected features affi FPR up to 0.002. This is the
lowest FPR amongst the number of selected features. Similar
to RF, the use of 22 selected features affected RT’s FPR up
to 0.004. The proposed Information Gain feature selection
has a significant impact on NB’s FPR. This impact affected
by 4, 15, 22, and 35 features subsets. For J48, the proposed
Information Gain does not reduce FPR, only increases when
compared to all features subset.

This work also analyzes ffect of execution time for the
selected features process. Fig. 4 shows the summary of the
execution time to obtain each feature subset using RF, J48,
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BN RT, and NB. The relevant selected features process has
very significant impact on RE, J48, and BN. The execution
time of RT and NB are relatively very small. Overall, the more
numbers of features to analyze the more time is required for
execution.

V. CONCLUSIONS

This work has discussed experimentation as a proof of
concept on impact of feature selection in improving anomaly
detection accuracy. Information Gain is designated because
of its ability to calculate the weight of features’ information.

RF classifier outperforms others in the experiments using
features subsets of 15, 22 and 35. Whilst J48 performs the
best using features subsets of 52, 57 and 77. Other finding
in the experiment is that, although BN has a low accuracy
level compared to RF and J48, however it is able to detect all
traffics using features subsets of 52, 57 and 77. Furthermore,
experiment results show that the selected features decrease
the FPR level, especially for BN. 93

With regards to the investigation on processing time,
experimental results confirm that the number of selected
features affect the execution time.

The proposed Information Gain produces ranked features
based on their weight values. However, expert intervention is
still needed to determine the minimum weight value, which
affects the number of features selected.

The authors plan to work on different feature selection
methods to design an optimal feature selection mechanism.
Analysis of each features subset that affects each type of
attack will also be carried out as a future work.
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