

Scimago Metrics

Science and Technology Indonesia	
Not yet assigned quartile	(https://www.scimagojr.com/journalsearch.php?
SJR 2021 O powered by scimagojr.com	
q=211010	40666&tip=sid&exact=no)

Editorial Team

Editor-in-Chief

Prof. Aldes Lesbani, Ph.D.

Universitas Sriwijaya, INDONESIA

(Scopus)(https://www.scopus.com/authid/detail.uri?authorld=15056199800)(GS)(https://scholar.google.com/citations?user=hKA2Q0QAAAAJ&hl=en&oi=ao)(RG)(https://www.researchgate.net/profile/Aldes_Lesbani)(Publon)(https://publons.com/researcher/3639719/aldes-lesbani/)(Publon)

Vice Editor-in-Chief

Hendrik Oktendy Lintang, Dr.

Indonesian Chemical Society, INDONESIA(Scopus)(https://www.scopus.com/authid/detail.uri?authorld=36496933500)(GS)(https://scholar.google.com/citations?hl=en&user=6vlzzScAAAAJ)(RG)(https://www.researchgate.net/profile/Hendrik_Lintang)(Publon)(https://publons.com/researcher/1357657/hendrik-oktendy-lintang/)(Publon)

Section Editors

Dodi Devianto, Dr.

Universitas Andalas, INDONESIA

(Scopus) (https://www.scopus.com/authid/detail.uri?authorld=56747957200) (GS) (https://scholar.google.com/citations?hl=en&user=du9sskAAAAAJ)

Tarmizi Taher, Dr.

6

Institut Teknologi Sumatera, **INDONESIA** (Scopus) (https://www.scopus.com/authid/detail.uri?authorld=56104271500) (https://scholar.google.com/citations?hl=en&user=TJYrMMEAAAAJ) (https://www.researchgate.net/profile/Tarmizi_Taher2) (https://publons.com/researcher/3799190/tarmizi-taher/)

Fitri Maya Puspita, Dr.

Universitas Sriwijaya, INDONESIA

(Scopus)	(https://www.scopus.com/authid/detail.uri?authorId=55761767800)	(GS)
(https://schola	r.google.com/citations?hl=en&user=UwS2LIgAAAAJ)	(RG)
(https://www.r	esearchgate.net/profile/Fitri_Puspita)	(Publon)
(https://publor	ns.com/researcher/1540904/fitri-maya-puspita-unsri/)	

Neza Rahayu Palapa, Dr.

Universitas Sriwijaya, **INDONESIA**

(Scopus)	(https://www.scopus.com/authid/detail.uri?authorId=57204586233)	(GS)
(https://scho	lar.google.com/citations?hl=en&user=qYdcP7AAAAAJ)	(RG)
(https://www	.researchgate.net/profile/Neza_Palapa)	

Mohammad Basyuni, Prof. Dr. Universitas Sumatera Utara, INDONESIA

(Scopus)	(https://www.scopus.com/authid/detail.uri?authorId=15055287200) (GS)
https://scholar	google.com/citations?hl=en&user=mudoMJ4AAAAJ)	(RG)
https://www.re	searchgate.net/profile/Mohammad_Basyuni)	(Publon)
https://publons	.com/researcher/1654147/mohammad-basyuni/)	

Editorial Boards

Ambara Rachmat Pradipta, Dr.

Fokyo Instit	ute of Technology, JAPAN	
Scopus)	(https://www.scopus.com/authid/detail.uri?authorId=36185578800)	(GS)
https://scho	blar.google.com/citations?hl=en&user=nn7hLJwAAAAJ)	(RG)
https://www	v.researchgate.net/profile/Ambara_Pradipta)	

Bidyut Saha, Prof. Dr.

The University of Burdwan, INDIA

(Scopus) (https://www.scopus.com/authid/detail.uri?authorld=24459083100) (GS) (https://scholar.google.com/citations? hl=en&user=IG27makAAAAJ&view_op=list_works&sortby=pubdate) (RG) (https://www.researchgate.net/profile/Bidyut_Saha)

Fabien Silly, Dr.

CEA Saclay, FRANCE

(Scopus)(https://www.scopus.com/authid/detail.uri?authorId=6602946333)(GS)(https://scholar.google.com/citations?hl=en&user=r3VUHjgAAAAJ)(RG)(https://www.researchgate.net/profile/Fabien_Silly)(RG)

Supa Hannongbua, Prof. Dr.

1

Kasetsart University, **THAILAND** (Scopus) (https://www.scopus.com/authid/detail.uri?authorId=57214859856) (https://scholar.google.com/citations?user=xLnUW7EAAAAJ&hI=en&oi=ao)

Iskhaq Iskandar, Prof. Dr.

Universitas Sriwijaya, INDONESIA

(Scopus)	(https://www.scopus.com/authid/detail.uri?authorld=8637688700)	(GS)
(https://schola	r.google.com/citations?hl=en&user=x4514csAAAAJ)	(RG)
https://www.researchgate.net/profile/lskhaq_lskandar)		(Publon)
(https://publor	is.com/researcher/2818598/iskhaq-iskandar/)	

Faheem K. Butt, Dr.

University of Education, PAKISTAN

(Scopus)	(https://www.scopus.com/authid/detail.uri?authorId=37076592700)	(GS)
(https://schola	r.google.com/citations?hl=en&user=raetpZoAAAAJ)	(RG)
(https://www.r	esearchgate.net/profile/Faheem_Butt)	

Ivandini T. Anggraningrum, Prof. Dr.

Universitas	ndonesia, INDONESIA	
(Scopus)	(https://www.scopus.com/authid/detail.uri?authorId=6506022840)	(GS)
(https://scho	lar.google.com/citations?hl=en&user=ZLC8oXgAAAAJ)	(RG)
(https://www	researchgate.net/profile/Tribidasari_Anggraningrum_Ivandini)	

Roland Tomašiūnas, Prof. Dr.

Vilnius University, **LITHUANIA**

(Scopus) (https://www.scopus.com/authid/detail.uri?authorId=6603738091)

Khairul Basar, Dr.

Institut Teknologi Bandung, INDONESIA(Scopus)(https://www.scopus.com/authid/detail.uri?authorId=8913123600)(GS)(https://scholar.google.com/citations?hl=en&user=Q75Ij6IAAAAJ)(RG)(https://www.researchgate.net/profile/Khairul_Basar)(RG)

Ammar Z. Alshemary, Dr.

Karabuk Universitesi, **TURKEY** (Scopus) (https://www.scopus.com/authid/detail.uri?authorld=55503590800) (https://scholar.google.com/citations?user=pHyZRpAAAAAJ&hl=en&oi=ao)

Lusi Safriani, Dr.

Universitas Padjadjaran, INDONESIA

Scopus)	(https://www.scopus.com/authid/detail.uri?authorId=14919712300)	(GS)
https://schola	ar.google.com/citations?hl=en&user=2Q8yawsAAAAJ)	(RG)
https://www.r	esearchgate.net/profile/Lusi_Safriani)	

Norma Alias, Assoc. Prof. Dr.

(GS)

Universiti Teknologi Malaysia, **MALAYSIA** (Scopus) (https://www.scopus.com/authid/detail.uri?authorId=22733403000 (https://scholar.google.com/citations?user=89hAxiEAAAAJ&hI=en) (https://www.researchgate.net/profile/AP_Dr_Norma_Alias)

Weidong Yu, Prof.

Sun Yat-Sen University, **CHINA** (Scopus) (https://www.scopus.com/authid/detail.uri?authorId=36657972500) (GS) (https://scholar.google.com/citations?user=bAQMKakAAAAJ&hl=en&oi=ao)

Siti Aisyah Nurjannah, Dr.

Universitas Sriwijaya, INDONESIA

(Scopus) (https://www.scopus.com/authid/detail.uri?authorId=57190066896) (GS) (https://scholar.google.com/citations?user=Inclz0UAAAAJ&hl=en&oi=ao)

Rino R. Mukti, Dr.

nstitut Tekno	logi Bandung, INDONESIA	
(Scopus)	(https://www.scopus.com/authid/detail.uri?authorId=12244105600)	(GS)
(https://schola	ar.google.com/citations?hl=en&user=y_3Vdi4AAAAJ)	(RG)
(https://www.r	esearchgate.net/profile/Rino_Mukti)	(Publon)
(https://publo	ns.com/researcher/1357077/rino-mukti/)	

R. Dwi Susanto, Dr.

University of Maryland, **UNITED STATES OF AMERICA** (Scopus) (https://www.scopus.com/authid/detail.uri?authorId=55664987200) (GS) (https://scholar.google.com/citations?hl=en&user=xony5H4AAAAJ)

Siew Ling Lee, Assoc. Prof. Dr.

Universiti Teknologi Malaysia, MALAYSIA(Scopus)(https://www.scopus.com/authid/detail.uri?authorId=57193482292)(GS)(https://scholar.google.com/citations?hl=en&user=gpclcvgAAAAJ)(RG)(https://www.researchgate.net/profile/Siew_Lee3)(RG)

Tri Atmojo Kusmayadi, Prof. Dr.

Universitas Sebelas Maret, INDONESIA

(Scopus)(https://www.scopus.com/authid/detail.uri?authorId=55151149300)(GS)(https://scholar.google.com/citations?hl=en&user=GPBtAsUAAAAJ)(RG)(https://www.researchgate.net/profile/Kurnia_Atmojo)(RG)

Wamiliana, Prof. Dr.

Universitas Lampung, INDONESIA

(Scopus)(https://www.scopus.com/authid/detail.uri?authorld=36053853700)(GS)(https://scholar.google.com/citations?hl=en&user=v4sjk3cAAAAJ)(RG)(https://www.researchgate.net/profile/Wamiliana_Wamiliana2)

Siti Suzlin Binti Supadi, Dr.

University of Malaya, MALAYSIA

(Scopus) (https://www.scopus.com/authid/detail.uri?authorId=24450952300)

(https://scholar.google.com/citations?hl=en&user=uYYbIVoAAAAJ)

Agus Santoso, Dr.

University of New South Wales, **AUSTRALIA** (Scopus) (https://www.scopus.com/authid/detail.uri?authorId=36841957400) (GS) (https://scholar.google.com/citations?hl=en&user=12P_998AAAAJ)

M. Lutfi Firdaus, Prof. Dr.

Universitas Bengkulu, INDONESIA(Scopus)(https://www.scopus.com/authid/detail.uri?authorld=56426642700)(GS)(https://scholar.google.com/citations?hl=en&user=6rtZ49cAAAAJ)(RG)(https://www.researchgate.net/profile/M_Firdaus)(Publon)(https://publons.com/researcher/1528530/m-lutfi-firdaus/)(Publon)

Eko Siswanto, Dr.

Research Institute for Global Change, JAMSTEC, JAPAN(Scopus)(https://www.scopus.com/authid/detail.uri?authorId=8668728200)(GS)(https://scholar.google.com/citations?user=15lcSMkAAAAJ&hl=en&oi=ao)(GS)

M. Yusup Nur Khakim, Dr.

Universitas Sriwijaya, INDONESIA

(Scopus)(https://www.scopus.com/authid/detail.uri?authorId=55466639800)(GS)(https://scholar.google.com/citations?hl=en&user=g9z7YP0AAAAJ)(RG)(https://www.researchgate.net/profile/Mokhamad_Yusup_Nur_Khakim)(RG)

Budhi Arta Surya, Dr.

Victoria University of Wellington, NEW ZEALAND

(Scopus) (https://www.scopus.com/authid/detail.uri?authorld=15756212800) (GS) (https://scholar.google.com/citations?user=Y-D5sLIAAAAJ&hl=en&oi=ao)

Zati Aqmar Zaharudin, Dr.

Universiti Teknologi MARA, **MALAYSIA** (Scopus) (https://www.scopus.com/authid/detail.uri?authorId=55140797700) (GS) (https://scholar.google.com/citations?hl=en&user=jJ0ePnIAAAAJ)

Ananda Putra, Dr.

Universitas Negeri Padang, **INDONESIA** (Scopus) (https://www.scopus.com/authid/detail.uri?authorId=14919803200) (GS) (https://scholar.google.com/citations?hl=en&user=2YIaaq8AAAAJ)

Yan Du, Prof.

South China Sea Institute of Oceanology,CAS., CHINA(Scopus)(https://www.scopus.com/authid/detail.uri?authorId=55762732700)(GS)(https://scholar.google.com/citations?user=uEuE73sAAAAJ&hl=en&oi=ao)

Rahmat Hidayat, Dr.

Institut Pertanian Bogor, **INDONESIA** (Scopus) (https://www.scopus.com/authid/detail.uri?authorld=7003420834) (https://scholar.google.com/citations?hl=en&user=5JoiSBwAAAAJ)

Adibah Shuib, Assoc.Prof. Dr.

Universiti Teknologi MARA, **MALAYSIA** (Scopus) (https://www.scopus.com/authid/detail.uri?authorld=55139559300) (GS) (https://scholar.google.com/citations?user=XccJ_-QAAAAJ&hl=en&oi=ao)

Journal Menu

- O Aims & scopes (https://sciencetechindonesia.com/index.php/jsti/aimsandscope)
- Editorial Board (https://sciencetechindonesia.com/index.php/jsti/about/editorialTeam)
- </>Reviewer Acknowledgement (https://sciencetechindonesia.com/index.php/jsti/reacknow)
- © Copyright Notice (https://sciencetechindonesia.com/index.php/jsti/copyright)
- Scopus Database (https://www.scopus.com/sourceid/21101040666)
- CrossMark Policy (https://sciencetechindonesia.com/index.php/jsti/crossmarkpolicy)
- LIL Conference Collaboration (https://sciencetechindonesia.com/index.php/jsti/confer)
- **Site Statistic (https://statcounter.com/p11376749/?guest=1)**

Submission Process

- Author Guideline (https://sciencetechindonesia.com/index.php/jsti/gias)
- D Publication ethics (https://sciencetechindonesia.com/index.php/jsti/ethics)
- Plagiarism Policy (https://sciencetechindonesia.com/index.php/jsti/plagiarism)
- Peer Review Process (https://sciencetechindonesia.com/index.php/jsti/peerreviewprocess)
- Article Processing Charge (https://sciencetechindonesia.com/index.php/jsti/apcs)

Manuscript Template (https://sciencetechindonesia.com/index.php/jsti/template)

© Copyright Transfer (https://sciencetechindonesia.com/index.php/jsti/cta)

Popular Articles

Review of The Effectiveness of Plant Media Extracts in Barium Hexaferrite Magnets (BaFe12O19) (https://sciencetechindonesia.com/index.php/jsti/article/view/270) √ 354 2 Structural Stability of Ni/Al Layered Double Hydroxide Supported on Graphite and Biochar Toward Adsorption of Congo Red (https://sciencetechindonesia.com/index.php/jsti/article/view/303) √ 329 2 **Pre-Formulation** Study Preparation Skin Cosmetics on The of (https://sciencetechindonesia.com/index.php/jsti/article/view/320) √ 328 2 Determining the Credit Score and Credit Rating of Firms using the Combination of KMV-Merton Model and Financial Ratios (https://sciencetechindonesia.com/index.php/jsti/article/view/290) ⊿ 324 2 Determination The Coefficient of Restitution in Object as Temperature Function in Partially Elastic Collision Phyphox Smartphone Using Application on (https://sciencetechindonesia.com/index.php/jsti/article/view/187) √ 320 2

Visitor and Statistic

Publisher

Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Contact Info

E-mail: admin@sciencetechindonesia.com

E-mail: sciencetechindonesia@gmail.com

Copyright $\textcircled{\sc c}$ 2021 Science and Technology Indonesia

Articles copyright © the authors. Distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Synthesis and Characterization Chitosan-ZnO nanoparticle and Its Application as Antibacterial Agent of Staphylococus aureus ATCC 25923

Ahmad Fatoni, Ensiwi Munarsih, Kadek Asmadi, Nurlisa Hidayati

Citations 2

Abstract View : 535

Download :4

Q 1-5

G 6-13

10.26554/sti.2020.5.1.1-

FULL TEXT PDF

	MINUT Annual Optimus photost	NONLP Los of Optimus ann. 202 2. Anno 2. St.
Premite and Record 2.020m.(10 ²) -2 -1 -1 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0		

Improved Multi Service-Reverse Charging Models for the Multi Link Internet wireless Using QOS Bit Error Rate QoS Attribute

Fitri Maya Puspita, Evi Yuliza, Weny Herlina, Yunita Yunita, Rohania Rohania

Citations 3

Abstract View : 412

Compressive and Fluxural Strength Precast Lightweight Concrete

Indrayani Indrayani, Andi Herius, Arfan Hasan, Ahmad Mirza

Abstract View : 602

Download -

14-17

0 10.26554/sti.2020.5.1.14-1

Acute Toxicity Test of Jatropha curcas L. on Nile Tilapia Seeds (Oreochromis niloticus L.)

Nurhidayanti Nurhidayanti

3-Phase Matheuristic Model in Two-Dimensional Cutting Stock Problem of Triangular Shape Items

Putra Bahtera Jaya Bangun, Sisca Octarina, Sisca Puspita Sepriliani, Laila Hanum, Endro Sastro...

Citations 2

Abstract View : 463

↓ Download :3

10.26554/sti.2020.5.1.23-2

FULL TEXT PDF

Index Subject Index

FULL TEXT PDF

Author Index

FULL TEXT PDF

- Twitter share (https://twitter.com/intent/tweet?url=https://sciencetechindonesia.com/index.php/jsti/issue/view/14)
- FB share (https://www.facebook.com/sharer.php?u=https://sciencetechindonesia.com/index.php/jsti/issue/view/14)

Journal Statistics 2016-2020

Journal Profile

Publication Start Year	2016
Issue Per Year	4
Cited in Google Scholar (https://scholar.google.co.id/citations? hl=en&view_op=list_works&authuser=1&gmla=AJsN- F7mW4sOCPw9D6jNZ7jHusAImdwht8UYsI3WloEOG_L82N5obptOJL1mb77kyXmbtGiCjq SAtwngSH8cygkuZg&user=LC-6htQAAAAJ)	346 90bc-B6-
h-index Google Scholar (https://scholar.google.co.id/citations? hl=en&view_op=list_works&authuser=1&gmla=AJsN- F7mW4sOCPw9D6jNZ7jHusAImdwht8UYsI3WloEOG_L82N5obptOJL1mb77kyXmbtGiCjq SAtwngSH8cygkuZg&user=LC-6htQAAAAJ)	8 90bc-B6-
Total Document (Until Vol.7 No.2)	180
2021 Statistics After Scopus Indexed	
Acceptance Rate	49%
Submission to First Decision	3-4 Months
Published Articles	42
Total Reviewers	39
Total Contributors	151

Scimago Metrics

Science and Technology Indonesia	
Not yet assigned quartile	(https://www.scimagojr.com/journalsearch.php?
SJR 2021 O powered by scimagojr.com	
q=211010	40666&tip=sid&exact=no)

www.sciencetechindonesia.com

(https://sciencetechindonesia.com/index.php/jsti/issue/view/14)

Articles

(https://sciencetechindonesia.com/public/journals/1/article_192_cover_en_US.png)

Synthesis and Characterization Chitosan-ZnO nanoparticle and Its Application as AntibacterialAgentofStaphylococusaureusATCC25923(https://sciencetechindonesia.com/index.php/jsti/article/view/192)Ahmad Fatoni, Ensiwi Munarsih, Kadek Asmadi, Nurlisa Hidayati

Citations 2	a	1-5
(https://badge.dimensions.ai/details/doi/10.26554/sti.2020.5.1.1-		

5?domain=https://sciencetechindonesia.com)

∠ Abstract View : 534

↓ Download :4

10.26554/sti.2020.5.1.1-5 (https://sciencetechindonesia.com/index.php/jsti/article/view/192

FULL TEXT PDF (https://sciencetechindonesia.com/index.php/jsti/article/view/192/128)

Column Status	variable Values when α and β as parameter						
Solver Status	PQ _{ik} x increase	PQ _{ik} ncrease x decrease	PQ _{ik} decrease x increase	PQ _{ik} and x decrease			
Model Class	MINLP	MINLP	MINLP	MINLP			
State	Local Optimal	Local Optimal	Local Optimal	Local Optimal			
Objective	2.82098×10^{7}	201.499	186.442	186.737			
Infeasibility	0	0	0	$2.48887 \text{x} 10^{-3}$			
Iterations	84	79	70	81			
		Extended Solver Stat	us				
Solver Type	Branch and Bound	Branch and Bound	Branch and Bound	Branch and Bound			
Best Objective	2.82098×10^{7}	201.499	186.442	186.737			
Steps	3	3	3	3			
Update Interval	2	2	2	2			
GMU (K)	34	34	34	34			
ER (Sec)	0	0	0	1			

(https://sciencetechindonesia.com/public/journals/1/article_206_cover_en_US.png)

Improved Multi Service-Reverse Charging Models for the Multi Link Internet wireless Using

5/30/22, 8:11 AM		Vol. 5 No. 1 (202	Vol. 5 No. 1 (2020): January Science and Technology Indonesia				
QOS (https://s	Bit ciencetechindonesi	Error a.com/index.php	Rate /jsti/article/view/20	QoS 6)	Attribute		
Fitri Maya I	Puspita, Evi Yuliza, Weny	[,] Herlina, Yunita Yunita	a, Rohania Rohania				
Citations	3				<u></u> 6-13		
(https://ba	dge.dimensions.ai/det	ails/doi/10.26554/s	ti.2020.5.1.6-				
13?domai	n=https://sciencetechir	ndonesia.com)					
✓ Abstra	nct View : 412				↓ Download :3		

10.26554/sti.2020.5.1.6-13 (https://sciencetechindonesia.com/index.php/jsti/article/view/206

FULL TEXT PDF (https://sciencetechindonesia.com/index.php/jsti/article/view/206/129)

(https://sciencetechindonesia.com/public/journals/1/article_201_cover_en_US.jpg)

The Effect of Addition on Pumice and Fiber on Compressive and Fluxural Strength Precast Lightweight Concrete

(https://sciencetechindonesia.com/index.php/jsti/article/view/201)

Indrayani Indrayani, Andi Herius, Arfan Hasan, Ahmad Mirza

Citations 1	ه	14-17
(https://badge.dimensions.ai/details/doi/10.26554/sti.2020.5.1.14-		
17?domain=https://sciencetechindonesia.com)		

∠ Abstract View : 602

↓ Download :3

10.26554/sti.2020.5.1.14-17 (https://sciencetechindonesia.com/index.php/jsti/article/view/201

FULL TEXT PDF (https://sciencetechindonesia.com/index.php/jsti/article/view/201/130)

(https://sciencetechindonesia.com/public/journals/1/article_211_cover_en_US.jpg)

Acute Toxicity Test of Jatropha curcas L. on Nile Tilapia Seeds (Oreochromis niloticus L.) (https://sciencetechindonesia.com/index.php/jsti/article/view/211)

Nurhidayanti Nurhidayanti

Citations	م 18-22
(https://badge.dimensions.ai/details/doi/10.26554/sti.2020.5.1.18-	
22?domain=https://sciencetechindonesia.com)	

Abstract View : 517

Download :2

10.26554/sti.2020.5.1.18-22 (https://sciencetechindonesia.com/index.php/jsti/article/view/211

FULL TEXT PDF (https://sciencetechindonesia.com/index.php/jsti/article/view/211/131)

(https://sciencetechindonesia.com/public/journals/1/article_208_cover_en_US.png)

3-Phase Matheuristic Model in Two-Dimensional Cutting Stock Problem of Triangular Shape Items (https://sciencetechindonesia.com/index.php/jsti/article/view/208)

Putra Bahtera Jaya Bangun, Sisca Octarina, Sisca Puspita Sepriliani, Laila Hanum, Endro Sastro...

Index

Subject Index (https://sciencetechindonesia.com/index.php/jsti/article/view/222)

FULL TEXT PDF (https://sciencetechindonesia.com/index.php/jsti/article/view/222/133)

Author Index (https://sciencetechindonesia.com/index.php/jsti/article/view/221)

FULL TEXT PDF (https://sciencetechindonesia.com/index.php/jsti/article/view/221/132)

Journal Menu

- O Aims & scopes (https://sciencetechindonesia.com/index.php/jsti/aimsandscope)
- Editorial Board (https://sciencetechindonesia.com/index.php/jsti/about/editorialTeam)
- Indexing (https://sciencetechindonesia.com/index.php/jsti/absindex)
- </></>
 </>
 Reviewer Acknowledgement (https://sciencetechindonesia.com/index.php/jsti/reacknow)
- © Copyright Notice (https://sciencetechindonesia.com/index.php/jsti/copyright)
- Scopus Database (https://www.scopus.com/sourceid/21101040666)
- CrossMark Policy (https://sciencetechindonesia.com/index.php/jsti/crossmarkpolicy)
- Lill Conference Collaboration (https://sciencetechindonesia.com/index.php/jsti/confer)
- **Site Statistic (https://statcounter.com/p11376749/?guest=1)**

Submission Process

Author Guideline (https://sciencetechindonesia.com/index.php/jsti/gias)

D Publication ethics (https://sciencetechindonesia.com/index.php/jsti/ethics)
Blagiarism Policy (https://sciencetechindonesia.com/index.php/jsti/plagiarism)
Peer Review Process (https://sciencetechindonesia.com/index.php/jsti/peerreviewprocess)
Article Processing Charge (https://sciencetechindonesia.com/index.php/jsti/apcs)
Manuscript Template (https://sciencetechindonesia.com/index.php/jsti/template)
© Copyright Transfer (https://sciencetechindonesia.com/index.php/jsti/cta)
Popular Articles
Review of The Effectiveness of Plant Media Extracts in Barium Hexaferrite Magnets (BaFe12O19) (https://sciencetechindonesia.com/index.php/jsti/article/view/270) 354
Structural Stability of Ni/Al Layered Double Hydroxide Supported on Graphite and Biochar Toward Adsorption of Congo Red (https://sciencetechindonesia.com/index.php/jsti/article/view/303)
Pre-Formulation Study on The Preparation of Skin Cosmetics (https://sciencetechindonesia.com/index.php/jsti/article/view/320) ✓ 328
Determining the Credit Score and Credit Rating of Firms using the Combination of KMV-Merton Model and Financial Ratios (https://sciencetechindonesia.com/index.php/jsti/article/view/290)
Determination The Coefficient of Restitution in Object as Temperature Function in Partially Elastic Collision Using Phyphox Application on Smartphone (https://sciencetechindonesia.com/index.php/jsti/article/view/187) 320

Visitor and Statistic

(http://s05.flagcounter.com/more/J0m)

Publisher

Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Contact Info

E-mail: admin@sciencetechindonesia.com

E-mail: sciencetechindonesia@gmail.com

Copyright © 2021 Science and Technology Indonesia

Articles copyright © the authors. Distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Science and Technology Indonesia

e-ISSN:2580-4391 *p*-ISSN:2580-4405 Vol. 5, No. 1, January 2020

Research Paper

3-Phase Matheuristic Model in Two-Dimensional Cutting Stock Problem of Triangular Shape Items

Putra Bahtera Jaya Bangun¹, Sisca Octarina^{1*}, Sisca Puspita Sepriliani¹, Laila Hanum², Endro Setyo Cahyono¹

¹Mathematics Department, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indralaya 30662, South Sumatera, Indonesia ²Biology Department, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indralaya 30662, South Sumatera, Indonesia ***Corresponding author**: sisca_octarina@unsri.ac.id

Abstract

Cutting Stock Problem (CSP) is a problem of cutting stocks with certain cutting rules. This study used the data of rectangular stocks, which cut into triangular shape items with various order sizes. The Modified Branch and Bound Algorithm (MBBA) was used to determine the optimum cutting pattern then formulated it into the 3-Phase Matheuristic model which consisted of constructive phase, improvement phase, and compaction phase. Based on the results, it showed that the MBBA produces three optimum cutting patterns, which was used six times, eight times, and four times respectively to fulfill the consumer demand. Then the cutting patterns were formulated into the 3-Phase Matheuristic model whereas the optimum solution was the minimum trim loss for the first, second and third patterns.

Keywords

Triangular, Modified Branch and Bound Algorithm, Matheuristic

Received: 22 December 2019, Accepted: 18 January 2020 https://doi.org/10.26554/sti.2020.5.1.23-27

1. INTRODUCTION

Raw materials are important in the production process where the material will be converted into desired goods and then sold. Production activities require a variety of raw materials, including paper, wood, yarn, marble and so on. The cutting problem in optimization is known as the Cutting Stock Problem (CSP). CSP is divided into three types namely one-dimensional CSP, twodimensional CSP, and three-dimensional CSP. These three types of CSP are not only seen from the cutting results but also the residue, which is called trim loss. The smaller of the trim loss obtained, the objective function will be more optimum. Cutting patterns with the smallest trim loss will be used as the optimum cutting pattern.

This research discusses two-dimensional CSP. Rodrigo et al. (2012) created the Pattern Generation algorithm to find cutting patterns. Then, they improved the algorithm to become Modified Branch and Bound Algorithm (Rodrigo et al., 2013). Octarina et al. (2017) explained that in a two-dimensional CSP, the cutting pattern was seen in terms of the length and width of the raw material. CSP is known as cutting raw materials into smaller forms or it also can be interpreted as one of the optimization methods by minimizing the remaining raw materials and maximizing the profits (Rodrigo and Shashikala, 2017). Previous research about two-dimensional CSP has been done, but most of the item

was in square or rectangle. Bangun et al. (2019) implemented a branch and cut method on the n-sheet model in solving twodimensional CSP. Octarina et al. (2018) implemented the Pattern Generation algorithm in forming Gilmore and Gomory model for two-dimensional CSP. Then the research was developed to multiple stock sizes (Octarina et al., 2019).

In this research, we cut the stock into a triangular shape. Cherri et al. (2016) explained that in the 3-Phase Matheuristic model, there were 3 phases including a constructive phase which is useful to get an initial solution, an improvement phase to improve the initial solution and a compaction phase to increase the initial solution to best solution. The 3-Phase Matheuristic model has 2 models namely the Dotted Board model that has been described by Gomes and Oliveira (2006) and the Mixed Integer Linear model that has been described by Toledo et al. (2013). The Dotted Board model is in the constructive and improvement phases. Whereas the Mixed Integer Linear model is in the compaction phase.

This study used data from Rodrigo et al. (2013) that cut raw materials into triangular items of various sizes but they used the Gilmore and Gomory model. Based on this background, this study used the Modified Branch and Bound Algorithm to find cutting patterns then modeled them to a 3-Phase Matheuristic model.

2. EXPERIMENTAL SECTION

2.1 Method

- Steps in this research are as follows:
 - 1. Describe the length and the width of the stock includes the side length of triangular items.
 - 2. Define the variables and parameters as follows:
 - *L* is the length of stock, L= 50 cm
 - W is the width of stock, W=15 cm

 l_i is the length of item *i*, where i=1,2,3,4 so l_1 =40,25,8,4 cm w_i is the width of item *i*, where i=1,2,3,4 so w_i =13,12,5,2 cm

*e*_i is the width of item *i*, where i=1,2,3,4 so e_i=30,24,2,2 cm δ_t^d =0 or 1 whereas 1 if the reference point of item *t* is positioned in *d* and 0 if otherwise

- *t* is the number of item
- *d* is the positioned of item
- 3. Find cutting patterns using the Modified Branch and Bound Algorithm
- 4. Formulate the 3-Phase Matheuristic Model by:
 - Define the objective function to find the minimum initial solution using the Dotted Board Model.
 - Improvise the initial solution using the Dotted Board Model.
 - Get the best solution using the Mixed Integer Linear Model.
- 5. Solve the 3-Phase Matheuristic Model.

3. RESULTS AND DISCUSSION

3.1 Modified Branch and Bound Algorithm

The data of item size and the number of demand for each item can be seen in Table 1.

Table 1.	Item	size	dan	number	of	demand

Type of Item	1	2	3	4
BC (cm)	40	25	8	4
AD (cm)	13	12	5	2
BD (cm)	30	24	2	2
Demand $((d_i)(pieces))$	6	30	125	500

These cuts can be categorized as non-oriented cuts, where cuts between the length and width can be reversed. All cutting patterns that were generated from the Modified Branch and Bound Algorithm can be seen in Table 2.

Based on Table 2, there are 28 cutting patterns in the form of triangular items. Next, the optimal pattern will be chosen by looking at a minimal trim loss. The 20th pattern only fulfills the 3rd item and 4th item. So to get the 1st item and 2nd item, the pattern which has a minimum trim loss is taken to produce the item. The optimal pattern can be seen in Table 3.

Based on Table 3. three optimal patterns have a minimal trim loss which can then be used on the model. Furthermore, the 14th cut is called the 1st pattern, the 17th cut is called the 2nd pattern

Table 2.	Cutting	Patterns
----------	---------	----------

i th Item	Cutting Pattern						
	1	2	3	4	5	6	7
1	1	1	1	1	1	1	1
2	1	0	0	0	1	0	1
3	4	8	4	7	3	3	3
4	27	27	63	32	32	71	34
Cut loss (cm ²)	152	168	158	222	152	146	144
<i>i</i> th Item	8	9	10	11	12	13	14
1	1	1	1	1	1	1	1
2	1	0	0	1	0	0	1
3	2	7	6	1	5	1	0
4	44	34	42	51	52	88	59
Cut loss (cm ²)	124	214	202	116	182	118	104
i th Item	15	16	17	18	19	20	21
1	1	0	0	0	0	0	0
2	0	3	3	1	1	0	0
3	0	4	0	19	15	33	27
4	95	25	48	14	39	8	35
Cut loss (cm ²)	110	120	108	164	144	58	70
i th Item	22	23	24	25	26	27	28
1	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0
3	21	15	10	6	3	1	0
4	63	91	112	125	152	154	172
Cut loss (cm ²)	78	86	102	98	82	82	91

and the 20th cut is called the 3rd pattern. After obtaining the optimal cutting pattern, then the pattern can be made according to the existing cutting pattern. Furthermore, to meet the demand for item 1, the 1st cutting pattern is used. Items 2 are fulfilled by using 6 times of the first pattern and 8 times of the second pattern. Items 3 are fulfilled by using 4 times of the third pattern. Items 4 are fulfilled by using 6 times of the first pattern, 8 times of the second pattern, and 4 times of the third pattern.

Figure 1. The First Pattern

Figure 1 shows there are 1 piece each of item 1 and item 2 and 59 pieces of item 4. Then, the second cutting pattern on the dotted board can be seen in Figure 2.

Figure 2 shows there are 3 pieces of item 2 and 48 pieces of item 4. The last, the third cutting pattern on the dotted board

ithItem	Opti	mal Pa	ttern	Demand	Surplus	
<i>i</i> item	14	17	20	Demand		
1	1	0	0	6	0	
2	1	3	0	30	0	
3	0	0	33	125	7	
4	59	48	8	500	270	
Cut loss (cm ²)	104	108	58	-	-	
Usage	6	8	4	-	-	

Table 3. Optimal Cutting Patterns

Figure 2. The Second Pattern

can be seen in Figure 3. Figure 3 shows there are 33 pieces of item 3 and 8 pieces of item 4.

Figure 3. The Third Pattern

3.2 3-phase Matheuristic Model

This formulation has 3 phases including the constructive phase, improvement phase, and compaction phase. This research assumes that item rotation is allowed but the values of l_i , w_i and e_i are assumed not to change even though the item has a rotation. The board used is rectangular with a length of L= 50 cm and a width of W=15 cm (50.15) where there are 4 types of items placed on the board.

3.2.1 3-Phase Matheuristic Model For The First Pattern

The constructive phase for the first pattern can be seen in Model (1).

Minimize

$$\begin{split} z &= 41. \ \delta_{4}^{656} + 39. \ \delta_{2}^{639} + 2. \ \delta_{4}^{45} + 8. \ \delta_{4}^{44} + 2. \ \delta_{4}^{40} + 8. \ \delta_{4}^{70} + 12. \ \delta_{9}^{96} + 18. \ \delta_{4}^{100} + 2. \ \delta_{4}^{36} + \\ & 4. \ \delta_{4}^{68} + 8. \ \delta_{4}^{128} + 8. \ \delta_{4}^{128} + 20. \ \delta_{4}^{163} + 12. \ \delta_{4}^{193} + 14. \ \delta_{4}^{227} + 16. \ \delta_{4}^{257} + 18. \ \delta_{4}^{291} + 20. \ \delta_{4}^{321} + \\ & 22. \ \delta_{4}^{365} + 24. \ \delta_{4}^{395} + 26. \ \delta_{4}^{429} + 28. \ \delta_{4}^{459} + 30. \ \delta_{4}^{493} + 32. \ \delta_{4}^{523} + 34. \ \delta_{4}^{557} + 36. \ \delta_{4}^{587} + \\ & 38. \ \delta_{4}^{611} + 40. \ \delta_{4}^{664} + 41. \ \delta_{4}^{666} + 41. \ \delta_{4}^{660} + 86. \ \delta_{4}^{702} + 86. \ \delta_{4}^{598} + 86. \ \delta_{4}^{578} + \\ & 43. \ \delta_{4}^{690} + 45. \ \delta_{4}^{736} + 90. \ \delta_{4}^{722} + 90. \ \delta_{4}^{724} + 94. \ \delta_{4}^{766} + 94. \ \delta_{4}^{762} + 94. \ \delta_{4}^{758} + \\ & 47. \ \delta_{4}^{754} + 98. \ \delta_{4}^{788} + 49. \ \delta_{7}^{792} \end{split}$$

Subject to	
$\delta_1^{656} = 1$	(1. <i>a</i>)
$\delta_2^{639} = 1$	(1. <i>b</i>)
$\delta_{4}^{45} + \delta_{4}^{74} + \delta_{4}^{40} + \delta_{4}^{70} + \delta_{4}^{96} + \delta_{4}^{100} + \delta_{4}^{36} + \delta_{4}^{68} + \delta_{4}^{132} + \delta_{4}^{128} + \delta_{4}^{163} + \delta_{4}^{193} +$	δ_{4}^{227} +
$\delta_{4}^{257} + \delta_{4}^{291} + \delta_{4}^{321} + \delta_{4}^{365} + \delta_{4}^{395} + \delta_{4}^{429} + \delta_{4}^{459} + \delta_{4}^{493} + \delta_{4}^{523} + \delta_{4}^{557} + \delta_{4}^{587} + $	$\delta_{4}^{611} +$
$\delta_{4}^{641} + \delta_{4}^{668} + \delta_{4}^{664} + \delta_{4}^{660} + \delta_{4}^{702} + \delta_{4}^{698} + \delta_{4}^{694} + \delta_{4}^{690} + \delta_{4}^{736} + \delta_{4}^{732} + \delta_{4}^{728} + $	$+ \delta_4^{724} +$
$\delta_4^{766} + \delta_4^{762} + \delta_4^{758} + \delta_4^{754} + \delta_4^{788} + \delta_4^{792} = 43$	(1. <i>c</i>)
$\left(1-\delta_1^{\delta 5 6}\right) \leq 1$	(1. <i>d</i>)
$(1 - \delta_2^{639}) \le 1$	(1. <i>e</i>)
$(1 - \delta_4^{45}) + (1 - \delta_4^{74}) + (1 - \delta_4^{40}) + (1 - \delta_4^{70}) + (1 - \delta_4^{96}) + (1 - \delta_4^{100}) + (1 - \delta_4^{100})$	³⁶) +
$(1 - \delta_4^{58}) + (1 - \delta_4^{132}) + (1 - \delta_4^{128}) + (1 - \delta_4^{163}) + (1 - \delta_4^{193}) + (1 - \delta_4^{227}) + (1 - \delta_4^{2$	²⁵⁷)+
$(1 - \delta_4^{291}) + (1 - \delta_4^{321}) + (1 - \delta_4^{365}) + (1 - \delta_4^{395}) + (1 - \delta_4^{429}) + (1 - \delta_4^{459}) + (1 - \delta_4^{$	$(5^{493}_{4}) +$
$(1 - \delta_4^{523}) + (1 - \delta_4^{557}) + (1 - \delta_4^{587}) + (1 - \delta_4^{611}) + (1 - \delta_4^{641}) + (1 - \delta_4^{668}) + (1 - \delta_4^{$	$\delta_{4}^{664}) +$
$(1 - \delta_4^{660}) + (1 - \delta_4^{702}) + (1 - \delta_4^{698}) + (1 - \delta_4^{694}) + (1 - \delta_4^{690}) + (1 - \delta_4^{736}) + (1 - \delta_4^{$	$1 - \delta_4^{732}) +$
$(1 - \delta_4^{728}) + (1 - \delta_4^{724}) + (1 - \delta_4^{766}) + (1 - \delta_4^{762}) + (1 - \delta_4^{758}) + (1 - \delta_4^{758}) + (1 - \delta_4^{754}) + (1 - \delta_4^{758}) + (1 - \delta_4^{$	δ_4^{788}) +
$(1 - \delta_4^{792}) \le 59$	(1. <i>f</i>)
$\delta_u^e + \delta_t^d \leq 1$	(1.g)
$\delta^d_t \in \{0,1\}$	(1. h)
$z \ge 0$	(1. <i>i</i>)

Constraint (1.a) and (1.b) in Model (1) indicate that there are 1 piece each of first item and second item which positioned in board. Constraint (1.c) indicate that there are 43 pieces of item 4. Constraints (1.d), (1.e) and (1.f) limit the displacement between variables along the width. Constraints (1.g) indicate that each item placed on the board does not overlap one another. Constraints (1.h) indicate that each item is positioned on the board.

The improvement phase for the first pattern can be seen in Model (2).

Minimize (1)	
Subject to	(2)
(1. a), (1. b), (1. c), (1. g), (1. h), (1. i)	
$\delta^d_{tr} = 0$	(2. <i>a</i>)
Constraint (2.a) in Model (2) indicate that each item is positioned in the board.	
The Compaction Phase for the first pattern can be seen in Model (3).	
Minimize (1)	
Subject to	(3)
(1.a), (1.b), (1.c), (1.d), (1.e), (1.f), (1.g), (1.h), (1.i)	
$\delta_1^{656} \ + \ \delta_2^{639} \ + \ \delta_4^{45} \ + \ \delta_4^{74} \ + \ \delta_4^{40} \ + \ \delta_4^{70} \ + \ \delta_4^{96} \ + \ \delta_4^{100} \ + \ \delta_4^{36} \ + \ \delta_4^{68} \ + \ \delta_4^{132} \ + \ \delta_4^{128} \ + \ \delta_4^{163} \ + \ \delta_4$	+
$\delta_{4}^{193} \ + \ \delta_{4}^{227} \ + \ \delta_{4}^{257} \ + \ \delta_{4}^{291} \ + \ \delta_{4}^{321} \ + \ \delta_{4}^{365} \ + \ \delta_{4}^{395} \ + \ \delta_{4}^{429} \ + \ \delta_{4}^{459} \ + \ \delta_{4}^{493} \ + \ \delta_{4}^{523} \ + \ \delta_{4}^{557}$	+
$\delta_{4}^{587} + \delta_{4}^{611} + \delta_{4}^{641} + \delta_{4}^{668} + \delta_{4}^{664} + \delta_{4}^{660} + \delta_{4}^{702} + \delta_{4}^{698} + \delta_{4}^{694} + \delta_{4}^{690} + \delta_{4}^{736} + \delta_{4}^{732} + \delta_{4}^{691} + $	+
$\delta_{4}^{728} + \delta_{4}^{724} + \delta_{4}^{766} + \delta_{4}^{762} + \delta_{4}^{758} + \delta_{4}^{754} + \delta_{4}^{788} + \delta_{4}^{792} \ge 1$	(3. <i>a</i>)
Constraints (3.a) indicate that each item placed on the board does not overlap one anoth	ner.

3.2.2 3-Phase Matheuristic Model For The Second Pattern The constructive phase for the second pattern can be seen in Model (4).

Minimize

Z	=	$25.\delta_2^{416}+26.\delta_2^{420}+50.\delta_2^{816}+4.\delta_4^{67}+6.\delta_4^{97}+8.\delta_4^{131}+10.\delta_4^{161}+12.\delta_4^{195}+14.\delta_4^{101}+12.\delta$	5 ²²⁵ 4
		$16.\delta_{4}^{259}+18.\delta_{4}^{289}+20.\delta_{4}^{333}+22.\delta_{4}^{353}+24.\delta_{4}^{387}+26.\delta_{4}^{417}+60.\delta_{4}^{483}+32.\delta_{4}^{517}+26.\delta_{4}^$	ŀ
		$32.\delta_{4}^{513} + \ 68.\delta_{4}^{547} + \ 72.\delta_{4}^{581} + \ 36.\delta_{4}^{577} + \ 76.\delta_{4}^{615} + \ 76.\delta_{4}^{611} + \ 40.\delta_{4}^{641} + \ 80.\delta_{4}^{645} + \ 80.$	ŀ
		$40.\delta_{4}^{649}+84.\delta_{4}^{675}+84.\delta_{4}^{679}+44.\delta_{4}^{705}+88\delta_{4}^{709}+88.\delta_{4}^{713}+92.\delta_{4}^{739}+92.\delta_{4}^{743}+92.\delta_{4}^{74}+92.\delta_{4}^{74}+92.\delta_{4}^{74}+92.\delta_{4}^{74$	+
		$92.\delta_4^{747}+96.\delta_4^{773}+96.\delta_4^{777}$	
e			0

Subject to	(4)
$\delta_2^{416} + \delta_2^{420} + \delta_2^{816} = 3$	(4. <i>a</i>)
$\delta_{4}^{67} + \delta_{4}^{97} + \delta_{4}^{131} + \delta_{4}^{161} + \delta_{4}^{195} + \delta_{4}^{225} + \delta_{4}^{259} + \delta_{4}^{289} + \delta_{4}^{333} + \delta_{4}^{353} + \delta_{4}^{387} + \delta_{4}^{417} +$	δ_{4}^{483} +
$\delta_{4}^{517} + \delta_{4}^{513} + \delta_{4}^{547} + \delta_{4}^{581} + \delta_{4}^{577} + \delta_{4}^{615} + \delta_{4}^{611} + \delta_{4}^{641} + \delta_{4}^{645} + \delta_{4}^{649} + \delta_{4}^{675} +$	δ_4^{679} +
$\delta_{4}^{705} + \delta_{4}^{709} + \delta_{4}^{713} + \delta_{4}^{739} + \delta_{4}^{743} + \delta_{4}^{747} + \delta_{4}^{773} + \delta_{4}^{777} = 33$	(4. <i>b</i>)
$(1 - \delta_2^{416}) + (1 - \delta_2^{420}) + (1 - \delta_2^{816}) \le 3$	(4. <i>c</i>)
$(1-\delta_4^{67}) + (1-\delta_4^{97}) + (1-\delta_4^{131}) + (1-\delta_4^{161}) + (1-\delta_4^{195}) + (1-\delta_4^{225}) + (1-\delta_4^{2}) + (1-\delta_4^{19}) + ($	⁵⁹)+
$(1-\delta_4^{289})+(1-\delta_4^{333})+\left(1-\delta_4^{353}\right)+(1-\delta_4^{387})+(1-\delta_4^{417})+(1-\delta_4^{483})+\left(1-\delta_4^{483}\right)+(1-\delta_4^{483})+(1-\delta_4^{48$	δ_4^{517}) +
$\left(1-\delta_{4}^{513}\right)+\left(1-\delta_{4}^{547}\right)+\left(1-\delta_{4}^{581}\right)+\left(1-\delta_{4}^{577}\right)+\left(1-\delta_{4}^{615}\right)+\left(1-\delta_{4}^{611}\right)+\left(1-\delta_{4}^{61}\right)+\left(1-\delta_{4}^{61}\right)+\left(1-\delta_{4}^{6$	$\delta_{4}^{641}) +$
$\left(1-\delta_{4}^{545}\right)+\left(1-\delta_{4}^{549}\right)+\left(1-\delta_{4}^{575}\right)+\left(1-\delta_{4}^{579}\right)+\left(1-\delta_{4}^{705}\right)+\left(1-\delta_{4}^{705}\right)+\left(1-\delta_{4}^{709}\right)+\left(1-\delta_{4}^{70}\right)+\left(1-\delta_{4}^{$	$\delta_4^{713}) +$
$(1 - \delta_4^{739}) + (1 - \delta_4^{743}) + (1 - \delta_4^{747}) + (1 - \delta_4^{773}) + (1 - \delta_4^{777}) \le 48$	(4. <i>d</i>)
$\delta^e_u + \delta^d_t \leq 1$	(4. <i>e</i>)
$\delta^d_t \in \{0,1\}$	(4. <i>f</i>)
$z \geq 0$	(4. <i>g</i>)

Constraint (4.a) in Model (4) indicate that there are 3 pieces of second item which positioned in board. Constraint (4.b) indicate that there are 33 pieces of item 4. Constraints (4.c) and (4.d) limit the displacement between variables along the width. Constraints (4.e) indicate that each item placed on the board does not overlap one another. Constraints (4.f) indicate that each item is positioned on the board.

The improvement phase for the second pattern can be seen in Model (5).

Minimize (4)

Subject to	(5)
(4.a), (4.b), (4.e), (4.f), (4.g)	
$\delta^d_{tr} = 0$	(5. <i>a</i>)
Constraint (5.a) in Model (5) indicate that each item is positioned in the board.	
The compaction phase for the second pattern can be seen in Model (6).	
Minimize (4)	
Subject to	(6)
(4. a), (4. b), (4. e), (4. f), (4. g)	
$\delta_2^{416} + \delta_2^{420} + \delta_2^{816} + \delta_4^{67} + \delta_4^{97} + \delta_4^{131} + \delta_4^{161} + \delta_4^{195} + \delta_4^{225} + \delta_4^{259} + \delta_4^{289} + \delta_4^{333} + \delta_4^{353} + \delta_4^{3$	δ_4^{387}
$+\delta_{4}^{417} + \ \delta_{4}^{483} + \delta_{4}^{517} + \delta_{4}^{513} + \delta_{4}^{547} + \delta_{4}^{581} + \delta_{4}^{577} + \delta_{4}^{615} + \delta_{4}^{611} + \delta_{4}^{641} + \delta_{4}^{645} + \delta_{4}^{649}$	+
$\delta_{4}^{675} + \delta_{4}^{679} + \delta_{4}^{705} + \delta_{4}^{709} + \delta_{4}^{713} + \delta_{4}^{739} + \delta_{4}^{743} + \delta_{4}^{747} + \delta_{4}^{777} + \delta_{4}^{777} \ge 1$	(6. <i>a</i>)
Constraints (6.a) indicate that each item placed on the board does not overlap one anoth	ner.

3.2.3 3-Phase Matheuristic Model For The Third Pattern The constructive phase for the third pattern can be seen in Model (7).

Minimize

Constraint (7.a) in Model (7) indicate that there are 22 pieces of third item which positioned in board. Constraint (7.b) indi-

$$\begin{split} z &= \left((8.1)+0\right). \, \delta_{3}^{2129} + \, \left((20.1)+0\right). \, \delta_{3}^{166} + \left((24.1)+0\right). \, \delta_{3}^{203} + \left((14.1)+0\right). \, \delta_{3}^{240} + \\ \left((16.1)+0\right). \, \delta_{3}^{257} + \left((36.1)+0\right). \, \delta_{3}^{294} + \left((40.1)+0\right). \, \delta_{3}^{311} + \left((22.1)+0\right). \, \delta_{3}^{366} + \left((24.1)+0\right). \, \delta_{3}^{365} + \\ \left((52.1)+0\right). \, \delta_{3}^{355} + \left((52.1)+0\right). \, \delta_{3}^{422} + \left((56.1)+0\right). \, \delta_{3}^{459} + \\ \left((38.1)+0\right). \, \delta_{3}^{550} + \left((21.1)+0\right). \, \delta_{3}^{567} + \\ \left((88.1)+0\right). \, \delta_{3}^{576} + \\ \left((88.1)+0\right). \, \delta_{3}^{576} + \\ \left((88.1)+0\right). \, \delta_{3}^{715} + \\ \left((46.1)+0\right). \, \delta_{3}^{752} + \\ \left((48.1)+0\right). \, \delta_{3}^{769} + \\ \left((100.1)+0\right). \, \delta_{3}^{806} + \\ \\ \left((2.1)+0). \, \delta_{4}^{38} + \\ \left((4.1)+0\right). \, \delta_{4}^{42} + \\ \left((4.1)+0\right). \, \delta_{4}^{46} + \\ \left((4.1)+0\right). \, \delta_{4}^{76} + \\ \left((8.1)+0\right). \, \delta_{4}^{80} \end{array}$$

•	
$\delta_3^{129} + \delta_3^{166} + \delta_3^{203} + \delta_3^{240} + \delta_3^{257} + \delta_3^{294} + \delta_3^{331} + \delta_3^{368} + \delta_3^{385} + \delta_3^{422} + \delta_3^{459} + \delta_3^{496} + \delta_3^{513}$	+
$\delta_3^{550} + \delta_3^{587} + \delta_3^{624} + \delta_3^{641} + \delta_3^{678} + \delta_3^{715} + \delta_3^{752} + \delta_3^{769} + \delta_3^{806} = 22$	(7. <i>a</i>)
$\delta_4^{38} + \delta_4^{42} + \delta_4^{46} + \delta_4^{76} + \delta_4^{80} = 5$	(7. <i>b</i>)
$(1 - \delta_3^{129}) + (1 - \delta_3^{166}) + (1 - \delta_3^{203}) + (1 - \delta_3^{240}) + (1 - \delta_3^{257}) + (1 - \delta_3^{294}) + (1 - \delta_3^{331}) + (1 - \delta_3^{$	÷
$(1 - \delta_3^{368}) + (1 - \delta_3^{385}) + (1 - \delta_3^{422}) + (1 - \delta_3^{459}) + (1 - \delta_3^{496}) + (1 - \delta_3^{513}) + (1 - \delta_3^{550}) + (1 - \delta_3^{$	+
$\left(1-\delta_{3}^{587}\right)+\left(1-\delta_{3}^{624}\right)+\left(1-\delta_{3}^{641}\right)+\left(1-\delta_{3}^{678}\right)+\left(1-\delta_{3}^{715}\right)+\left(1-\delta_{3}^{752}\right)+\left(1-\delta_{3}^{769}\right)$	+
$(1 - \delta_3^{806}) \le 33$	(7. <i>c</i>)
$(1 - \delta_4^{38}) + (1 - \delta_4^{42}) + (1 - \delta_4^{46}) + (1 - \delta_4^{76}) + (1 - \delta_4^{80}) \le 8$	(7. <i>d</i>)
$\delta^e_u + \delta^d_t \leq 1$	(7. <i>e</i>)
$\delta^d_t \in \{0,1\}$	(7. <i>f</i>)
$z \geq 0$	(7. <i>g</i>)

cate that there are 5 pieces of item 4. Constraints (7.c) and (7.d) limit the displacement between variables along the width. Constraints (7.e) indicate that each item placed on the board does not overlap one another. Constraints (7.f) indicate that each item is positioned on the board.

The improvement phase for the second pattern can be seen in Model (8).

Minimize (7)

Subject to	(8)
(7.a), (7.b), (7.e), (7.f), (7.g)	
$\delta^d_{tr} = 0$	(8.a)

Constraint (8.a) in Model (8) indicate that each item is positioned in the board. The compaction phase for the second pattern can be seen in Model (9).

Minimize (7)

Subject to	(9)
(7.a), (7.b), (7.c), (7.d), (7.e), (7.f), (7.g)	
$\delta_3^{129} + \delta_3^{166} + \delta_3^{203} + \delta_3^{240} + \delta_3^{257} + \delta_3^{294} + \delta_3^{331} + \delta_3^{368} + \delta_3^{385} + \delta_3^{422} + \delta_3^{459} + \delta_3^{496} + \delta_3^{513} + \delta_3^{421} + \delta_3^$	+
$\delta_3^{550} + \delta_3^{587} + \delta_3^{624} + \delta_3^{641} + \delta_3^{678} + \delta_3^{715} + \delta_3^{752} + \delta_3^{769} + \delta_3^{806} + \delta_4^{38} + \delta_4^{42} + \delta_4^{46} + \delta_4^{74} + \delta_4^{76} + $	^ه +
$\delta_4^{\otimes 0} \geq 1$	(9. a)

Constraints (9.a) indicate that each item placed on the board does not overlap one another. Based on the 3-Phase Matheuristic model, the minimum trim loss from the first pattern, second pattern and third pattern are $1,774 \text{ cm}^2$, 1749 cm^2 , and 980 cm^2 , respectively which used to minimize the use of stock length and width.

4. CONCLUSIONS

From the result and discussion, it can be concluded that 3 optimal cutting patterns were got from Modified Branch and Bound

Algorithm. All of the three patterns can be seen in Figure 1-3. The 3-Phase Matheuristic model is used to minimize the use of stock length and width. The minimum trim loss from the first pattern, second pattern and third pattern are $1,774 \text{ cm}^2$, 1749 cm^2 , and 980 cm^2 respectively.

5. ACKNOWLEDGEMENT

This research is supported by Universitas Sriwijaya through Sains, Teknologi dan Seni (SATEKS) Research Grant Scheme, 2019.

REFERENCES

- Bangun, P. B., S. Octarina, and A. P. Pertama (2019). Implementation of branch and cut method on n-sheet model in solving two dimensional cutting stock problem. In *Journal of Physics: Conference Series*, volume 1282. IOP Publishing, page 012012
- Cherri, L. H., M. A. Carravilla, and F. M. B. Toledo (2016). A model-based heuristic for the irregular strip packing problem. *Pesquisa Operacional*, **36**(3); 447–468
- Gomes, A. M. and J. F. Oliveira (2006). Solving irregular strip packing problems by hybridising simulated annealing and linear programming. *European Journal of Operational Research*, **171**(3); 811–829
- Octarina, S., V. Ananda, and E. Yuliza (2019). Gilmore and gomory model on two dimensional multiple stock size cutting stock problem. In *Journal of Physics: Conference Series*, volume 1282. IOP Publishing, page 012015

- Octarina, S., P. B. Bangun, and S. Hutapea (2017). The Application to Find Cutting Patterns in Two Dimensional Cutting Stock Problem. *Journal of Informatics and Mathematical Sciences*, **9**(4)
- Octarina, S., M. Radiana, and P. B. Bangun (2018). Implementation of pattern generation algorithm in forming Gilmore and Gomory model for two dimensional cutting stock problem. In *IOP Conference Series: Materials Science and Engineering*, volume 300. IOP Publishing, page 012021
- Rodrigo, N. and S. Shashikala (2017). One-Dimensional Cutting Stock Problem with Cartesian Coordinate Points. *International Journal of Systems Science and Applied Mathematics*, **2**(5); 99
- Rodrigo, W., W. Daundasekera, and A. Perera (2012). Pattern generation for two-dimensional cutting stock problem with location. *Indian Journal of Computer Science and Engineering* (*IJCSE*), **3**(2); 354–368
- Rodrigo, W., W. Daundasekera, and A. Perera (2013). A Method for Two-Dimensional Cutting Stock Problem with Triangular Shape Items. *Journal of Advances in Mathematics and Computer Science*; 750–771
- Toledo, F. M., M. A. Carravilla, C. Ribeiro, J. F. Oliveira, and A. M. Gomes (2013). The dotted-board model: a new MIP model for nesting irregular shapes. *International Journal of Production Economics*, **145**(2); 478–487