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Abstract 
This study is carried out to analyse the convective heat transfer from a circular and an elliptic cylinders to 
air. Both circular and elliptic cylinders have the same cross section. The aspect ratio of cylinders range 0 
≤ ε ≤ 1 are studied. The implicit scheme of the finite difference is applied to obtain the discretized 
equations of hydrodynamic and thermal problem. The Choleski method is used to solve the discretized 
hydrodynamic equation and the iteration method is applied to solve the discretized thermal equation. The 
circular cylinder has the aspect ratio equal to unity while the elliptical cylinder has the aspect ratio less 
than unity by reducing the minor axis and increasing the major axis to obtain the same cross section as 
circular cylinder. The results of the calculations show that the skin friction change significantly, but in 
contrast with the elliptical cylinders have greater convection heat transfer than that of circular cylinder. 
Some results of calculations are compared to the analytical solutions given by the previous authors. 
Copyright © 2013 International Energy and Environment Foundation - All rights reserved. 
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1. Introduction 
Heat transfer by forced convection flows initiated impulsively occur naturally in the environment and 
can be implicated in many industrial applications. Well-documented examples of these flows include 
impulsively generated forced convection from horizontal cylindrical bodies. Numerous numerical, 
experimental and theoretical studies devoted to these cases have appeared in the literature over the years. 
Johnson et al. studied analytically the flow around an elliptical cylinder by using 2D spectral-element 
method to solve the unsteady Navier-Stokes equations governing the fluid flow [1]. Simulations were 
carried out for aspect ratios from 0.01 to 1.00 and Reynolds numbers from 30 to 200. The flow is 
perpendicular to a which is always longer than b and they defined as ε = b/a. The results show that the 
drag coefficients vary in function of aspect ratio which is larger than drag coefficient of a circular 
cylinder or Cd > 1.2. 
Recently, forced convection from a circular cylinder (ε = 1) was studied analytically by Khan et al. [2]. 
They give the evolution of shear stress and drag coefficient of flow around a circular cylinder and 
average Nusselt number. The calculations are compared to the previous authors. Khan et al. studied 
analytically heat transfer and flow around an elliptic cylinder in the high Reynolds number range of 102 
to 105 [3]. The aspect ratios of elliptical cylinder studied are 2, 3 and 4. The results show that the drag 
coefficients are lower whereas the average heat transfer coefficient are higher for elliptical cylinder than 
that of circular cylinder. Alessio et al. give numerical solution of Navier-Stokes and energy equation 
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using a spectral finite difference procedure [4]. The elliptic cylinder makes an angle of attack to the flow 
direction. They show that Nusselt number varies with time.  
The skin friction drag of flow around an elliptic cylinder is numerically calculated by using commercial 
software by Sivakumar et al. in two-dimensional steady cross-flow regime for the range of Reynolds 
number as 0.01 ≤ Re ≤ 40, aspect ratio as 0.2 ≤ ε ≤ 5 [5]. The results show that the skin friction drag 
increases with aspect ratio.  
Bharti et al. give the complete studies of heat transfer by convection from an elliptic cylinder for wide 
range of aspect ratio (0.2 ≤ ε ≤ 5) [6]. They used commercial software to obtain convection heat transfer 
to incompressible power-law fluids from a heated elliptic cylinder in the steady, laminar cross-flow 
regime. They show that for elliptic cylinder (ε < 1) the heat transfer is higher than that of circular 
cylinder, and if ε >1 the heat transfer from an elliptical cylinder is lower than that of circular cylinder.  
Extensive numerical simulations of the 2D laminar flow of power-law fluids over elliptic cylinders with 
different aspect ratios have been carried out to establish the conditions for the onset of wake formation 
and the onset of vortex shedding. This study was done by Koteswara et al. [7]. The continuity and 
momentum equations were solved numerically using commercial software. Velocity vector plots 
denoting the flow separation and vortices profiles showing the vortex shedding are also included. The 
flow field around a streamlined body can be well approximated by a potential flow field since viscous 
effects are confined to a thin boundary layer and wake [8]. 
Hayati et al. [9] give the prediction convective heat transfer from elliptical cylinder tube influenced by 
walls of both sides which has variable distance from the elliptic cylinder. The major axis of the elliptic 
cylinder is parallel to the walls. The heat transfer is maximum when the distance is about three times 
larger than the minor axis of elliptical tube. 
The studies explained above did not confirm the same cross section for all aspect ratio of elliptic 
cylinders. In fact by changing the aspect ratio of a circular cylinder may cause the cross section or 
surface is not the same as circular cylinder. The aspect ratio of an elliptic cylinder is varied by changing 
one of the axis i.e. minor or major axis. Thus this study is to observe the heat transfer by forced 
convection of a circular cylinder and an elliptic cylinder of which both cylinders have the same cross 
section. The elliptic cylinders have the aspect ratio in the range of 0 ≤ ε ≤ 1. If ε = 0 and ε = 1 the 
cylinder behaves as a flat plate and circular cylinder respectively. Some results are compared to the 
previous works. 
 
2. Governing equations 
Consider the two-dimensional, laminar, steady flow of an incompressible fluid with a uniform velocity 
and temperature (Uo, T∞) across an infinitely long cylinder of elliptic cross-section (aspect ratio, ε = b/a). 
The surface of the cylinder is maintained at a constant temperature, Tw ( > T∞). The thermo-physical 
properties of the streaming fluid are assumed to be independent of the temperature and the viscous 
dissipation effects are neglected. The flow is simulated by enclosing an isothermal elliptic, region from 
surface of cylinder to the boundary as shown schematically in Figure 1. But the domain of calculation is 
on the upper part region due to the symmetry.  
The potential flow velocity just outside the boundary layer is denoted by U(x). Using the order-of-
magnitude analysis, the reduced equations of continuity, momentum and energy in the curvilinear system 
of coordinates in Figure 1 can be written as;  
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Bernoulli equation:  
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U(x) is formulated by Khan et al. [3]. The above equations of momentum and energy are subject to the 
following boundary conditions. At the cylinder surface (uniform wall temperature), 
i.e., at y = 0: u = v = 0, T = Tw 
At the edge boundary layer, i.e., at y = δ(x): u = U(x), T = T∞ 
The equations (1), (2), and (3) may be transformed to dimensionless form as follows:  
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with x+ = x/d, y+ = Re1/2y/d, u+= u/Uo, v+ = Re1/2 v /Uo, p+= P/ρUo

2, T+ = (T - T∞)/(Tw - T∞), U+ = U(x)/Uo, 
Re = Uod/υ.  
 
Boundary conditions become:  
at the cylinder surface:  u+ = v+ = 0, T+ = 1  
at the edge of boundary layer:  u+ = U+(x), T+ = 0   
 
The wall friction and convective heat transfer occur significantly from stagnation point to the separation 
point of the flow at the cylinder surface. Skin friction drag is due to viscous shear forces produced at the 
cylinder surface, predominant in those regions where the boundary layer is attached. In dimensionless 
form, Cf can be written as  
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For a cylinder in dimensionless form, the average skin friction coefficient is 
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The local Nusselt number is written as  
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and then the average Nusselt number is calculated by integrating the local values over the length of the 
cylinder or by dimensionless form is as follows; 
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with xs

+ is dimensionless length of cylinder wall from stagnation point to the separation point. 
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The work presented here is focussed on the flow field around a cylinder and the convective heat transfer 
from a cylinder to the air in which the cylinder wall temperature is uniform. Starting from a circular 
cylinder (ε = 1) the aspect ratio is changed to ε < 1. These changes make the circular cylinder become an 
elliptical cylinder and both circular and elliptical cylinder have the same cross section.  
 
3. Method of solution 
By using the finite difference method with implicit scheme [10, 11], the equation (5) becomes 
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and after regrouping we have the following equation; 
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with ai, bi, ci and di are the coefficients of equation and subscript i,j are grid point number in x and y 
direction respectively. The continuity equation (6) is written in the finite difference scheme by using the 
forward difference for the term in x direction and the central difference for the term in normal direction. 
This equation allows to calculate the velocity in normal direction, v+

i,j.  
The energy equation (7) is written by using the finite difference method and we have  
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and after regrouping we have the energy equation as follows 
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with ei, fi, gi and hi are the coefficients of equation 
 

 
 

Figure 1. Numerical grid 
 

The linearized equation, Eq. (13), makes tridiagonal matrix which is solved by Choleski method to 
obtain velocity distributions, u+

i,j and the linear equation, Eq. (15), is solved by Gauss-Seidel iteration 
method to obtain temperature distributions, T+

i,j. The numerical grid where (i,j) is a typical mesh point 
(Figure 1). Outside the cylinder wall, mesh point are numbered consecutively with the i progressing in 
the meridional direction with i = 1,2,3...,m from the stagnation point. The j is progressing in the radial 
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direction starting from j = 1 on the cylinder’s surface till j = n in the external flow boundary. The 
computations were performed for grid points of 50 x 50. Larger numbers of grids were used in 
meridional direction for smaller aspect ratio to obtain ∆x contant and also in normal direction where the 
grid point is progressing from the stagnation point. The length of normal distance increases with x+ from 
stagnation point (boundary as shown in Figure 1) because the boundary layer thickness increases with x. 
The absolute convergence of iteration is less than 10-5 for all cases. 
 
4. Results and discussion 
The numerical calculations were carried out for some values of aspect ratio. The length of circular 
cylinder surface in meridional direction (ε = 1) has the same length of elliptic cylinders when the aspect 
ratios ε = 0, 0.361 and 0.616. When ε = 0 the circular cylinder become a flat plate in which the boundary 
condition is changed in calculation because the pressure gradient is zero. The value of Pr is taken to be 
0.70 which correspond physically to air. Figure 2 (a) and (b) present two examples of typical velocity 
profiles for ε = 0.361 and ε = 1. We see that the velocity distributions for different aspect ratio are 
similar. The difference of velocity profiles for different aspect ratios are the values of velocity, the slope 
of velocity in laminar sublayer and the boundary layer thickness. We observe that the velocity and the 
slope increase with the rise of aspect ratio but the boundary layer thickness decrease with the increase of 
aspect ratio. The above conditions are due to higher pressure gradient when aspect ratio is higher. 
 

  
(a) (b) 

 
Figure 2. Velocity profiles (a) ε = 0,361 (b) ε =1 

 
Local skin friction coefficient is presented in Figure 3. The coefficient vary with α and it is a represence 
of velocity near the wall. It can be observed that the point of maximum value occurs at α = 59.5o for ε = 
1 (circular cylinder) and skin friction profile is almost practically symmetric. For ε = 0.361 and 0.616 the 
skin frictions increase rapidly with α and then reach maximum values at α = 41.3o for ε = 0.616 and α = 
25.2o for ε = 0.361. It means that the maximum skin friction approach the stagnation point if the aspect 
ratio is decreased. At the rear part of cylinder, the velocity near the wall decrease with α and equal to 
zero at the point of separation. The position of separation point is far from the stagnation point with 
decreasing of aspect ratio. According to our result of numerical calculations, the separation points 
occured on cylinder wall are at α = 109.43o, α = 118.27o and α = 132.35o for ε = 1, ε = 0.616 and ε = 
0.361 respectively. The skin friction calculation for circular cylinder is compared with previous result 
given by Khan et al [3] and the result is in good agreement because the difference is less than one 
percent. (Figure 3). 
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Figure 3. Local skin friction coefficient 
 
The average value of skin friction coefficient is shown in Figure 4. The skin friction increase 
significantly with increase of aspect ratio. According to our calculations, if ε = 0 the cylinder behaves as 
a flat plate which has skin friction coefficient CF = 1.236/Re1/2. This value has small difference with that 
calculated analytically in most literature for flat plate which has skin friction coefficient CF = 1.292/Re1/2. 
For circular cylinder (ε = 1) from Figure 4 give that CF = 5.807 Re1/2. When this value is compared to the 
value given analytically by Khan et al who gave CF = 5.786 Re1/2 [2]. The difference is less than 1% 
which is acceptable. 
 

  
 

Figure 4. Average skin friction coefficient 
 
The example of temperature characteristics is given by Figure 5 for ε = 0.361 and ε = 1. In various 
positions from stagnation point (different α), it is noticed that the temperature starts at the same 
temperature (T+ = 1) at the cylinder surface and then temperature decrease with y+. Far from surface, the 
temperature all converge to the same value in free stream i.e zero at edge of boundary layer as prescribed 
by boundary condition there. It is also noticed that the temperature difference are significant for small 



International Journal of Energy and Environment (IJEE), Volume 4, Issue 1, 2013, pp.133-140 

ISSN 2076-2895 (Print), ISSN 2076-2909 (Online) ©2013 International Energy & Environment Foundation. All rights reserved. 

139

aspect ratio in various α and if the aspect ratio increase the temperature differences decrease because 
velocity increase when aspect ratio increase or boundary layer thickness is smaller for ε increase. The 
properties of thermal boundary layer are similar to that of hydrodynamic boundary layer in which the 
thermal boundary thickness decreases if aspect ratio increases.  
 

(a) (b) 
 

Figure 5. Temperature profiles (a) ε = 0,361 and (b) ε = 1 
 
The convective heat transfer in terms of average Nusselt number is presented in Figure 6. It can be 
observed that starting from circular cylinder (ε = 1), the Nusselt number increase with decrease of ε. It 
shows that the variations of circular cylinder to the elliptic cylinder in maintaining the same surface area 
makes the Nusselt number increase. The elliptic cylinder has better forced convective heat transfer than 
circular cylinder. Thus the geometry of streamline elliptic cylinders makes the separation point occur far 
from stagnation point. 
 

 
 

Figure 6. Average Nusselt number 
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The analytical solution for circular cylinder (ε = 1) given by Khan et al. [3] is Nu = 0.593Re1/2Pr1/3 while 
for flat plate Nu = 0.664Re1/2Pr1/3. The present calculation gives for circular cylinder Nu/Re1/2 = 0.545 and 
for flat plate Nu/Re1/2 = 0.617. The difference between the previous and the present calculations is about 
2.5% which is still in acceptable tolerance. 
 
5. Conclusion 
The convective heat transfer from the circular and the elliptic cylinder has been studied numerically by 
using the finite difference scheme. It is important to be concluded that the heat transfer from the elliptic 
cylinder (0 < ε < 1) has better than that of the circular cylinder. It is noted that in this case, the circular 
and the elliptic cylinders both have the same cross section. 
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