

PROCEEDING #3rd

Yogyakarta - Indonesia 10 December 2020

ARTIFICIAL INTELLIGENCE for SOCIAL INTERACTIONS

isriti.akakom.ac.id

2020 3rd International Seminar on Research of Information Technology and Intelligent Systems (ISRITI) took place 10 December 2020 in Yogyakarta, Indonesia

IEEE catalog number:	CFP20AAH-PRT
ISBN:	978-1-7281-8404-3

Copyright and Reprint Permission: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Operations Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved. Copyright © 2020 by IEEE.

International Seminar on Research of Information Technology and Intelligent Systems

The 3rd ISRITI 2020

10 December 2020

STMIK AKAKOM YOGYAKARTA

Jalan Raya Janti no 143, Karang Jambe, Banguntapan, Bantul Yogyakarta, Indonesia 55198 Phone: +<u>62 858-4813-5411</u> (whatsapp only) | Email: <u>isriti@akakom.ac.id</u> www.isriti.akakom.ac.id

WELCOME SPEECH FROM THE CHAIRMAN OF STMIK AKAKOM YOGYAKARTA

The honourable

Keynote Speakers (Dr. Zoohan Gani from Victoria University and Assc. Prof. Ahmad Hoirul Basory from King Abdul Azis University) Chairman of Widya Bakti Foundation and his staffs, Representatives from IEEE Indonesia Chapter and Central IEEE, Team of Indonesia Researcher and Scientist Institute, Researchers and conference attendees, Ladies and Gentlemen,

Assalamu'alaikum Wr. Wb. May peace and health be upon us all.

First of all, let us express our utmost gratitude to God Almighty (SWT) for His blessings and grace so that even though in this coronavirus pandemic atmosphere, we can all still participate in the third iSriti international conference. On this occasion, let me express my sincere appreciation to the Keynote Speakers: Dr. Zoohan Gani from Victoria University, Sydney Australia, and Assoc. Prof. Dr. Ahmad Hoirul Basory from King Abdul Azis University, Rabig, Makkah, Saudi Arabia for their willingness to share their brilliant ideas and insights to be presented at this conference.

Dear ladies and gentlemen

On this occasion, as the head of STMIK AKAKOM Yogyakarta, I am saddened to state that the third iSriti conference had to be held online, considering that the coronavirus pandemic has not ended. Even though a pandemic currently hits us, the researchers' enthusiasm is apparent in the number of research articles submitted. We received up to 262 articles from 17 countries. Around 135 articles were accepted to be readily presented online in a conference forum with the theme: Artificial Intelligence for Social Interactions.

As the organizers of iSriti, we are very proud and grateful for the researchers' participation who have been willing to submit their research results to be published in this conference forum. We would also like to thank IEEE and IRSI, who have trusted and supported this conference from the very beginning. We still hope to build networks and information exchange between academics, practitioners, researchers, and the government to identify and explore issues, opportunities, and solutions to face challenges in the current era of technological disruption.

Finally, on this occasion, I would like to express my utmost gratitude to:

- 1) The distinguished keynote speakers who have been willing to share their valuable knowledge in this conference;
- 2) The third iSriti researchers who have presented and will present their research results;
- 3) Reviewers who have carefully reviewed the articles of the researchers;
- 4) Moderators who are more than willing to lead the plenary session;
- 5) IEEE for trusting us to hold this international conference;
- 6) IRSI, which has supported the third iSriti activities until now;

7) The committee that has been working hard to prepare this international conference according to plan; Last but not least, as the organizer, I would like to sincerely apologize for any shortcomings or inconveniences during this event.

Thank you very much for your kind attention, and *Wassalamu'alaium Wr. Wb.* Yogyakarta, 10 December 2020

The Chairman of STMIK AKAKOM Yogyakarta

WELCOME SPEECH FROM THE GENERAL CHAIR OF THE 3rd ISRITI 2020

Dear colleagues and friends.

On behalf of the organizing committee, I am delighted to welcome all participants to the 3rd International Seminar on Research of Information Technology and Intelligent Systems (ISRITI 2020). This conference is the third international conference held by STMIK Akakom Yogyakarta, Indonesia and the first to be held by STMIK Akakom in virtual form on December 10th, 2020.

In this conference, the committee decided to choose the following theme: "Artificial Intelligence for Social Interactions". This highlight was chosen because various advances in the field of AI have recently raised concerns that AI will replace various things that are the human domain. For us, AI can be used to better understand social interactions and to build machines that work more collaboratively and effectively with humans. Therefore, by highlighting that theme in ISRITI 2020, we hope we can raise awareness towards AI for social interactions.

The aim of the conference is to provide an interactive international forum for sharing and exchanging information on the latest research in the area of information technology, computer sciences, informatics, and related fields. Nearly 135 academicians, researchers, practitioners, and presenters from 17 countries (Indonesia, Malaysia, India, USA, Brazil, Australia, South Korea, Hungary, Morocco, Vietnam, Iraq, China, Thailand, Turkey, Ireland, Romania, Russia, and Saudi Arabia) gathered in this event. In total, there are 262 active papers submitted to this conference. Each paper has been reviewed with tight criteria from our invited reviewers. Based on the review result, 135 papers have been accepted, which lead to an acceptance rate of 51.5%. This conference will not be successful without extensive effort from many parties. First, I would like to thank all keynote speakers for allocating their valuable time to share their knowledge with us. I would also like to express my sincere gratitude to all participants who participate in this conference. Special acknowledgement should go to the Technical Program Committee Chairs, Members, and Reviewers for their thorough and timely reviewing of the papers. We would also like to thank our sponsors: IEEE Indonesia Section and Research and Society Service Institution at STMIK Akakom. Last but not least, recognition should also go to the Local Organizing Committee members who have put enormous effort and support for this conference. At last, we hope that you have an enjoyable and inspiring moment during our conference. Thank you for your participation in ISRITI 2020.

Yogyakarta, 10 December 2020 General Chair of the 3rd ISRITI 2020

Dr. Bambang Purnomosidi D. P.

PREFACE

A language and reasoning can be said as some of the characteristics of human abilities. On the other hand, the ability of human thinking can be modeled as computation. The development of cognitive science that combines scientific development with technology began to appear in the 1960s. In those years, human behavior did not adequately explain cognitive processes. Although, there has been much debate by behaviorist experts regarding the cognitive science approach. However, with a variety of approaches, there is something quite encouraging that computer models of cognition can be used as an alternative approach to these various models. Furthermore, computers can be used to test hypotheses where computation itself is the subject of the mind. So that there are various kinds of models developed in the field of cognitive science with different fields of science, including anthropology, artificial intelligence (AI), philosophy, linguistics, neuroscience, and psychology. Even though there are different scientific fields, it turns out that they can work together in explaining various kinds of cognitive science models. AI is a part of the field of computer science that can describe intelligent computer systems. This system can show characteristics related to intelligence in human behavior, such as reasoning, understanding language, learning, solving problems, and so on. This intelligent system has a long-term goal of equaling or surpassing human intelligence. The approach used in simulating this system uses mathematical approaches, discursive reasoning, language, and so on. New developments related to the paradigm in this field emerged in the mid-80s, bringing together developments in the fields of philosophy, AI, and cognitive science.

Human intelligence is illustrated as a result of a program running on the human brain. In connectionist's view, information processing on computer devices is a fundamental difference from the brain. In the contextsensitive cognition model, human intelligence depends on the physical properties of the neurons. So that artificial intelligence requires brain-like computer skills, better known as neurocomputers. The purpose of this terminology is to design hardware compatible with neuro-computing. In this case, the model that is later known massively is an artificial neural network in which this model is trained, not programmed. Much information is extracted deeper than a representation that is presented in various forms that can be understood by humans. In the past, artificial emotions were somewhat neglected in AI and cognitive science. However, currently, emotional intelligence is one of the things that is raised with relevant information indicators in solving a case or problem. Emotion has an important domain in motivating and directing behavior. So that discussions in cognitive science and AI become one of the raw materials in representing information, then use it in social interactions. This representation is a language capable of thinking about problem-solving and social processes. This explains the systematics or methods used are very important in understanding cognition and communication in the context of social interaction. This pattern has appeared in the childhood phase in the learning process until later understanding their identity and interacting with others in the form of communication. The basis for this transformation is then essential in solving many cases in the world of science and technology.

Editor of 2020 3rd ISRITI

Ferry Wahyu Wibowo ORCID ID: 0000-0003-1913-436X

THE COMMITTEE

STEERING COMMITTEE

Chuan-Ming Liu Totok Suprawoto Widyastuti Andriyani (National Taipei University of Technology, Taiwan) (STMIK AKAKOM Yogyakarta, Indonesia) (STMIK AKAKOM Yogyakarta, Indonesia)

ORGANIZING COMMITTEE

General Chair

General Chair	
Bambang Purnomosidi Dwi Putranto	(STMIK AKAKOM Yogyakarta, Indonesia)
Deputi of General Chair	
Maria Mediatrix	(STMIK AKAKOM Yogyakarta, Indonesia)
Secretary	
Edy Prayitno	(STMIK AKAKOM Yogyakarta, Indonesia)
Treasury	
Sumiyatun Sumiyatun	(STMIK AKAKOM Yogyakarta, Indonesia)
Publication Chair	
Setyawan Widyarto	(Universiti Selangor, Malaysia)
Chair of TPC	
Domy Kristomo	(STMIK AKAKOM Yogyakarta, Indonesia)

TECHNICAL COMMITTEE

Muhammad Agung Nugroho Luthfan Hadi Pramono Siska Lidya Revianti Ariesta Damayanti Robby Cokro Buwono Agung Budi Prasetyo Muhammad Guntara (STMIK AKAKOM Yogyakarta, Indonesia) (STMIK AKAKOM Yogyakarta, Indonesia)

TECHNICAL PROGRAM COMMITTEE

Prof. Biao Jiang

Prof. Dimitrios Kallergis

Prof. Domenico Ciuonzo Prof. Iickho Song Prof. Julian Webber Prof. Muhammed Bashir Mu'azu Prof. Mu-Song Chen Prof. Philip Moore Prof. Sanggyu Shin Prof. Sayantam Sarkar Prof. Srinivasulu Tadisetty Prof. Thaweesak Yingthawornsuk Prof. Yi-Jen Su Dr. Abdul Samad Shibghatullah Dr. Adi Wibowo Dr. Aditi Sharma Dr. Ahmad Ashari Dr. Ahmad Fajar Dr. Ahmed Mobashsher Dr. Ali Rafiei Dr. Amit Singh Dr. Amrit Mukherjee Dr. Anand Prasad Dr. Anas AlSobeh Dr. Andreas Dewald Dr. Armin Lawi Dr. Arti Arya Dr. Aslina Baharum Dr. Baba Alhaji Dr. Bambang Purnomosidi Dwi Putranto Dr. Chau Yuen Dr. Danial Hooshvar Dr. Dario Vieira Dr. Dedi Rohendi Dr. Dedy Wijaya Dr. Dhananjay Singh Dr. Dhomas Hatta Fudholi Dr. Didi Rosiyadi Dr. Enny Sela Dr. Esa Prakasa Dr. Hasan Ali Khattak Dr. Hiroshi Kamabe Dr. I Wavan Mustika Dr. Ilker Ali Ozkan Dr. Intan Ermahani A. Jalil Dr. Iwan Setyawan Dr. Javier Gozalvez Dr. Kiran Sree Pokkuluri Dr. Kok-Why Ng Dr. Leonardo Tomassetti Ferreira Neto Dr. Maria Chiara Caschera Dr. Michele Albano Dr. Mithileysh Sathiyanarayanan Dr. Mohd Hanafi Ahmad Hijazi Dr. Muhammad Herman Jamaluddin Dr. Muhammad Yusuf Dr. N. Prabaharan

The City University of New York - United State of America University of West Attica - Great Britain University of Naples Federico II - Italia Korea Advanced Institute of Science and Technology - Korea Osaka University - Japan Ahmadu Bello University, Zaria - Nigeria Electrical Engineering, Da-Yeh University - Taiwan Lanzhou University - China Tokai University - Japan Vijaya Vittala Institute of Technology - India Kakativa University College of Engineering and Technology -India King Mongkut's University of Technology Thonburi - Thailand Shu-Te University - Taiwan UCSI University - Malaysia Diponegoro University - Indonesia Quantum University, Roorkee, Uttarakhand - India Gadjah Mada University - Indonesia Bina Nusantara University - Indonesia The University of Queensland - Australia University of Technology Sydney - Australia Guru Gobind Singh Indraprastha University - India Jiangsu University - China NEC Corporation - Japan Yarmouk University - Jordan ERNW Research GmbH - Germany Hasanuddin University - Indonesia PESIT-Bangalore South Campus - India Universiti Malaysia Sabah - Malaysia Nigerian Defence Academy - Nigeria STMIK Akakom - Indonesia Singapore University of Technology and Design - Singapore Korea University - Korea EFREI - France Universitas Pendidikan Indonesia - Indonesia Telkom University - Indonesia Hankuk University of Foreign Studies - Korea Universitas Islam Indonesia - Indonesia Indonesian Institute of Sciences - Indonesia Universitas Teknologi Yogyakarta - Indonesia Indonesian Institute of Sciences - Indonesia COMSATS University, Islamabad - Pakistan Gifu University - Japan Universitas Gadjah Mada - Indonesia Selcuk University - Turkey Universiti Teknikal Malaysia Melaka - Malaysia Satva Wacana Christian University - Indonesia Universidad Miguel Hernandez de Elche - Spain Shri Vishnu Engineering College for Women - India Multimedia University - Malaysia University of Sao Paulo - Brazil CNR - Italia Aalborg University - Denmark MIT Square - Great Britain Universiti Malaysia Sabah - Malaysia Universiti Teknikal Malaysia Melaka - Malaysia University of Trunojoyo, Madura - Indonesia SASTRA Deemed University - India

Dr. Nico Surantha Dr. Nitish Ojha Dr. Noriko Etani Dr. Othman Mohd Dr. Oyas Wahyunggoro Dr. Pavel Loskot Dr. Prapto Nugroho Dr. Praveen Khethavath Dr. Rakan Antar Dr. Ruzelita Ngadiran Dr. Sa'adah Hassan Dr. Seyed Ebrahim Esmaeili Dr. Shajith Ali Dr. Sri Zuliana Dr. Sritrusta Sukaridhoto Dr. Sudi Mungkasi Dr. Suhail Shahab Dr. Sukrisno Mardiyanto Dr. Suryadiputra Liawatimena Dr. Tai-Chen Chen Dr. Tapodhir Acharjee Dr. Tri Priyambodo Dr. Vassilis Kodogiannis Dr. Weiwen Zhang Dr. Wichian Chutimaskul Dr. Yuansong Oiao Dr. Zoohan Gani Mr. Alireza Ghasempour Mr. Andi Wahju Rahardjo Emanuel Mr. Arihant Jain Mr. Azizi Abdullah Mr. Byeong-jun Han Mr. De Rosal Ignatius Moses Setiadi Mr. Domy Kristomo Mr. Edhy Sutanta Mr. Edi Faizal Mr. Eko Aribowo Mr. Gunawan Gunawan Mr. Ibrahim Ahmad Mr. Leonel Hernandez Mr. Mahdin Mahboob Mr. Mohd Khairul Ikhwan Ahmad Mr. Ramkumar Jaganathan Mr. Ridi Ferdiana Mr. Rifqy Hakimi Mr. Rikie Kartadie Mr. Roberto Carlos Herrera Lara Mr. Seng Hansun Mr. Shah Nazir Mr. Syed Ahmed Mr. Vaibhav Saundarmal Mr. Vladislav Skorpil Mr. Wijang Widhiarso Mr. Win Maung Mrs. Amel Serrat Mrs. Anindita Septiarini Mrs. Ariesta Damayanti Mrs. Haslizatul Mohamed Hanum Mrs. Kartika Kirana Mrs. Lucia Nugraheni Harnaningrum Bina Nusantara University - Indonesia Sharda University, Greater Noida, UP - India All Nippon Airways Co., Ltd. - Japan Universiti Teknikal Malaysia Melaka - Malaysia UGM - Indonesia Swansea University - Great Britain Universitas Gadjah Mada - Indonesia LaGuardia Community College - United State of America Northern Technical University - Iraq Universiti Malaysia Perlis - Malaysia Universiti Putra Malaysia - Malaysia American University of Kuwait - Kuwait SSN College of Engineering, Chennai - India UIN Sunan Kalijaga - Indonesia Politeknik Elektronika Negeri Surabaya - Indonesia Sanata Dharma University - Indonesia Northern Technical University - Iraq Institut Teknologi Bandung - Indonesia Bina Nusantara University - Indonesia MAXEDA Technology - Taiwan Assam University, Silchar - India Universitas Gadjah Mada - Indonesia University of Westminster - Great Britain Guangdong University of Technology - China King Mongkut's University of Technology Thonburi - Thailand Athlone Institute of Technology - Ireland Victoria University - Australia ICT Faculty - United State of America Universitas Atma Jaya Yogyakarta - Indonesia Jaipur Engineering College & Research Centre - India Universiti Kebangsaan Malaysia - Malaysia Soongsil University - Korea Dian Nuswantoro University - Indonesia STMIK AKAKOM Yogyakarta - Indonesia Institut Sains & Teknologi AKPRIND Yogyakarta - Indonesia STMIK AKAKOM Yogyakarta - Indonesia Ahmad Dahlan University - Indonesia Politeknik Negeri Medan - Indonesia Universiti Teknikal Malaysia Melaka - Malaysia ITSA University - Colombia Stony Brook University - United State of America Universiti Tun Hussein Onn Malaysia - Malaysia VLB Janakiammal College of Arts and Science - India Universitas Gadjah Mada - Indonesia ITB - Indonesia STMIK Akakom Jogjakarta - Indonesia National Polytechnic School - Ecuador Universitas Multimedia Nusantara - Indonesia University of Peshawar - Pakistan NED University of Engineering and Technology - Pakistan Marathwada Institute of Technology, Aurangabad - India Brno University of Technology - Czech Republic STMIK Global Informatika MDP Palembang - Indonesia Victorian Institute of Technology - Australia USTO MB - Algeria Univeristas Mulawarman - Indonesia STMIK Akakom Yogyakarta - Indonesia Universiti Teknologi MARA - Malaysia Universitas Negeri Malang - Indonesia STMIK AKAKOM Yogyakarta - Indonesia

Mrs. Prita Dewi Mariyam Mrs. Sri Redjeki Ms. Ivanna Timotius Ms. Maria Mediatrix Universitas Indonesia - Indonesia STMIK AKAKOM Yogyakarta - Indonesia Satya Wacana Christian University - Indonesia STMIK AKAKOM - Indonesia

REVIEWERS

Dr. Intan Ermahani A. Jalil Mr. Azizi Abdullah Dr. Tapodhir Acharjee Mr. Ibrahim Ahmad Mr. Mohd Khairul Ikhwan Bin Ahmad Mr. Syed Umaid Ahmed NED Dr. Michele Albano Dr. Baba Alhaji Dr. Shajith Ali Dr. Anas Mohammad Ramadan AlSobeh Dr. Rakan Khalil Antar Mr. Eko Aribowo Dr. Arti Arya Dr. Ahmad Ashari Dr. Aslina Baharum Dr. Maria Chiara Caschera Prof. Mu-Song Chen Dr. Tai-Chen Chen Dr. Wichian Chutimaskul Prof. Domenico Ciuonzo Mr. Akhmad Dahlan Mrs. Ariesta Damayanti Dr. Andreas Dewald Mr. Andi Wahju Rahardjo Emanuel Dr. Seyed Ebrahim Esmaeili Dr. Noriko Etani Mr. Edi Faizal Dr. Ahmad Nurul Fajar Mr. Ridi Ferdiana Dr. Dhomas Hatta Fudholi Mrs. Zoohan Gani Mr. Alireza Ghasempour Dr. Javier Gozalvez Mr. Gunawan Gunawan Mr. Ibnu Hadi Purwanto Mr. Rifqy Hakimi Mr. Byeong-jun Han Mr. Seng Hansun Dr. Sa'adah Hassan Mr. Leonel Hernandez Mr. Roberto Carlos Herrera Lara Dr. Mohd Hanafi Ahmad Hijazi Dr. Danial Hooshyar Mr. Ramkumar Jaganathan Mr. Arihant Kumar Jain Dr. Muhammad Herman Jamaluddin Prof. Biao Jiang Prof. Dimitrios Kallergis Dr. Hiroshi Kamabe Dr. Hasan Ali Khattak Dr. Praveen Khethavath Mrs. Kartika Candra Kirana Dr. Vassilis Kodogiannis Mr. Domy Kristomo Dr. Armin Lawi Dr. Suryadiputra Liawatimena Dr. Pavel Loskot Mr. Mahdin Mahboob

Universiti Teknikal Malaysia Melaka, Malaysia Universiti Kebangsaan Malaysia, Malaysia Assam University, Silchar, India Universiti Teknikal Malaysia Melaka, Malaysia Universiti Tun Hussein Onn Malaysia, Malaysia University of Engineering and Technology, Pakistan Aalborg University, Denmark Nigerian Defence Academy, Niger SSN College of Engineering, Chennai, India Yarmouk University, Jordan Northern Technical University, Iraq Ahmad Dahlan University. Indonesia PESIT-Bangalore South Campus, India Gadiah Mada University. Indonesia Universiti Malaysia Sabah, Malaysia CNR, Italy Electrical Engineering, Da-Yeh University, Taiwan MAXEDA Technology, Taiwan King Mongkut's University of Technology Thonburi, Thailand University of Naples Federico II, IT, Italy Universitas Amikom Yogyakarta, Indonesia STMIK Akakom Yogyakarta, Indonesia ERNW Research GmbH, Germany Universitas Atma Jaya Yogyakarta, Indonesia American University of Kuwait, Kuwait All Nippon Airways Co., Ltd., Japan STMIK AKAKOM Yogyakarta, Indonesia Bina Nusantara University, Indonesia Universitas Gadjah Mada, Indonesia Universitas Islam Indonesia, Indonesia Victoria University, Australia ICT Faculty, USA Universidad Miguel Hernandez de Elche, Spain Politeknik Negeri Medan, Indonesia Universitas AMIKOM Yogyakarta, Indonesia ITB, Indonesia Soongsil University, Korea (South) Universitas Multimedia Nusantara, Indonesia Universiti Putra Malaysia, Malaysia ITSA University, Colombia National Polytechnic School, Ecuador Universiti Malavsia Sabah. Malavsia Korea University, Korea (South) VLB Janakiammal College of Arts and Science, India Jaipur Engineering College & Research Centre, India Universiti Teknikal Malaysia Melaka, Malaysia The City University of New York, USA University of West Attica, Greece Gifu University, Japan COMSATS University, Islamabad, Pakistan LaGuardia Community College, USA Universitas Negeri Malang, Indonesia University of Westminster, United Kingdom (Great Britain) STMIK AKAKOM Yogyakarta, Indonesia Hasanuddin University, Indonesia Bina Nusantara University, Indonesia Swansea University, United Kingdom (Great Britain) Stony Brook University, USA

Dr. Sukrisno Mardivanto Mrs. Prita Dewi Mariyam Mr. Win Maung Ms. Maria Mediatrix Dr. Ahmed Toaha Mobashsher Mrs. Haslizatul Mohamed Hanum Dr. Othman Mohd Prof. Philip T Moore Prof. Muhammed Bashir Mu'azu Dr. Amrit Mukherjee Dr. Sudi Mungkasi Dr. I Wayan Mustika Mr. Shah Nazir Dr. Kok-Why Ng Dr. Ruzelita Ngadiran Mr. Muhammad Agung Nugroho Dr. Prapto Nugroho Dr. Nitish Ojha Dr. Ilker Ali Ozkan Dr. Kiran Sree Pokkuluri Dr. N. Prabaharan Dr. Esa Prakasa Dr. Anand R. Prasad Mr. Edy Pravitno Dr. Tri K Priyambodo Dr. Bambang Purnomosidi Dwi Putranto Dr. Yuansong Qiao Dr. Ali Rafiei Mrs. Sri Redjeki Dr. Dedi Rohendi Dr. Didi Rosivadi Dr. Rosaria Rucco Prof. Savantam Sarkar Dr. Mithileysh Sathiyanarayanan Mr. Vaibhav Dudhaji Saundarmal Dr. Enny Sela Mrs. Anindita Septiarini Mrs. Amel Serrat Mr. De Rosal Ignatius Moses Setiadi Dr. Iwan Setyawan Dr. Suhail Najm Shahab Dr. Aditi Sharma Dr. Abdul Samad Shibghatullah Prof. Sanggyu Shin Dr. Amit Prakash Singh Dr. Dhananjay Singh Mr. Wangjam Niranjan Singh Mr. Vladislav Skorpil Prof. Iickho Song Prof. Yi-Jen Su Dr. Sritrusta Sukaridhoto Mr. Totok Suprawoto Dr. Nico Surantha Mr. Edhv Sutanta Prof. Srinivasulu Tadisetty Ms. Ivanna Timotius Dr. Leonardo Henrique Tomassetti Ferreira Neto Dr. Oyas Wahyunggoro Prof. Julian L Webber Dr. Adi Wibowo

Institut Teknologi Bandung, Indonesia Universitas Indonesia, Indonesia Victorian Institute of Technology, Australia STMIK AKAKOM, Indonesia The University of Queensland, Australia Universiti Teknologi MARA, Malaysia Universiti Teknikal Malaysia Melaka, Malaysia Lanzhou University, China Ahmadu Bello University, Zaria, Nigeria Jiangsu University, China Sanata Dharma University, Indonesia Universitas Gadjah Mada, Indonesia University of Peshawar, Pakistan Multimedia University, Malaysia Universiti Malaysia Perlis, Malaysia STMIK AKAKOM Yogyakarta, Indonesia Universitas Gadjah Mada, Indonesia Sharda University, Greater Noida, UP, India Selcuk University, Turkey Shri Vishnu Engineering College for Women, India SASTRA Deemed University, India Indonesian Institute of Sciences, Indonesia NEC Corporation, Japan STMIK AKAKOM Yogyakarta, Indonesia Universitas Gadjah Mada, Indonesia STMIK Akakom, Indonesia Athlone Institute of Technology, Ireland University of Technology Sydney, Australia STMIK AKAKOM Yogyakarta, Indonesia Universitas Pendidikan Indonesia, Indonesia Indonesian Institute of Sciences, Indonesia University of Naples Parthenope, Italy Vijava Vittala Institute of Technology, India MIT Square, United Kingdom (Great Britain) Marathwada Institute of Technology, Aurangabad, India Universitas Teknologi Yogyakarta, Indonesia Univeristas Mulawarman, Indonesia USTO MB, Algeria Dian Nuswantoro University, Indonesia Satya Wacana Christian University, Indonesia Northern Technical University, Iraq Quantum University, Roorkee, Uttarakhand, India UCSI University, Malaysia Tokai University, Japan Guru Gobind Singh Indraprastha University, India Hankuk University of Foreign Studies, Korea (South) Assam University, India Brno University of Technology, Czech Republic Korea Advanced Institute of Science and Technology, Korea (South) Shu-Te University, Taiwan Politeknik Elektronika Negeri Surabaya, Indonesia STMIK AKAKOM Yogyakarta, Indonesia Bina Nusantara University, Indonesia Institut Sains & Teknologi AKPRIND Yogyakarta, Indonesia Kakatiya University College of Engineering and Technology, India Satya Wacana Christian University, Indonesia University of Sao Paulo, Brazil UGM, Indonesia Osaka University, Japan Diponegoro University, Indonesia

Prof. Thaweesak Yingthawornsuk Dr. Chau Yuen Dr. Muhammad Yusuf Dr. Weiwen Zhang Dr. Sri Utami Zuliana Mr. Ferry Wahyu Wibowo Mr. Wijang Widhiarso Dr. Dedy Rahman Wijaya King Mongkut's University of Technology Thonburi, Thailand Singapore University of Technology and Design, Singapore University of Trunojoyo, Madura, Indonesia Guangdong University of Technology, China UIN Sunan Kalijaga, Indonesia Universitas Amikom Yogyakarta, Indonesia STMIK Global Informatika MDP Palembang, Indonesia Telkom University, Indonesia

AUTHOR INDEX

Author	Session	Start page	Title
A A B C D E F G H I J K	L M N O P (QRSTUW	X Y Z
Abadi, Imam	3E.3	716	Energy Management Efficiency and Stability Using Passive Filter in Standalone Photovoltaic Sudden Cloud Condition
Abdillah, Rahmad	3A.1	621	Facial Expression Recognition and Face Recognition Using a Convolutional Neural Network
Abdul-Jabbar, Jassim	3B.4	655	A Robust Iris Segmentation Algorithm Based on Pupil Region for Visible Wavelength Environments
Adi, Sumarni	1C.2	94	The Best Parameter Tuning on RNN Layers for Indonesian Text Classification
Aditya, Christian Sri Kusuma	1D.5	152	Comparative Analysis of DDoS Detection Techniques Based on Machine Learning in OpenFlow Network
Aditya, Trias	2G.5	604	<i>Comparison of the Latest DTM with DEM Pleiades</i> <i>in Monitoring the Dynamic Peatland</i>
Adrian, Ronald	1E.5	198	Roadside Unit Power Saving using Vehicle Detection System in Vehicular Ad-hoc Network
Afdhal, Afdhal	2E.3	509	Convolutional Network and Moving Object Analysis for Vehicle Detection in Highway Surveillance Videos
Affandi, Achmad	1G.1	267	A Combination of Defected Ground Structure and Line Resonator for Mutual Coupling Reduction
Agustina, Dina	1B.2	48	Prediction of forest fire occurrence in peatlands using machine learning approaches
Akbar, Renal	1D.6	158	Performance Analysis FSR and DSR Routing Protocol in VANET with V2V and V2I Models
Akhsanta, Muhammad	2E.6	525	Text-Independent Speaker Identification Using PCA-SVM Model
Al Aufa, Badra	2F.6	562	Measuring Instagram Activity and Engagement Rate of Hospital: A Comparison Before and During COVID-19 Pandemic
Al Maki, Wikky	1B.8	73	Hybrid Method for Flower Classification in High Intra-class Variation
Alam, Sahirul	1E.5	198	Roadside Unit Power Saving using Vehicle Detection System in Vehicular Ad-hoc Network

Alamsyah, Rangga	3B.2	646	Speech Gender Classification Using Bidirectional Long Short Term Memory
Alfi, Farah	1F.2	227	Quality Assessment of Digital Terrestrial Television Broadcast in Surabaya
Ali, Tarig Ahmed El Khider	1B.7	68	Risk Prediction of Major Depressive Disorder using Artificial Neural Network
Alief, Fahdiaz	1F.3	233	Android Forensic Tools Analysis for Unsend Chat on Social Media
Amalia, Yasmin	2D.2	457	Benchmarking Explicit Rating Prediction Algorithms for Cosmetic Products
Amanaf, Muntaqo	1G.3	278	5G New Radio (NR) Network Planning at Frequency 2,6 GHz in The Gold Triangle Area of Jakarta
Ambarwari, Agus	2B.7	389	Design and prototype development of internet of things for greenhouse monitoring system
Andriyani, Widyastuti	2B.6	383	A Comparative Study of Java and Kotlin for Android Mobile Application Development
	1B.2	48	Prediction of forest fire occurrence in peatlands using machine learning approaches
Anggraeni, Martianda	1F.2	227	Quality Assessment of Digital Terrestrial Television Broadcast in Surabaya
Annisa, Fadhilah Qalbi	1B.8	79	Personality Dimensions Classification with EEG Analysis using Support Vector Machine
Antonius, Suyanto	2E.7	529	Center of Gravity Method for Finding Center of Laser Beam Projection on Landslide Measurement
Anugraha, Tides	1D.3	140	Experimental Security Analysis for Fake eNodeB Attack on LTE Network
Anwar, Muchamad Taufiq	1C.1	83	Performance Comparison of Data Mining Techniques for Rain Prediction Models in Indonesia
Archi, Muhammad	1E.2	182	Initial Access in 5G mmWave Communication using Hybrid Genetic Algorithm and Particle Swarm Optimization
Ardiansyah, Agus	2B.5	377	Prototype Design of IoT (Internet of Things)-based Load Monitoring System
Arfian, Nur	2B.1	354	The User Experience effect of Applying Floating Action Button (FAB) into Augmented Reality Anatomy Cranium Media Learning Prototype
Ariananda, Dyonisius	1F.5	245	Single Snapshot-Spatial Compressive Beamforming for Azimuth Estimation and Backscatter Reconstruction

Aripriharta, A.	2B.4	371	Development of The Personnel Monitoring System Using Mobile Application and Real-Time Database During the COVID19 Pandemic
Arisanty, Deasy	1B.2	48	Prediction of forest fire occurrence in peatlands using machine learning approaches
Arisya, Khairunnisa	1D.8	170	Measurement of Information Security Awareness Level: A Case Study of Online Transportation Users
Armin, Farid	1G.4	284	Modification of 2.2 GHz S-Band Rectangular Patch Microstrip Antenna using Truncated Corner Method for Satellite Applications
	1G.5	289	Design of Optimal Satellite Constellation for Indonesian Regional Navigation System based on GEO and GSO Satellites
Arwoko, Heru	3D.1	682	Fruits Classification from Image using MPEG-7 Visual Descriptors and Extreme Learning Machine
Asfihani, Tahiyatul	1G.8	306	Ship Heading Control Using Nonlinear Model Predictive Control
Asriningtias, Salnan	1A.2	7	Blackbox Testing Model Boundary Value of Mapping Taxonomy Applications and Data Analysis of Art and Artworks
Astuti, Eha Renwi	3C.2	661	The Use of Pre and Post Processing to Enhance Mandible Segmentation using Active Contours on Dental Panoramic Radiography Images
Astuti, Yenni	3B.1	642	Comparison of Feature Extraction for Speaker Identification System
Asyrofi, Rakha	2A.5	332	Extraction Dependency Based on Evolutionary Requirement Using Natural Language Processing

Basari, Basari	2B.3	365	Proximity-based COVID-19 Contact Tracing System Devices for Locally Problems Solution
Bejo, Agus	3B.1	642	Comparison of Feature Extraction for Speaker Identification System
	1B.3	52	Speaker Recognition Using Mel Frequency Cepstral Coefficient and Self-Organising Fuzzy Logic
Belangour, Abdessamad	3A.4	638	A Kubernetes Algorithm for scaling Virtual Objects
Borman, Rohmat	2E.5	520	Indonesian Traffic Sign Recognition For Advanced Driver Assistent (ADAS) Using YOLOv4

Budi Setiawan, Fajar	1E.8	215	Performance Enhancement in Macro-Femto Network Using a Modified Discrete Moth-flame Optimization Algorithm
Budiman, Edy	2D.7	482	Dayak Onion (Eleutherine palmifolia (L) Merr) as An Alternative Treatment in Early Detection of Dental Caries using Certainty Factor
Bustamam, Alhadi	1A.6	26	The Multimodal Transfer Learning for Diagnosing COVID-19 Pneumonia from Chest CT-Scan and X- Ray Images
C A B C D E F G H I J H	K L M N O P	QRSTUW	XYZ
Cahyani, Denis	1B.4	56	Indonesian Parsing using Probabilistic Context- Free Grammar (PCFG) and Viterbi-Cocke Younger Kasami (Viterbi-CYK)
Chotimah, Khusnul	1G.8	306	Ship Heading Control Using Nonlinear Model Predictive Control
D A B C D E F G H I J	K L M N O P	QRSTUW	X Y Z
Daelami, Ahmad	2F.5	551	Development of Temperature and Humidity Control System in Internet-of-Things based Oyster Mushroom Cultivation
Darari, Fariz	2D.2	457	Benchmarking Explicit Rating Prediction Algorithms for Cosmetic Products
Delfianti, Rezi	3E.3	716	Energy Management Efficiency and Stability Using Passive Filter in Standalone Photovoltaic Sudden Cloud Condition
Dewantara, Mahardira	2 C .1	400	Minimization of Power Losses through Optimal Placement and Sizing from Solar Power and Battery Energy Storage System in Distribution System
Dirgantoro, Burhanuddin	2E.4	514	Speaker Recognition For Digital Forensic Audio Analysis Using Support Vector Machine
Djawas, Faizah	2F.6	562	Measuring Instagram Activity and Engagement Rate of Hospital: A Comparison Before and During COVID-19 Pandemic
Dwijayanti, Suci	3A.1	621	Facial Expression Recognition and Face Recognition Using a Convolutional Neural Network
Dwiputra, Richard	1E.6	203	Network Attack Detection System Using Filter- based Feature Selection and SVM
E A B C D E F G H I J F	K L M N O P (QRSTUW	XYZ
Eka Sari, Wahyuni	1 B .1	42	Papaya Disease Detection Using Fuzzy Naïve Bayes Classifier

Ekaniza, Raki	1A.5	21	PSO-Learned Artificial Neural Networks for Activity Recognition
Eko Sulistyo, Meiyanto	2C.6	428	Design and Development of Bit Error Measurement using FPGA for Visible Light Communication
El Khalyly, Badr	3A.4	638	A Kubernetes Algorithm for scaling Virtual Objects
Elsa, Corry	2G.1	577	Case Study: AppDynamics Application as Business Intelligence to Support Digital Business Operations at PT PGD
Emanuel, Andi Wahju Rahardjo	1C.3	100	Influence Distribution Training Data on Performance Supervised Machine Learning Algorithms
Engel, Ventje	1E.6	203	Network Attack Detection System Using Filter- based Feature Selection and SVM
F A B C D E F G H I J K I	MNOP	QRSTUW	XYZ
Fachrie, Muhammad	2G.1	583	<i>Guided Genetic Algorithm to Solve University</i> <i>Course Timetabling with Dynamic Time Slot</i>
Fadhilah, Amanda	1D.8	170	Measurement of Information Security Awareness Level: A Case Study of Online Transportation Users
Fahmi, Fahmi	2B.4	371	Development of The Personnel Monitoring System Using Mobile Application and Real-Time Database During the COVID19 Pandemic
Fahrudin, Tresna	2A.7	344	Indonesian Stock Price Prediction including Covid19 Era Using Decision Tree Regression
Fanani, M.	1 C.7	117	Implementation of Maximum Power Point Tracking on PV System using Artificial Bee Colony Algorithm
Faraby, Muhira	2C.4	418	The Single Tuned Filter Planning to Mitigate Harmonic Pollution in Radial Distribution Network Using Particle Swarm Optimization
Fardan, Fardan	1D.3	140	Experimental Security Analysis for Fake eNodeB Attack on LTE Network
Farrell, Mochammad	2E.3	505	Combined Firefly Algorithm-Random Forest to Classify Autistic Spectrum Disorders
Fatichah, Chastine	3C.2	661	The Use of Pre and Post Processing to Enhance Mandible Segmentation using Active Contours on Dental Panoramic Radiography Images
Ferdiansyah, Indra	1C.7	117	Implementation of Maximum Power Point Tracking on PV System using Artificial Bee Colony Algorithm

	2C.3		Design and Implementation of SVPWM Inverter to Reduce Total Harmonic Distortion (THD) on Three Phase Induction Motor Speed Regulation Using Constant V/F
	2C.2		Three Phase Induction Motor Dynamic Speed Regulation Using IP Controller
Firdaus, Diash	1D.7		DDoS Attack Detection in Software Defined Network using Ensemble K-means++ and Random Forest
Firdaus, Diaz	2D.6		Topic-Based Tweet Clustering for Public Figures Using Ant Clustering
Fitria, Irma	1G.8		Ship Heading Control Using Nonlinear Model Predictive Control
Fitriati, Andi	2C.4		The Single Tuned Filter Planning to Mitigate Harmonic Pollution in Radial Distribution Network Using Particle Swarm Optimization
Frannita, Eka	2E.2		Supervised Deep Learning for Thyroid Nodules Classification Based on Margin Characteristic
G A B C D E F G H I J	K L M N O P Q	RSTUW	XYZ
Ginting, Ishak	1D.3		Experimental Security Analysis for Fake eNodeB Attack on LTE Network
Gitakarma, Made Santo	1F.1		Designing Wireless Sensor Network Routing on Agriculture Area Using The LEACH Protocol
Gumilar, Langlang	3E.2		Variations in the Placement of DFIG in the Power System to Changes of Short Circuit Current
Gunawan, Dadang	1E.2		Initial Access in 5G mmWave Communication using Hybrid Genetic Algorithm and Particle Swarm Optimization
Gupta, Anju	2C.9		Robust Control Design Procedure and Simulation of PRES Controller having Phase-Locked Loop(PLL) control technique in Grid-Tied Converter
H A B C D E F G H I J	K L M N O P Q	RSTUW	X Y Z
Hadikurniawati, Wiwien	1C.1		Performance Comparison of Data Mining Techniques for Rain Prediction Models in Indonesia
Halim, Arwin	2A.4		Optimization of SV-kNNC using Silhouette Coefficient and LMKNN for Stock Price Prediction
Hamed, Fatima	1B.7		Risk Prediction of Major Depressive Disorder using Artificial Neural Network

Hamka Ibrahim, Muhammad	2C.6	428	Design and Development of Bit Error Measurement using FPGA for Visible Light Communication
Hanifa, Annisa	2C.6	428	Design and Development of Bit Error Measurement using FPGA for Visible Light Communication
Harintaka, Harintaka	2G.5	604	Comparison of the Latest DTM with DEM Pleiades in Monitoring the Dynamic Peatland
Hartanto, Rudy	2B.1	354	The User Experience effect of Applying Floating Action Button (FAB) into Augmented Reality Anatomy Cranium Media Learning Prototype
	2G.3	593	Multi-Point Travel Destination Recommendation System In Yogyakarta Using Hybrid Location Based Service-Floyd Warshall Method
Hasibuan, Siti	1B.3	52	Speaker Recognition Using Mel Frequency Cepstral Coefficient and Self-Organising Fuzzy Logic
Hasim, Sitronella	1F.8	262	Performance Evaluation of Cell-Edge Femtocell Densely Deployed in OFDMA-Based Macrocellular Network
Hastuti, Puji	2G.4	599	Application For Detection Of Pedestrian Position On Zebra Cross
Hermawan, Tofan	1F.3	233	Android Forensic Tools Analysis for Unsend Chat on Social Media
Hermawati, Hermawati	3A.1	621	Facial Expression Recognition and Face Recognition Using a Convolutional Neural Network
Herumurti, Darlis	3C.2	661	The Use of Pre and Post Processing to Enhance Mandible Segmentation using Active Contours on Dental Panoramic Radiography Images
Hery, Hery	1C.1	89	Website Design for Locating Tuna Fishing Spot Using Naïve Bayes and SVM Based on VMS Data on Indonesian Sea
Hidayat, Firhat	1E.6	203	Network Attack Detection System Using Filter- based Feature Selection and SVM
Hidayat, Risanuri	3B.1	642	Comparison of Feature Extraction for Speaker Identification System
	1F.5	245	Single Snapshot-Spatial Compressive Beamforming for Azimuth Estimation and Backscatter Reconstruction
	1B.3	52	Speaker Recognition Using Mel Frequency Cepstral Coefficient and Self-Organising Fuzzy Logic
Hidayat, Taufik	2G.7	615	Validation of Information Technology Value Model for Petroleum Industry

	2G.6	609	Model Development of Information Technology Value for Downstream Petroleum Industry
	2F.1	534	Effect of Android and Social Media User Growth on the Financial Technology Lending Borrowers and its Financing
Hikmah, Awaliyatul	1C.2	94	The Best Parameter Tuning on RNN Layers for Indonesian Text Classification
Hikmarika, Hera	3A.1	621	Facial Expression Recognition and Face Recognition Using a Convolutional Neural Network
Hikmaturokhman, Alfin	1G.3	278	5G New Radio (NR) Network Planning at Frequency 2,6 GHz in The Gold Triangle Area of Jakarta
	1G.2	272	Techno-Economic 5G New Radio Planning at 26 GHz Frequency in Pulogadung Industrial Area
Hilmizen, Naufal	1A.6	26	The Multimodal Transfer Learning for Diagnosing COVID-19 Pneumonia from Chest CT-Scan and X- Ray Images
Hindrayani, Kartika	2A.7	344	Indonesian Stock Price Prediction including Covid19 Era Using Decision Tree Regression
Husin, Zaenal	3A.1	621	Facial Expression Recognition and Face Recognition Using a Convolutional Neural Network
Hutami, Augustine	2E.2	499	Supervised Deep Learning for Thyroid Nodules Classification Based on Margin Characteristic
I A B C D E F G H I J	K L M N O P Q F	R S T U W	X Y Z
Iftadi, Irwan	2C.6	428	Design and Development of Bit Error Measurement using FPGA for Visible Light Communication
Indriawati, Katherin	1G.6	295	Particle Filter Based Speed Estimator for Speed Sensorless Control in Induction Motor
	1G.7	301	Disturbance Observer-Based Speed Estimator for Controlling Speed Sensorless Induction Motor
Irawan, Arif	2B.8	394	Smart Safe Prototype Based Internet of Things (IoT) with Face and Fingerprint Recognition
Irnawan, Roni	2C.1	400	Minimization of Power Losses through Optimal Placement and Sizing from Solar Power and Battery Energy Storage System in Distribution System
Iskandar, Nur Muhamad	1G.1	267	A Combination of Defected Ground Structure and Line Resonator for Mutual Coupling Reduction
Isnandar, Suroso	2C.5	423	Analysis of Performance Index in Transmission Expansion Planning of Sulawesi's Electricity System

Istikmal, Istikmal	1D.3	140	Experimental Security Analysis for Fake eNodeB Attack on LTE Network
	1D.6	158	Performance Analysis FSR and DSR Routing Protocol in VANET with V2V and V2I Models
	2B.8	394	Smart Safe Prototype Based Internet of Things (IoT) with Face and Fingerprint Recognition
J A B C D E F G H I J	K L M N O P Q	RSTUW	X Y Z
Jati Anggoro, Wisang	1E.7	209	Development of Smart Energy Meter Based on LoRaWAN in Campus Area
Jatmiko, Wisnu	2E.5	520	Indonesian Traffic Sign Recognition For Advanced Driver Assistent (ADAS) Using YOLOv4
Julzarika, Atriyon	2G.5	604	Comparison of the Latest DTM with DEM Pleiades in Monitoring the Dynamic Peatland
K A B C D E F G H I	JKLMNOPO	QRSTUW	XYZ
Kamirul, Kamirul	1G.4	284	Modification of 2.2 GHz S-Band Rectangular Patch Microstrip Antenna using Truncated Corner Method for Satellite Applications
	1G.5	289	Design of Optimal Satellite Constellation for Indonesian Regional Navigation System based on GEO and GSO Satellites
Karna, Nyoman	1D.3	140	Experimental Security Analysis for Fake eNodeB Attack on LTE Network
Karo, Ferdinanta	1G.3	278	5G New Radio (NR) Network Planning at Frequency 2,6 GHz in The Gold Triangle Area of Jakarta
Khairunnisa, Syifa	2D.5		Removing Noise, Reducing dimension, and Weighting Distance to Enhance k-Nearest Neighbors for Diabetes Classification
Komarudin, Udin	2F.5	551	Development of Temperature and Humidity Control System in Internet-of-Things based Oyster Mushroom Cultivation
Kouty, Shreyus	2C.8	439	Multilayer Secure Hardware Network Stack using FPGA
Krisnadi, Dion	1C.1	89	Website Design for Locating Tuna Fishing Spot Using Naïve Bayes and SVM Based on VMS Data on Indonesian Sea
Kristiani, Eveline	2G.1	577	Case Study: AppDynamics Application as Business Intelligence to Support Digital Business Operations at PT PGD

Kunang, Yesi	1D.4	146	Improving Classification Attacks in IOT Intrusion Detection System using Bayesian Hyperparameter Optimization
Kurniawati, Yulia Ery	1B.1	42	Papaya Disease Detection Using Fuzzy Naïve Bayes Classifier
Kusnandar, Kusnandar	2F.5	551	Development of Temperature and Humidity Control System in Internet-of-Things based Oyster Mushroom Cultivation
L A B C D E F G H I J	KLMNOPQ	RSTUW	XYZ
Lagunov, Alexey	3E.1	705	Features of the Use of Solar Panels at Low Temperatures in the Arctic
Lee, HoonJae	1E.3	187	TwoChain: Leveraging Blockchain and Smart Contract for Two Factor Authentication
Lee, Sang-Gon	1E.3	187	TwoChain: Leveraging Blockchain and Smart Contract for Two Factor Authentication
Lin, Haitao	1A.2	12	Distributed Alternating Direction Multiplier Method Based on Optimized Topology and Nodes Selection Strategy
Lubis, Ainul	2B.3	365	Proximity-based COVID-19 Contact Tracing System Devices for Locally Problems Solution
Lukas, Samuel	1C.1	89	Website Design for Locating Tuna Fishing Spot Using Naïve Bayes and SVM Based on VMS Data on Indonesian Sea
M A B C D E F G H I	JKLMNOPO	QRSTUW	Y X Y Z
Mahamad, Abd Kadir	28.4	371	Development of The Personnel Monitoring System Using Mobile Application and Real-Time Database During the COVID19 Pandemic
Mahardiko, Rahutomo	2G.7		Validation of Information Technology Value Model for Petroleum Industry
	2G.6	609	Model Development of Information Technology Value for Downstream Petroleum Industry
	2F.1	534	Effect of Android and Social Media User Growth on the Financial Technology Lending Borrowers and its Financing
Mahersatillah, Andi	3D.2	688	Unstructured Road Detection and Steering Assist Based on HSV Color Space Segmentation for Autonomous Car
Mahfiz, Syiti	2D.8	488	Aspect-based Opinion Mining on Beauty Product Reviews

Manik, Lindung	3A.2	627	Stemming Javanese: Another Adaptation of the Nazief-Adriani Algorithm
Mardhotillah, Rinda	2E.4	514	Speaker Recognition For Digital Forensic Audio Analysis Using Support Vector Machine
Masngut, Ibnu	2B.2		Development and Implementation of Kalman Filter for IoT Sensors: Towards a Better Precision Agriculture
Maulana, Eka	1E.7	209	Development of Smart Energy Meter Based on LoRaWAN in Campus Area
Mawaldi, Ikbal	1D.3	140	Experimental Security Analysis for Fake eNodeB Attack on LTE Network
Mootha, Siddartha	3E.4	721	A Stacking Ensemble of Multi Layer Perceptrons to Predict Online Shoppers' Purchasing Intention
Mubarok, Husein	2B.5	377	Prototype Design of IoT (Internet of Things)-based Load Monitoring System
Muchtar, Akhyar	2C.4	418	The Single Tuned Filter Planning to Mitigate Harmonic Pollution in Radial Distribution Network Using Particle Swarm Optimization
Muchtar, Kahlil	2E.3	509	Convolutional Network and Moving Object Analysis for Vehicle Detection in Highway Surveillance Videos
Muflikhah, Lailil	1A.8	37	Prediction of Liver Cancer Based on DNA Sequence Using Ensemble Method
Muharram, Muh.	2D.4	467	Firefly Algorithm-based Optimization of Base Transceiver Station Placement
Mujahidin, Irfan	1A.2	7	Blackbox Testing Model Boundary Value of Mapping Taxonomy Applications and Data Analysis of Art and Artworks
Muladi, Muladi	2B.4	371	Development of The Personnel Monitoring System Using Mobile Application and Real-Time Database During the COVID19 Pandemic
Mulyanto, Agus	2E.5	520	Indonesian Traffic Sign Recognition For Advanced Driver Assistent (ADAS) Using YOLOv4
Munadi, Rendy	1D.7	164	DDoS Attack Detection in Software Defined Network using Ensemble K-means++ and Random Forest
Mungkasi, Sudi	2A.2	321	Some Numerical and Analytical Solutions to an Enzyme-Substrate Reaction-Diffusion Problem
Mursanto, Petrus	2E.5	520	Indonesian Traffic Sign Recognition For Advanced Driver Assistent (ADAS) Using YOLOv4

Murwantara, I Made	1C.1	89	Website Design for Locating Tuna Fishing Spot Using Naïve Bayes and SVM Based on VMS Data on Indonesian Sea
Mustika, I Wayan	1E.5	198	Roadside Unit Power Saving using Vehicle Detection System in Vehicular Ad-hoc Network
	1E.8	215	Performance Enhancement in Macro-Femto Network Using a Modified Discrete Moth-flame Optimization Algorithm
	1E.7	209	Development of Smart Energy Meter Based on LoRaWAN in Campus Area
	1D.2	135	Interference Mitigation in Cognitive Radio Network Based on Grey Wolf Optimizer Algorithm
	2G.4	599	Application For Detection Of Pedestrian Position On Zebra Cross
Muthchamy Sellamuthu, Karthika Devi	3E.4	721	A Stacking Ensemble of Multi Layer Perceptrons to Predict Online Shoppers' Purchasing Intention
Muttaqin, Didik	2D.3	463	Speech Emotion Detection Using Mel-Frequency Cepstral Coefficient and Hidden Markov Model
N A B C D E F G H I J K L	M N O P	QRSTUW	Y X Y Z
N. Fathee, Hala	3B.4	655	A Robust Iris Segmentation Algorithm Based on Pupil Region for Visible Wavelength Environments
Nafi'iyah, Nur	3C.2	661	The Use of Pre and Post Processing to Enhance Mandible Segmentation using Active Contours on Dental Panoramic Radiography Images
Nagy, Adam	3A.3	632	A bio-motivated vision system and artificial neural network for autonomous UAV obstacle avoidance
Najmurrokhman, Asep	2F.5	551	Development of Temperature and Humidity Control System in Internet-of-Things based Oyster Mushroom Cultivation
Nam, Andrew	1A.1	1	Resource-Aware Pareto-Optimal Automated Machine Learning Platform
Nasaruddin, Nasaruddin	2E.3	509	Convolutional Network and Moving Object Analysis for Vehicle Detection in Highway Surveillance Videos
Nashiruddin, Muhammad Imam	1F.6	251	Performance Evaluation of XGS-PON Optical Network Termination for Enterprise Customer
	1F.4	239	Performance Evaluation of IPTV Multicast Service Testing for XGS-PON Optical Line Termination
Nasr-Azadani, Mohamad	1 A. 1	1	Resource-Aware Pareto-Optimal Automated Machine Learning Platform

Nasri, Muhammad	2B.1		The User Experience effect of Applying Floating Action Button (FAB) into Augmented Reality Anatomy Cranium Media Learning Prototype
Nguyen-Quoc, Huy	2D.1		Gender recognition based on ear images: a comparative experimental study
Nivaan, Goldy Valendria	1C.4		Analytic Predictive of Hepatitis using The Regression Logic Algorithm
Noer, Astriany	1G.4		Modification of 2.2 GHz S-Band Rectangular Patch Microstrip Antenna using Truncated Corner Method for Satellite Applications
	1G.5		Design of Optimal Satellite Constellation for Indonesian Regional Navigation System based on GEO and GSO Satellites
NQ, Mohammad Arifin	3A.2		Stemming Javanese: Another Adaptation of the Nazief-Adriani Algorithm
Nugraha, Syechu	2C.3		Design and Implementation of SVPWM Inverter to Reduce Total Harmonic Distortion (THD) on Three Phase Induction Motor Speed Regulation Using Constant V/F
	2C.2		Three Phase Induction Motor Dynamic Speed Regulation Using IP Controller
Nugroho, Hanung	2E.2	499	Supervised Deep Learning for Thyroid Nodules Classification Based on Margin Characteristic
Nugroho, Lukito	2G.3		Multi-Point Travel Destination Recommendation System In Yogyakarta Using Hybrid Location Based Service-Floyd Warshall Method
	2G.4		Application For Detection Of Pedestrian Position On Zebra Cross
Nur, Darfiana	2A.1		On Parameter Estimation of Stochastic Delay Difference Equation using the Two m-delay Autoregressive Coefficients
Nurdewanto, B.	1A.2		Blackbox Testing Model Boundary Value of Mapping Taxonomy Applications and Data Analysis of Art and Artworks
Nurfadillah, Raditya	2D.2		Benchmarking Explicit Rating Prediction Algorithms for Cosmetic Products
Nurlina, Elin	2F.5		Development of Temperature and Humidity Control System in Internet-of-Things based Oyster Mushroom Cultivation

Nurmaini, Siti	1D.4	146	Improving Classification Attacks in IOT Intrusion Detection System using Bayesian Hyperparameter Optimization
Nurtiyasari, Devi	3C.3	667	COVID-19 Chest X-Ray Classification Using Convolutional Neural Network Architectures
Nurwarsito, Heru	1 E .1	176	Performance Analysis of Temporally Ordered Routing Algorithm Protocol and Zone Routing Protocol On Vehicular Ad-Hoc Network in Urban Environment
Nusantara, Damai	2C.5	423	Analysis of Performance Index in Transmission Expansion Planning of Sulawesi's Electricity System
O A B C D E F G H I S	JKLMNOPO	QRSTUW	XYZ
Octarina, Sisca	2A.1	315	The N-Sheet Model in Capacitated Multi-Period Cutting Stock Problem with Pattern Set-Up Cost
Oktian, Yustus	1E.3	187	TwoChain: Leveraging Blockchain and Smart Contract for Two Factor Authentication
Osman, Safaa	1B.7	68	Risk Prediction of Major Depressive Disorder using Artificial Neural Network
P A B C D E F G H I J	K L M N O P Q	Q R S T U W	XYZ
Perkasa, Gregorius	1D.2	135	Interference Mitigation in Cognitive Radio Network Based on Grey Wolf Optimizer Algorithm
Permana, Indra	2F.1	534	Effect of Android and Social Media User Growth on the Financial Technology Lending Borrowers and its Financing
Permanasari, Adhistya	2B.1	354	The User Experience effect of Applying Floating Action Button (FAB) into Augmented Reality Anatomy Cranium Media Learning Prototype
Petho, Mate	3A.3	632	A bio-motivated vision system and artificial neural network for autonomous UAV obstacle avoidance
Prakoso, Rahardi	1 D.8	170	Measurement of Information Security Awareness Level: A Case Study of Online Transportation Users
Pramono, Subuh	2C.6	428	Design and Development of Bit Error Measurement using FPGA for Visible Light Communication
Prasetya, Suisbiyanto	1G.4	284	Modification of 2.2 GHz S-Band Rectangular Patch Microstrip Antenna using Truncated Corner Method for Satellite Applications
Prasetyawan, Purwono	2E.5	520	Indonesian Traffic Sign Recognition For Advanced Driver Assistent (ADAS) Using YOLOv4

Prasetyo, Wisnu	2A.8		Students Academic Performance Prediction with k- Nearest Neighbor and C4.5 on SMOTE-balanced data
Prasojo, Radityo Eko	2D.2		Benchmarking Explicit Rating Prediction Algorithms for Cosmetic Products
Pratama, Denni	1A.4	17	Comparison of PSO, FA, and BA for Discrete Optimization Problems
Pratama, Gilang	2B.2		Development and Implementation of Kalman Filter for IoT Sensors: Towards a Better Precision Agriculture
Pratama, Raditya	2G.3		Multi-Point Travel Destination Recommendation System In Yogyakarta Using Hybrid Location Based Service-Floyd Warshall Method
Pratama, Yogaswara	2G.1		Case Study: AppDynamics Application as Business Intelligence to Support Digital Business Operations at PT PGD
Pratiwi, Melati	3C.4		Classification of Customer Actions on Digital Money Transactions on PaySim Mobile Money Simulator using Probabilistic Neural Network (PNN) Algorithm
Priyadi, Ardyono	3E.3		Energy Management Efficiency and Stability Using Passive Filter in Standalone Photovoltaic Sudden Cloud Condition
Priyadi, Yudi	2A.5		Extraction Dependency Based on Evolutionary Requirement Using Natural Language Processing
Priyambodo, Tri	1 F. 1		Designing Wireless Sensor Network Routing on Agriculture Area Using The LEACH Protocol
	1D.1	129	Real-time Testing on Improved Data Transmission Security in the Industrial Control System
Prutphongs, Ponsuda	2G.2		Decision Support System for Power Plant Improvement Investment Using Life-Cycle Cost
Pujianto, Utomo	2A.8		Students Academic Performance Prediction with k- Nearest Neighbor and C4.5 on SMOTE-balanced data
Purnomo, Hindriyanto	1F.7		Detection of Sensor Node-less Area Using A Genetic Algorithm for Wireless Sensor Network
	3D.4	700	A Modified Deep Convolutional Network for Covid- 19 detection based on chest X-ray images
Purwanto, Era	2C.3		Design and Implementation of SVPWM Inverter to Reduce Total Harmonic Distortion (THD) on Three

			Phase Induction Motor Speed Regulation Using Constant V/F
	2C.2	406	Three Phase Induction Motor Dynamic Speed Regulation Using IP Controller
Purwanto, Yudha	1D.7	164	DDoS Attack Detection in Software Defined Network using Ensemble K-means++ and Random Forest
Puspita, Fitri Maya	2F.5	556	Modification of Wireless Reverse Charging Scheme with Bundling Optimization Issues
Puspitasari, Novianti	2D.7	482	Dayak Onion (Eleutherine palmifolia (L) Merr) as An Alternative Treatment in Early Detection of Dental Caries using Certainty Factor
Putra, Agfianto	1 D. 1	129	Real-time Testing on Improved Data Transmission Security in the Industrial Control System
Putranto, Bambang Purnomosidi Dwi	2B.6	383	A Comparative Study of Java and Kotlin for Android Mobile Application Development
Putranto, Lesnanto Multa	2C.5	423	Analysis of Performance Index in Transmission Expansion Planning of Sulawesi's Electricity System
	2C.1	400	Minimization of Power Losses through Optimal Placement and Sizing from Solar Power and Battery Energy Storage System in Distribution System
Putri, Andi	2C.4	418	The Single Tuned Filter Planning to Mitigate Harmonic Pollution in Radial Distribution Network Using Particle Swarm Optimization

Q A B C D E F G H I J K L M N O P Q R S T U W X Y Z

Qomariyah, Nunung Nurul	1 C.8	123	Predicting User Preferences with XGBoost Learning to Rank Method
Qudsi, Ony	2C.3	412	Design and Implementation of SVPWM Inverter to Reduce Total Harmonic Distortion (THD) on Three Phase Induction Motor Speed Regulation Using Constant V/F
	2C.2	406	Three Phase Induction Motor Dynamic Speed Regulation Using IP Controller

R A B C D E F G H I J K L M N O P Q R S T U W X Y Z

R., Christiono	2C.4	418	The Single Tuned Filter Planning to Mitigate Harmonic Pollution in Radial Distribution Network Using Particle Swarm Optimization
Rachmawaty, Dina	1G.2	272	Techno-Economic 5G New Radio Planning at 26 GHz Frequency in Pulogadung Industrial Area

Rahayu, Eny Sukani	1F.5		Single Snapshot-Spatial Compressive Beamforming for Azimuth Estimation and Backscatter Reconstruction
Ramadhan, Firdiansyah	2E.1	494	Royale Heroes: A Unique RTS Game Using Deep Reinforcement Learning-based Autonomous Movement
Ramadhani, Kurniawan	2E.3	505	Combined Firefly Algorithm-Random Forest to Classify Autistic Spectrum Disorders
Ratchagit, Manlika	2A.1	310	On Parameter Estimation of Stochastic Delay Difference Equation using the Two m-delay Autoregressive Coefficients
Rianti, Desi	1G.2	272	Techno-Economic 5G New Radio Planning at 26 GHz Frequency in Pulogadung Industrial Area
Ridhatama, Hasbi	2F.5	551	Development of Temperature and Humidity Control System in Internet-of-Things based Oyster Mushroom Cultivation
Rifa'i, Nanang	1G.7	301	Disturbance Observer-Based Speed Estimator for Controlling Speed Sensorless Induction Motor
Rifadil, Mochammad	2C.3	412	Design and Implementation of SVPWM Inverter to Reduce Total Harmonic Distortion (THD) on Three Phase Induction Motor Speed Regulation Using Constant V/F
	2C.2	406	Three Phase Induction Motor Dynamic Speed Regulation Using IP Controller
Riyadi, E. Hadiyono	1D.1	129	Real-time Testing on Improved Data Transmission Security in the Industrial Control System
Riyantoko, Prismahardi	2A.7	344	Indonesian Stock Price Prediction including Covid19 Era Using Decision Tree Regression
Robbi, Niki	1D.2	135	Interference Mitigation in Cognitive Radio Network Based on Grey Wolf Optimizer Algorithm
Romadhony, Ade	2D.8	488	Aspect-based Opinion Mining on Beauty Product Reviews
Rosadi, Dedi	3C.3	667	COVID-19 Chest X-Ray Classification Using Convolutional Neural Network Architectures
	1B.2	48	Prediction of forest fire occurrence in peatlands using machine learning approaches
Rosselina, Linda	1F.3	233	Android Forensic Tools Analysis for Unsend Chat on Social Media
Ruldeviyani, Yova	2G.1	577	Case Study: AppDynamics Application as Business Intelligence to Support Digital Business Operations at PT PGD

	1D.8	170	Measurement of Information Security Awareness Level: A Case Study of Online Transportation Users
Rusdiyanto, Dian	2F.7	567	Comparison Of Eight Elements Array Structure Design For Coastal Surveillance Radar
Rusli, Muhammad	2C.3	412	Design and Implementation of SVPWM Inverter to Reduce Total Harmonic Distortion (THD) on Three Phase Induction Motor Speed Regulation Using Constant V/F

S A B C D E F G H I J K L M N O P Q R S T U W X Y Z

0.01		(0.4	
S, Subaryono	2G.5	604	Comparison of the Latest DTM with DEM Pleiades in Monitoring the Dynamic Peatland
Sa'adah, Siti	1A.7	32	Prediction of Gross Domestic Product (GDP) in Indonesia Using Deep Learning Algorithm
	3C.4	677	Classification of Customer Actions on Digital Money Transactions on PaySim Mobile Money Simulator using Probabilistic Neural Network (PNN) Algorithm
Safitri, Eristya	2A.7	344	Indonesian Stock Price Prediction including Covid19 Era Using Decision Tree Regression
Sahmoud, Shaaban	3B.4	655	A Robust Iris Segmentation Algorithm Based on Pupil Region for Visible Wavelength Environments
Samudera, Satriya	2C.2	406	Three Phase Induction Motor Dynamic Speed Regulation Using IP Controller
Santoso, Fian	3D.4	700	A Modified Deep Convolutional Network for Covid- 19 detection based on chest X-ray images
Sarjiya, Sarjiya	2C.5	423	Analysis of Performance Index in Transmission Expansion Planning of Sulawesi's Electricity System
	2C.1	400	Minimization of Power Losses through Optimal Placement and Sizing from Solar Power and Battery Energy Storage System in Distribution System
Sarwinda, Devvi	1A.6	26	The Multimodal Transfer Learning for Diagnosing COVID-19 Pneumonia from Chest CT-Scan and X- Ray Images
Sasmito, Adityan	1C.5	111	Comparison of The Classification Data Mining Methods to Identify Civil Servants in Indonesian Social Insurance Company
Sediyono, Eko	1F.7	257	Detection of Sensor Node-less Area Using A Genetic Algorithm for Wireless Sensor Network

Sendari, Siti	2B.4	371	Development of The Personnel Monitoring System Using Mobile Application and Real-Time Database During the COVID19 Pandemic
Setianingsih, Casi	2E.4	514	Speaker Recognition For Digital Forensic Audio Analysis Using Support Vector Machine
Setiawan, Florentinus Budi	2E.7	529	Center of Gravity Method for Finding Center of Laser Beam Projection on Landslide Measurement
Setijadi, Eko	1G.1	267	A Combination of Defected Ground Structure and Line Resonator for Mutual Coupling Reduction
Setya Budi, Avian Lukman	3E.3	716	Energy Management Efficiency and Stability Using Passive Filter in Standalone Photovoltaic Sudden Cloud Condition
Severin, Ionuț-Cristian	3C.3	672	The Head Posture System Based on 3 Inertial Sensors and Machine Learning Models: Offline Analyze
Shadieq, Nuur	1B.6	62	Leveraging Side Information to Anime Recommender System using Deep learning
Siahaan, Daniel	2A.5	332	Extraction Dependency Based on Evolutionary Requirement Using Natural Language Processing
Simbolon, Josua	1G.6	295	Particle Filter Based Speed Estimator for Speed Sensorless Control in Induction Motor
Sinaga, Frans	2A.4	326	<i>Optimization of SV-kNNC using Silhouette</i> <i>Coefficient and LMKNN for Stock Price Prediction</i>
Sirait, Pahala	2A.4	326	<i>Optimization of SV-kNNC using Silhouette</i> <i>Coefficient and LMKNN for Stock Price Prediction</i>
Siregar, Faisal	1B.8	73	Hybrid Method for Flower Classification in High Intra-class Variation
Siswantoro, Joko	3D.1	682	Fruits Classification from Image using MPEG-7 Visual Descriptors and Extreme Learning Machine
Siswantoro, Muhammad	3D.1	682	Fruits Classification from Image using MPEG-7 Visual Descriptors and Extreme Learning Machine
Soeprijanto, Adi	3E.3	716	Energy Management Efficiency and Stability Using Passive Filter in Standalone Photovoltaic Sudden Cloud Condition
Solihah, Nomarhinta	1F.6	251	Performance Evaluation of XGS-PON Optical Network Termination for Enterprise Customer
	1F.4	239	Performance Evaluation of IPTV Multicast Service Testing for XGS-PON Optical Line Termination

Sonalitha, Elta	1A.2	7	Blackbox Testing Model Boundary Value of Mapping Taxonomy Applications and Data Analysis of Art and Artworks
Sridhar, Sashank	3E.4	721	A Stacking Ensemble of Multi Layer Perceptrons to Predict Online Shoppers' Purchasing Intention
Stiawan, Deris	1D.4	146	Improving Classification Attacks in IOT Intrusion Detection System using Bayesian Hyperparameter Optimization
Suban, Ignasius	1C.3	100	Influence Distribution Training Data on Performance Supervised Machine Learning Algorithms
Subchan, Subchan	1G.8	306	Ship Heading Control Using Nonlinear Model Predictive Control
Subriadi, Apol	2F.2	539	Consumer Behavior in Social Commerce Adoption: Systematic Literature Review
Sudaryanto, Arif	2C.3	412	Design and Implementation of SVPWM Inverter to Reduce Total Harmonic Distortion (THD) on Three Phase Induction Motor Speed Regulation Using Constant V/F
Sudiharto, Indhana	1C.7	117	Implementation of Maximum Power Point Tracking on PV System using Artificial Bee Colony Algorithm
Sugianto, Sugianto	2A.6	338	Multivariate Time Series Forecasting Based Cloud Computing For Consumer Price Index Using Deep Learning Algorithms
Sulistiadi, Wahyu	2F.6	562	Measuring Instagram Activity and Engagement Rate of Hospital: A Comparison Before and During COVID-19 Pandemic
Sulistiyono, Mulia	1C.2	94	The Best Parameter Tuning on RNN Layers for Indonesian Text Classification
Sulistyo, Selo	1E.5	198	Roadside Unit Power Saving using Vehicle Detection System in Vehicular Ad-hoc Network
Sultoni, Arif	2F.8	572	Implementation of Fuzzy-PID Based MPPT for Stand Alone 1.75 kWP PV System
Sumadi, Fauzi	1D.5	152	Comparative Analysis of DDoS Detection Techniques Based on Machine Learning in OpenFlow Network
Sumiharto, Raden	1F.1	221	Designing Wireless Sensor Network Routing on Agriculture Area Using The LEACH Protocol

Suprapto, Bhakti	1D.4	146	Improving Classification Attacks in IOT Intrusion Detection System using Bayesian Hyperparameter Optimization
	3A.1	621	Facial Expression Recognition and Face Recognition Using a Convolutional Neural Network
Supriyanto, Eko	1B.8	79	Personality Dimensions Classification with EEG Analysis using Support Vector Machine
	18.7	68	Risk Prediction of Major Depressive Disorder using Artificial Neural Network
Suryanto, Yohan	1F.3	233	Android Forensic Tools Analysis for Unsend Chat on Social Media
Susanto, Misfa	1F.8	262	Performance Evaluation of Cell-Edge Femtocell Densely Deployed in OFDMA-Based Macrocellular Network
Sussi, Sussi	1D.6	158	Performance Analysis FSR and DSR Routing Protocol in VANET with V2V and V2I Models
Sutivong, Daricha	2G.2	588	Decision Support System for Power Plant Improvement Investment Using Life-Cycle Cost
Suwadi, Suwadi	1E.4	192	Performance Enhancement of Multi-User Key Extraction Scheme (MKES) Based on Imperfect Signal Reciprocity
Suyanto, Suyanto	2D.4	467	Firefly Algorithm-based Optimization of Base Transceiver Station Placement
	2E.1	494	Royale Heroes: A Unique RTS Game Using Deep Reinforcement Learning-based Autonomous Movement
	1A.4	17	Comparison of PSO, FA, and BA for Discrete Optimization Problems
	2E.6	525	Text-Independent Speaker Identification Using PCA-SVM Model
	2D.3	463	Speech Emotion Detection Using Mel-Frequency Cepstral Coefficient and Hidden Markov Model
	1A.5	21	PSO-Learned Artificial Neural Networks for Activity Recognition
	2E.3	505	Combined Firefly Algorithm-Random Forest to Classify Autistic Spectrum Disorders
	3B.3	650	Detection of Multi-Class Glaucoma Using Active Contour Snakes and Support Vector Machine
	2D.6	476	Topic-Based Tweet Clustering for Public Figures Using Ant Clustering

xxxiii

	2D.5		Removing Noise, Reducing dimension, and Weighting Distance to Enhance k-Nearest Neighbors for Diabetes Classification
	3B.2	646	Speech Gender Classification Using Bidirectional Long Short Term Memory
Suyanto, Yohanes	1F.1	221	Designing Wireless Sensor Network Routing on Agriculture Area Using The LEACH Protocol

T A B C D E F G H I J K L M N O P Q R S T U W X Y Z

Taheri, Sahar	1B.8	79	Personality Dimensions Classification with EEG Analysis using Support Vector Machine
Taufani, Agusta	2A.8	348	Students Academic Performance Prediction with k- Nearest Neighbor and C4.5 on SMOTE-balanced data
Truong Hoang, Vinh	2D.1	451	Gender recognition based on ear images: a comparative experimental study
Tung, Teresa	1A.1	1	Resource-Aware Pareto-Optimal Automated Machine Learning Platform

U A B C D E F G H I J K L M N O P Q R S T U W X Y Z

Umam, Mohammad	1E.1	176	Performance Analysis of Temporally Ordered Routing Algorithm Protocol and Zone Routing Protocol On Vehicular Ad-Hoc Network in Urban Environment
Usman, U	2C.4	418	The Single Tuned Filter Planning to Mitigate Harmonic Pollution in Radial Distribution Network Using Particle Swarm Optimization
Uyun, Shofwatul	3D.3	694	Feature Selection on Magelang Duck Egg Candling Image Using Variance Threshold Method

W A B C D E F G H I J K L M N O P Q R S T U W X Y Z

W, Bambang	1G.6	295	Particle Filter Based Speed Estimator for Speed Sensorless Control in Induction Motor
	1G.7	301	Disturbance Observer-Based Speed Estimator for Controlling Speed Sensorless Induction Motor
Wahyudi, Anung	2B.7	389	Design and prototype development of internet of things for greenhouse monitoring system
Wahyuni, Maria	2E.7	529	Center of Gravity Method for Finding Center of Laser Beam Projection on Landslide Measurement
Waluyo, Anita	2G.1	583	Guided Genetic Algorithm to Solve University Course Timetabling with Dynamic Time Slot

Wardhani, Shinta Amalia	2F.2	539	Consumer Behavior in Social Commerce Adoption: Systematic Literature Review
Wati, Masna	2D.7	482	Dayak Onion (Eleutherine palmifolia (L) Merr) as An Alternative Treatment in Early Detection of Dental Caries using Certainty Factor
Wibisono, Radityo	2C.7	433	<i>Optimization Coagulation Process of Water</i> <i>Treatment Plant Using Neural Network and</i> <i>Internet of Things (IoT) Communication</i>
Wibowo, Agung	1B.6	62	Leveraging Side Information to Anime Recommender System using Deep learning
Wibowo, Ferry Wahyu	1 F.7	257	Detection of Sensor Node-less Area Using A Genetic Algorithm for Wireless Sensor Network
Wibowo, Muhammad	1A.7	32	Prediction of Gross Domestic Product (GDP) in Indonesia Using Deep Learning Algorithm
Widians, Joan	2D.7	482	Dayak Onion (Eleutherine palmifolia (L) Merr) as An Alternative Treatment in Early Detection of Dental Caries using Certainty Factor
Widiyatmoko, Dany	3A.2	627	Stemming Javanese: Another Adaptation of the Nazief-Adriani Algorithm
Widiyatmoko, Wahyu	1 C .1	83	Performance Comparison of Data Mining Techniques for Rain Prediction Models in Indonesia
Widyawan, Widy	1D.2	135	Interference Mitigation in Cognitive Radio Network Based on Grey Wolf Optimizer Algorithm
Widyawati, Dewi	2B.7	389	Design and prototype development of internet of things for greenhouse monitoring system
Wijayanto, Danur	1F.1	221	Designing Wireless Sensor Network Routing on Agriculture Area Using The LEACH Protocol
Winarno, Edy	1 C .1	83	Performance Comparison of Data Mining Techniques for Rain Prediction Models in Indonesia
Winursito, Anggun	2B.2	360	Development and Implementation of Kalman Filter for IoT Sensors: Towards a Better Precision Agriculture
Witono, Timotius	2F.4	545	Analysis of Indonesia's Internet Topology Borders at the Autonomous System Level
Wiwatanapataphee, Benchawan	2A.1	310	On Parameter Estimation of Stochastic Delay Difference Equation using the Two m-delay Autoregressive Coefficients
Wulandari, Eliandri	1F.4	239	Performance Evaluation of IPTV Multicast Service Testing for XGS-PON Optical Line Termination

Xaphakdy, Khampaserth	1E.8	215	Performance Enhancement in Macro-Femto Network Using a Modified Discrete Moth-flame Optimization Algorithm	
Y A B C D E F G H I J	KLMNOP	QRSTUW	XYZ	
Yadav, Uma	2C.9	445	Robust Control Design Procedure and Simulation of PRES Controller having Phase-Locked Loop(PLL) control technique in Grid-Tied Converter	
Yang, Yao	1A.1	1	Resource-Aware Pareto-Optimal Automated Machine Learning Platform	
Yazid, Setiadi	2F.4	545	Analysis of Indonesia's Internet Topology Borders at the Autonomous System Level	
Yudhantomo, Thomas	2C.5	423	Analysis of Performance Index in Transmission Expansion Planning of Sulawesi's Electricity System	
Yudhistiro, Kukuh	1A.2	7	Blackbox Testing Model Boundary Value of Mapping Taxonomy Applications and Data Analysis of Art and Artworks	
Yugopuspito, Pujianto	1 C .1	89	Website Design for Locating Tuna Fishing Spot Using Naïve Bayes and SVM Based on VMS Data on Indonesian Sea	
Yuliana, Mike	1E.4	192	Performance Enhancement of Multi-User Key Extraction Scheme (MKES) Based on Imperfect Signal Reciprocity	
Yunanto, Prasti Eko	2D.5	471	Removing Noise, Reducing dimension, and Weighting Distance to Enhance k-Nearest Neighbors for Diabetes Classification	
Yusran, Yusran	3D.2	688	Unstructured Road Detection and Steering Assist Based on HSV Color Space Segmentation for Autonomous Car	
Yusrandi, Yusrandi	2B.4	371	Development of The Personnel Monitoring System Using Mobile Application and Real-Time Database During the COVID19 Pandemic	
Z A B C D E F G H I J	KLMNOP	QRSTUW	XYZ	
Zaeni, Ilham Ari	2B.4	371	Development of The Personnel Monitoring System Using Mobile Application and Real-Time Database During the COVID19 Pandemic	
Zahara, Soffa	2A.6	338	Multivariate Time Series Forecasting Based Cloud Computing For Consumer Price Index Using Deep Learning Algorithms	

Zainuddin, Zahir	3D.2	688	Unstructured Road Detection and Steering Assist Based on HSV Color Space Segmentation for Autonomous Car	
Zeng, Shuai	1A.2	12	Distributed Alternating Direction Multiplier Method Based on Optimized Topology and Nodes Selection Strategy	
Zsedrovits, Tamas	3A.3	632	A bio-motivated vision system and artificial neural network for autonomous UAV obstacle avoidance	
Zubair, Anis	1A.2	7	Blackbox Testing Model Boundary Value of Mapping Taxonomy Applications and Data Analysis of Art and Artworks	
Zulfira, Fakhira	3B.3	650	Detection of Multi-Class Glaucoma Using Active Contour Snakes and Support Vector Machine	
Zulkifli, Fitri	1E.7	209	Development of Smart Energy Meter Based on LoRaWAN in Campus Area	

PAPER TITLES

5 A B C D E F G H I L M N O P Q R S T U V W

5 A B C D E F G H I L M N O P Q R S T U V W

5G New Radio (NR) Network Planning at Frequency 2,6 GHz in The Gold Triangle Area of Jakarta

5 A B C D E F G H I L M N O P Q R S T U V W

A bio-motivated vision system and artificial neural network for autonomous UAV obstacle avoidance

A Combination of Defected Ground Structure and Line Resonator for Mutual Coupling Reduction

A Comparative Study of Java and Kotlin for Android Mobile Application Development

A Kubernetes Algorithm for scaling Virtual Objects

Α

5

A Modified Deep Convolutional Network for Covid-19 detection based on chest X-ray images

A Robust Iris Segmentation Algorithm Based on Pupil Region for Visible Wavelength Environments

A Stacking Ensemble of Multi Layer Perceptrons to Predict Online Shoppers' Purchasing Intention

Analysis of Indonesia's Internet Topology Borders at the Autonomous System Level

Analysis of Performance Index in Transmission Expansion Planning of Sulawesi's Electricity System

Analytic Predictive of Hepatitis using The Regression Logic Algorithm

Android Forensic Tools Analysis for Unsend Chat on Social Media

Application For Detection Of Pedestrian Position On Zebra Cross

Aspect-based Opinion Mining on Beauty Product Reviews

B 5 A B C D E F G H I L M N O P Q R S T U V W

Benchmarking Explicit Rating Prediction Algorithms for Cosmetic Products Blackbox Testing Model Boundary Value of Mapping Taxonomy Applications and Data Analysis of Art and Artworks

C 5ABCDEFGHILMNOPQRSTUVW

Case Study: AppDynamics Application as Business Intelligence to Support Digital Business Operations at PT PGD

Center of Gravity Method for Finding Center of Laser Beam Projection on Landslide Measurement Classification of Customer Actions on Digital Money Transactions on PaySim Mobile Money Simulator using Probabilistic Neural Network (PNN) Algorithm

Combined Firefly Algorithm-Random Forest to Classify Autistic Spectrum Disorders Comparative Analysis of DDoS Detection Techniques Based on Machine Learning in OpenFlow Network

Comparison Of Eight Elements Array Structure Design For Coastal Surveillance Radar

Comparison of Feature Extraction for Speaker Identification System

Comparison of PSO, FA, and BA for Discrete Optimization Problems

Comparison of The Classification Data Mining Methods to Identify Civil Servants in Indonesian Social Insurance Company

Comparison of the Latest DTM with DEM Pleiades in Monitoring the Dynamic Peatland

Consumer Behavior in Social Commerce Adoption: Systematic Literature Review

Convolutional Network and Moving Object Analysis for Vehicle Detection in Highway Surveillance Videos COVID-19 Chest X-Ray Classification Using Convolutional Neural Network Architectures

D 5ABCDEFGHILMNOPQRSTUVW

xxxviii

Dayak Onion (Eleutherine palmifolia (L) Merr) as An Alternative Treatment in Early Detection of Dental Caries using Certainty Factor

DDoS Attack Detection in Software Defined Network using Ensemble K-means++ and Random Forest Decision Support System for Power Plant Improvement Investment Using Life-Cycle Cost Design and Development of Bit Error Measurement using FPGA for Visible Light Communication Design and Implementation of SVPWM Inverter to Reduce Total Harmonic Distortion (THD) on Three Phase Induction Motor Speed Regulation Using Constant V/F

Design and prototype development of internet of things for greenhouse monitoring system Design of Optimal Satellite Constellation for Indonesian Regional Navigation System based on GEO and GSO Satellites

Designing Wireless Sensor Network Routing on Agriculture Area Using The LEACH Protocol Detection of Multi-Class Glaucoma Using Active Contour Snakes and Support Vector Machine Detection of Sensor Node-less Area Using A Genetic Algorithm for Wireless Sensor Network Development and Implementation of Kalman Filter for IcT Sensors, Towards a Petter Provision Agriculture

Development and Implementation of Kalman Filter for IoT Sensors: Towards a Better Precision Agriculture Development of Smart Energy Meter Based on LoRaWAN in Campus Area

Development of Temperature and Humidity Control System in Internet-of-Things based Oyster Mushroom Cultivation

Development of The Personnel Monitoring System Using Mobile Application and Real-Time Database During the COVID19 Pandemic

Distributed Alternating Direction Multiplier Method Based on Optimized Topology and Nodes Selection Strategy Disturbance Observer-Based Speed Estimator for Controlling Speed Sensorless Induction Motor

E 5 A B C D E F G H I L M N O P Q R S T U V W

Effect of Android and Social Media User Growth on the Financial Technology Lending Borrowers and its Financing

Energy Management Efficiency and Stability Using Passive Filter in Standalone Photovoltaic Sudden Cloud Condition

Experimental Security Analysis for Fake eNodeB Attack on LTE Network Extraction Dependency Based on Evolutionary Requirement Using Natural Language Processing

F 5 A B C D E F G H I L M N O P Q R S T U V W

Facial Expression Recognition and Face Recognition Using a Convolutional Neural Network Feature Selection on Magelang Duck Egg Candling Image Using Variance Threshold Method Features of the Use of Solar Panels at Low Temperatures in the Arctic Firefly Algorithm-based Optimization of Base Transceiver Station Placement Fruits Classification from Image using MPEG-7 Visual Descriptors and Extreme Learning Machine

G 5 A B C D E F G H I L M N O P Q R S T U V W

Gender recognition based on ear images: a comparative experimental study Guided Genetic Algorithm to Solve University Course Timetabling with Dynamic Time Slot

H 5ABCDEFGHILMNOPQRSTUVW

Hybrid Method for Flower Classification in High Intra-class Variation

T

5 A B C D E F G H I L M N O P Q R S T U V W

Implementation of Fuzzy-PID Based MPPT for Stand Alone 1.75 kWP PV System

Implementation of Maximum Power Point Tracking on PV System using Artificial Bee Colony Algorithm Improving Classification Attacks in IOT Intrusion Detection System using Bayesian Hyperparameter Optimization

Indonesian Parsing using Probabilistic Context-Free Grammar (PCFG) and Viterbi-Cocke Younger Kasami (Viterbi-CYK)

Indonesian Stock Price Prediction including Covid19 Era Using Decision Tree Regression Indonesian Traffic Sign Recognition For Advanced Driver Assistent (ADAS) Using YOLOv4 Influence Distribution Training Data on Performance Supervised Machine Learning Algorithms Initial Access in 5G mmWave Communication using Hybrid Genetic Algorithm and Particle Swarm Optimization

Interference Mitigation in Cognitive Radio Network Based on Grey Wolf Optimizer Algorithm

L 5ABCDEFGHILMNOPQRSTUVW

Leveraging Side Information to Anime Recommender System using Deep learning

M 5 A B C D E F G H I L M N O P Q R S T U V W

Measurement of Information Security Awareness Level: A Case Study of Online Transportation Users Measuring Instagram Activity and Engagement Rate of Hospital: A Comparison Before and During COVID-19 Pandemic

Minimization of Power Losses through Optimal Placement and Sizing from Solar Power and Battery Energy Storage System in Distribution System

Model Development of Information Technology Value for Downstream Petroleum Industry

Modification of 2.2 GHz S-Band Rectangular Patch Microstrip Antenna using Truncated Corner Method for Satellite Applications

Modification of Wireless Reverse Charging Scheme with Bundling Optimization Issues

Multi-Point Travel Destination Recommendation System In Yogyakarta Using Hybrid Location Based Service-Floyd Warshall Method

Multilayer Secure Hardware Network Stack using FPGA

Р

Multivariate Time Series Forecasting Based Cloud Computing For Consumer Price Index Using Deep Learning Algorithms

N 5 A B C D E F G H I L M N O P Q R S T U V W

Network Attack Detection System Using Filter-based Feature Selection and SVM

0 5 A B C D E F G H I L M N O P Q R S T U V W

On Parameter Estimation of Stochastic Delay Difference Equation using the Two m-delay Autoregressive Coefficients

Optimization Coagulation Process of Water Treatment Plant Using Neural Network and Internet of Things (IoT) Communication

Optimization of SV-kNNC using Silhouette Coefficient and LMKNN for Stock Price Prediction

5 A B C D E F G H I L M N O P Q R S T U V W

Papaya Disease Detection Using Fuzzy Naïve Bayes Classifier Particle Filter Based Speed Estimator for Speed Sensorless Control in Induction Motor Performance Analysis FSR and DSR Routing Protocol in VANET with V2V and V2I Models Performance Analysis of Temporally Ordered Routing Algorithm Protocol and Zone Routing Protocol On Vehicular Ad-Hoc Network in Urban Environment

Performance Comparison of Data Mining Techniques for Rain Prediction Models in Indonesia Performance Enhancement in Macro-Femto Network Using a Modified Discrete Moth-flame Optimization Algorithm

Performance Enhancement of Multi-User Key Extraction Scheme (MKES) Based on Imperfect Signal Reciprocity Performance Evaluation of Cell-Edge Femtocell Densely Deployed in OFDMA-Based Macrocellular Network Performance Evaluation of IPTV Multicast Service Testing for XGS-PON Optical Line Termination Performance Evaluation of XGS-PON Optical Network Termination for Enterprise Customer Personality Dimensions Classification with EEG Analysis using Support Vector Machine Predicting User Preferences with XGBoost Learning to Rank Method Prediction of forest fire occurrence in peatlands using machine learning approaches Prediction of Gross Domestic Product (GDP) in Indonesia Using Deep Learning Algorithm Prediction of Liver Cancer Based on DNA Sequence Using Ensemble Method Prototype Design of IoT (Internet of Things)-based Load Monitoring System Proximity-based COVID-19 Contact Tracing System Devices for Locally Problems Solution PSO-Learned Artificial Neural Networks for Activity Recognition

Q 5 A B C D E F G H I L M N O P Q R S T U V W

Quality Assessment of Digital Terrestrial Television Broadcast in Surabaya

R 5ABCDEFGHILMNOPQRSTUVW

Real-time Testing on Improved Data Transmission Security in the Industrial Control System Removing Noise, Reducing dimension, and Weighting Distance to Enhance k-Nearest Neighbors for Diabetes Classification

Resource-Aware Pareto-Optimal Automated Machine Learning Platform

Risk Prediction of Major Depressive Disorder using Artificial Neural Network

Roadside Unit Power Saving using Vehicle Detection System in Vehicular Ad-hoc Network

Robust Control Design Procedure and Simulation of PRES Controller having Phase-Locked Loop(PLL) control technique in Grid-Tied Converter

Royale Heroes: A Unique RTS Game Using Deep Reinforcement Learning-based Autonomous Movement

S 5 A B C D E F G H I L M N O P Q R S T U V W

Ship Heading Control Using Nonlinear Model Predictive Control Single Snapshot-Spatial Compressive Beamforming for Azimuth Estimation and Backscatter Reconstruction Smart Safe Prototype Based Internet of Things (IoT) with Face and Fingerprint Recognition Some Numerical and Analytical Solutions to an Enzyme-Substrate Reaction-Diffusion Problem Speaker Recognition For Digital Forensic Audio Analysis Using Support Vector Machine Speaker Recognition Using Mel Frequency Cepstral Coefficient and Self-Organising Fuzzy Logic Speech Emotion Detection Using Mel-Frequency Cepstral Coefficient and Hidden Markov Model Speech Gender Classification Using Bidirectional Long Short Term Memory Stemming Javanese: Another Adaptation of the Nazief-Adriani Algorithm Students Academic Performance Prediction with k-Nearest Neighbor and C4.5 on SMOTE-balanced data Supervised Deep Learning for Thyroid Nodules Classification Based on Margin Characteristic

T 5ABCDEFGHILMNOPQRSTUVW

Techno-Economic 5G New Radio Planning at 26 GHz Frequency in Pulogadung Industrial Area Text-Independent Speaker Identification Using PCA-SVM Model The Best Parameter Tuning on RNN Layers for Indonesian Text Classification

The N-Sheet Model in Capacitated Multi-Period Cutting Stock Problem with Pattern Set-Up Cost

Sisca Octarina* Department of Mathematics Faculty of Mathematics and Natural Sciences Universitas Sriwijaya Inderalaya, Indonesia sisca_octarina@unsri.ac.id

Des Alwine Zayanti Department of Mathematics Faculty of Mathematics and Natural Sciences Universitas Sriwijaya Inderalaya, Indonesia desalwinez@unsri.ac.id Putra Bahtera Jaya Bangun Department of Mathematics Faculty of Mathematics and Natural Sciences Universitas Sriwijaya Inderalaya, Indonesia putra5987@unsri.ac.id Sisca Pebrina Department of Mathematics Faculty of Mathematics and Natural Sciences Universitas Sriwijaya Inderalaya, Indonesia siscapebrina22@gmail.com

Laila Hanum Department of Biology Faculty of Mathematics and Natural Sciences Universitas Sriwijaya Inderalaya, Indonesia lailahanum@ymail.com

Abstract— Cutting Stock Problem (CSP) is a problem to optimize the stock usage with specifics cutting patterns. This research implemented the N-Sheet model in Capacitated Multi-Period Cutting Stock Problem with the pattern set-up cost. This study used the data of the rectangular stocks, which cut to a variety of item sizes. The *Pattern Generation* (PG) algorithm determined the cutting patterns. The PG produced 21 optimal patterns based on the length and 23 optimal patterns based on the width to fulfil customer requirements. And then, we formulated the patterns into the N-Sheet model. The optimal solution from the N-Sheet model in this research were six cutting patterns. We used the 1st, 2nd, 5th, and 19th patterns for cutting based on length, and the 4th and 23rd patterns for cutting based on the width. The solutions of the model were not so optimal because it yielded too many surplus items.

Keywords—Cutting Stock Problem, Pattern Generation, N-Sheet, Multi-Period, Pattern

I. INTRODUCTION

Industry players are always looking for ways to get optimal profits without increasing capital or detrimental consumers. They can optimize raw materials and minimize the remaining cut (trim loss). Wood, paper, glass, steel, marble, and other industries mostly used this method. The problem of setting raw materials in Operation Research (OR) is commonly called the Cutting Stock Problem (CSP), which is cutting the available standard raw materials in specific sizes to minimize the trim loss. According to its dimensions, CSP consists of one-dimensional CSP, two-dimensional CSP, and three-dimensional CSP. Cutting only one side is called a onedimensional CSP. This study discussed two-dimensional CSP, where the cutting considers the width and length of the raw material. Meanwhile, for three-dimensional CSP, cutting considers the width, length, and height.

Reference [1] said that in general, cutting raw materials consists of cutting a specific set of small objects or commonly referred to as items, from certain more massive groups, called stock sheets. Reference [2] stated that according to its form, CSP is divided into two, namely irregular and regular. Researchers have developed CSP research from time to time with various problem-solving algorithms starting from pattern formation [2]–[6], model building [7]–[10], and solving methods [11]–[13]. Two-dimensional CSP using the Arc-Flow model with guillotine constraints was formulated by [1]. And then, [14] used the matheuristic approach to solved the Arc-Flow model. In general, CSP research uses the Arc-flow model and other models, such as the N-Sheet model, Dotted Board and others. Another study was conducted by [15] regarding two-dimensional CSP of the guillotine problem by minimizing trim loss. This study's result indicated a modified model to handle specific cases, for example, the correct two-stage guillotine cutting without trimming. Reference [16] proposed two heuristics for the capacitated multi-period CSP with the pattern set-up cost.

Capacitated multi-period CSP is a cutting process with more than one period, where the period is the units of time for completing the work. Furthermore, [17] created a pattern formation program for two-dimensional CSP using a modified Branch and Bound algorithm, but this program still produces many of the same patterns. Reference [6] examined CSP with the Pattern Generation algorithm for onedimensional problems with pattern setting costs. Reference [18] implemented the Branch and Cut method in the twodimensional N-Sheet CSP model, wherein this study did not take the pattern set-up cost. They used the N-Sheet model for solving problems with one-dimensional or two-dimensional raw materials. This model can solve a single stock or multiple stock problems, however they used only a single period, not multi-periods.

This study designed the cutting patterns for rectangular and guillotine-shaped items with the pattern set-up cost. The cost included the inventory cost per unit in each period, each item's usage cost and the pattern cost. The search for cutting patterns in this study used the Pattern Generation algorithm. There have been limited studies concerned with capacitated multi-periods CSP. Therefore, this research formulated the N-sheet model on the Capacitated Multi-Period CSP to minimize the trim loss.

II. RESEARCH METHOD

There are some steps taken in this study. First, we described and classified data. These data included the stock's size, item's length, width measurements, and item's requests. The stocks were rectangular, and there were three types of item's dimension. The data implemented in the Pattern Generation algorithm were sorted, descending from the most extensive to the smallest sized product. The Pattern Generation algorithm processed data to obtain the first stage cutting pattern and the second stage cutting pattern. The N-Sheet model was formulated and solved it using the LINDO 61 program.

III. RESULT AND DISCUSSIONS

This study used paper raw material data in the form of a rectangle with a length of 3,000 mm and a width of 3,500 mm with three items. Table 1 showed the item's sizes and demand.

TABLE 1. ITEM SIZE AND DEMAND

The <i>i</i> th item	Length	Width	Number of Demand
1	378 mm	200 mm	75 sheets
2	555 mm	496 mm	6 sheets
3	555 mm	755 mm	4 sheets

Table 1 showed the highest demand was 75 sheets, while for the second demand as many as six sheets, and third demand as many as four sheets. There are three items, with 378 mm \times 200 mm, 555 mm \times 496 mm, and 555 mm \times 755 mm dimensions.

The stock with standard width (w' = 3,500) and standard length (l' = 3,000) is cut to 3 sizes with a certain width and length, respectively denoted by w_i and l_i where (i = 1, 2, 3) and $w_1 > w_2 > w_3$. The cutting pattern of the PG algorithm is needed to meet the demand. A cutting pattern with the minimum trim loss is referred to as a feasible cutting pattern.

We obtained the feasible cutting pattern through a search tree. The tree level represents the required width, arranged in descending order where the largest is at the first level while the smallest size is placed at the tree's last level. The initial vertex of the first level represents the standard width used to generate the pattern. Therefore, a separate search tree is used to create patterns according to each standard width.

The branch of level *i* in the search tree represents the multiplication of the number of items by the width w_i obtained according to the j^{th} cutting pattern. This multiplication represents the sum of the widths cut from the stock to fill the width w_i . The vertices from the second level to the n^{th} level represent the remaining width after fulfilling the specified cut from the previous i - 1 branch. The final vertex of the search tree shows the remaining reductions resulting from the different cutting patterns. The search tree is built from top to bottom, then left to right.

We generate the cutting pattern by applying PG algorithm [2] to the data in Table 1. The steps of the PG algorithms are as follows [2]:

- 1. Ordering the width w_i (i = 1, 2, 3) in descending order. So, we have $w_1 = 555$ mm, $w_2 = 555$ mm, and $w_3 = 378$ mm.
- 2. Use Eq. 1 to fill the first column. (j = 1) $a_{i1} = \left\lfloor \frac{w' - \sum_{z=1}^{i-1} a_{z1} w_z}{w_i} \right\rfloor, i = 1, 2, 3$ (1) 3. Use Eq. (2) to find the trim loss.
- 3. Use Eq. (2) to find the trim loss. $c_j = w' - \sum_{i=1}^3 a_{ij}w_i$ (2) 4. Set level index (row index) *i* to n - 1.
- 4. Set level index (row index) i to n − 1.
 5. Check level of vertex, eg. vertex (i, j). If the vertex equals to zero (a_{ij} = 0), go to Step 7. If not generate new column j = j + 1 with these elements:
 a. a_{zj} = a_{z(j-1)} (z = 1, 2, ..., i − 1) to fill the
 - preceeding vertex (*i*, *j*).
 - b. $a_{ij} = a_{i(j-1)} 1$ to fill the vertex (i, j).
 - c. Fill the remaining from vertex-*j* using Eq. (3). $a_{ij} = \left[\frac{w' - \sum_{z=1}^{i-1} a_z w_z}{w_i}\right]$ (3)
- 6. Use Eq. (2) to find the trim loss from the *j*th pattern. Go back to Step 4.
- 7. Set i = i 1. If i > 0, go to Step 5. Otherwise, stop.

By implementing the PG algorithm and the data in Table 1, we got 21 cutting patterns based on the length shown in Fig. 1 and 2. We must read the search tree in Fig. 1 from top to bottom and continue from left to right. From Fig. 1, we can see that the first level is 3,000. It means that the length of the stock is 3,000 mm. After that, we took the second level of the tree from the top. If we used the 3,000 mm of the stock to cut the item with a length of 555 mm, we could get five pieces of 555 mm. The remaining stock is 225 mm. From 225 mm of the remaining, we continue to the third level of the search tree. 225 mm of the remaining can not use any more to cut the second item of 555 mm, so the number of cutting is 0. In the fourth level of the search tree, we use 225 mm of the remaining paper to cut the third item with 378 mm. Because the remaining stock is smaller than the item, we can not use it to cut for the third item, and the number of cuts in the fourth level becomes zero. We can see the trim loss in the last vertex at the tree's bottom. The first pattern based on the length is five pieces of 555 mm with 225 mm of trim loss. The second pattern is four pieces of 555 mm and a piece of 555 mm with 225 mm of trim loss. The third pattern is four pieces of 555 mm and two pieces of 378 mm with 24 mm of trim loss. The patterns continue until the 21th pattern. Fig. 2 is a continuation of Fig. 1. For details, the cutting patterns based on the length as shown in Fig. 1 and Fig. 2 can be seen in Table 2.

On the other hand, by implementing the PG algorithm to the data in Table 1, we got 23 cutting patterns based on the width. These patterns can be seen in Fig. 3 and Fig. 4. We also must read the search tree in Fig. 3 from top to bottom and continue from left to right. From Fig. 3, we can see that the first level is 3,500. It means that the length of the stock is 3,500 mm. After that, we took the second level of the tree from the top. If we used the 3,500 mm of the stock to cut the item with a length of 755 mm, we could get four pieces of 755 mm. The remaining stock is 48 mm. From 48 mm of the remaining, we continue to the third level of the search tree. 48 mm of the remaining can not use any more to cut the second item of 496 mm, so the number of cutting is 0. In the fourth level of the search tree, we use 48 mm of the remaining paper to cut the third item with 200 mm. In this last level, we get 2 pieces of 200 mm. The trim loss is in the last vertex at the tree's bottom. The first pattern based on the width is four pieces of 755 mm and two pieces of 200 mm, with 80 mm of trim loss. The

second pattern is three pieces of 755 mm, two pieces of 496 mm, and a piece of 200 mm with 43 mm of trim loss. The third pattern is three pieces of 755 mm, a piece of 496 mm, and three pieces of 200 mm with 139 mm of trim loss. The patterns continue until the 23^{rd} pattern. Fig. 3 is a continuation of Fig 4. For details, the cutting patterns based on the width as shown in Fig. 3 and Fig. 4 can be seen in Table 3.

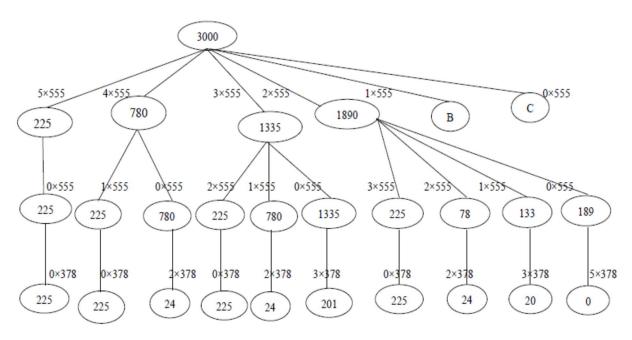


Figure 1. The Tree of Cutting Patterns Based on The Length Part 1

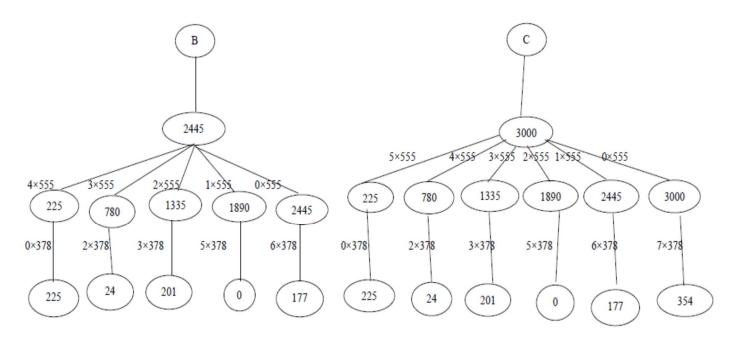


Figure 2. The Tree of Cutting Patterns Based on The Length Part 2

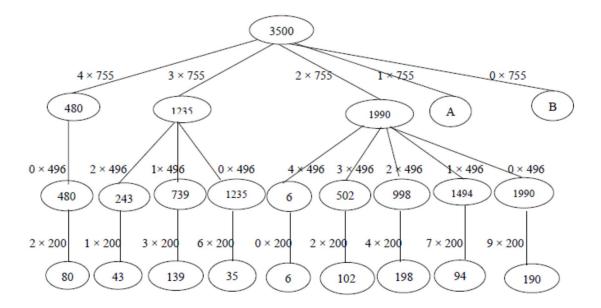


Figure 3. The Tree of Cutting Patterns Based on The Width Part 1

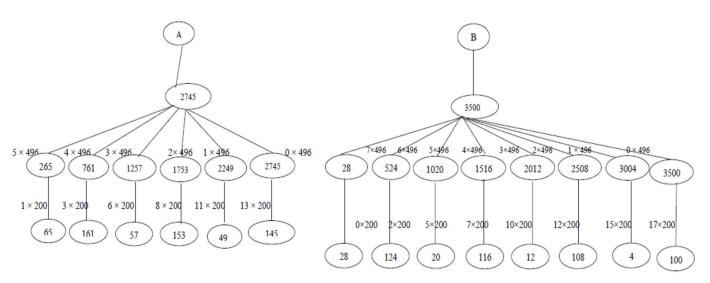


Figure 4. The Tree of Cutting Patterns Based on The Width Part 2

From Table 2, if we use the first pattern, we can get five pieces of items with length 555 mm and 225 mm of trim loss, and so on until the 21^{st} pattern. From Table 3, if we use the first pattern, we can get four pieces of items with width 755 mm, two pieces of items with width 200 mm, and 80 mm of trim loss. All of the patterns from Table 2 and 3 were formulated to the N-Sheet model. The objective function of the N-Sheet model is to minimize the trim loss in order to obtain an optimal cutting pattern.

The N-Sheet model for the cutting patterns in Table 2 and Table 3 can be seen in Model (4)-(8).

- x_p is the number of p pattern which cut based on the length.
- y_p is the number of p pattern which cut based on the width.
- l_{ij} is the number of the i^{th} item which cut according to the j^{th} pattern.

Minimize

$$Z = \sum_{t=1}^{T} \left(\sum_{i=1}^{n} h_i I_{it} + \sum_{p=1}^{p^{max}} (pC + \beta) x_p \right) + \sum_{t=1}^{T} \left(\sum_{i=1}^{n} h_i I_{it} + \sum_{p=1}^{p^{max}} (pC + \beta) y_p \right)$$
(4)

Subject to :

$$\sum_{i=1}^{p^{max}} l_{ij} x_p \le I_i, i = 1, \dots, p^{max}$$
⁽⁵⁾

$$\sum_{j=1}^{p} l_{ij} y_p \le l_i, j = 1, \dots, p^{max}$$
(6)

$$\sum_{i=1}^{p^{max}} x_p = \mathbb{N}, i = 1, \dots, p^{max}$$

$$\tag{7}$$

$$\sum_{j=1}^{p^{max}} y_p = \mathbb{N}, \quad j = 1, \dots, p^{max}$$

$$\tag{8}$$

- *n* is the number of item.
- T is the number of period, T = 2
- h_i is the inventory cost per unit per period.
- *L* is the length of stock, L = 3,500
- *C* is the unit cost, C = 3,500

- I_{it} is the inventory number of the i^{th} item in the t^{th} period.
- *p* is the number of pattern.
- t is the period.
- β is the pattern set up cost, $\beta = 0.01 L$
- \mathbb{N} is the positive integer number

TABLE 2. THE CUTTING PATTERNS BASED ON THE LENGTH

The j th	The Number of Items			Trim loss
pattern	555 mm	555 mm	378 mm	(mm)
1	5	0	0	225
2	4	1	0	225
3	4	0	2	24
4	3	2	0	225
5	3	1	2	24
6	3	0	3	201
7	2	3	0	225
8	2	2	2	24
9	2	1	2 3 5	201
10	2	0	5	0
11	1	4	0	225
12	1	3	2	24
13	1	2	3	201
14	1	1	5	0
15	1	0	6	177
16	0	5	0	225
17	0	4	2 3	24
18	0	3		201
19	0	2	5	0
20	0	1	6	177
21	0	0	7	354

 p^{max} is the maximum number of patterns

By using the data in Table 1 with the variables and parameters that had explained before, the N-Sheet model can be seen in Model (9).

TABLE 3. THE CUTTING PATTERNS BASED ON THE	WIDTH
--	-------

The	The Number of Items			Trim loss
j th pattern	755 mm	496 mm	200 mm	(mm)
1	4	0	2	80
2	3	2	1	43
3	3	1	3	139
4	3	0	6	35
5	2	4	0	6
6	2	3	2	102
7	2	2	4	198
8	2	1	7	94
9	2	0	9	190
10	1	5	1	65
11	1	4	3	161
12	1	3	6	57
13	1	2	8	153
14	1	1	11	49
15	1	0	13	145
16	0	7	0	28
17	0	6	2	124
18	0	5	5	20
19	0	4	7	116
20	0	3	10	12
21	0	2	12	108
22	0	1	15	4
23	0	0	17	100

Minimize

$$\begin{split} & Z = 13, l_{11} + 13, l_{12} + 10, 51l_{21} + 10, 51l_{22} + 5, 78l_{31} + 5, 78l_{32} + 3535x_1 + 7035x_2 + 10535x_3 + 14035x_4 + \\ & 17535x_5 + 21035x_6 + 24535x_7 + 28035x_8 + 31535x_9 + 35035x_{10} + 38535x_{11} + 42035x_{12} + 45535x_{13} + 49035x_{14} + \\ & 52535x_{15} + 56035x_{16} + 59535x_{17} + 63035x_{18} + 66535x_{19} + 70035x_{20} + 73535x_{21} + 3535y_1 + 7035y_2 + 10535y_3 + \\ & 14035y_4 + 17535y_5 + 21035y_6 + 24535y_7 + 28035y_8 + 31535y_9 + 35035y_{10} + 38535y_{11} + 42035y_{12} + 45535y_{13} + \\ & 49035y_{14} + 52535y_{15} + 56035y_{16} + 59535y_{17} + 63035y_{18} + 66535y_{19} + 70035y_{20} + 73535y_{21} + 77035y_{22} + \\ & 80535y_{23} \end{split}$$

Subject to :

(9)

 $7x_{1} + 6x_{2} + 5x_{3} + 3x_{4} + 2x_{5} + 6x_{7} + 5x_{8} + 3x_{9} + 2x_{10} + 5x_{12} + 3x_{13} + 2x_{14} + 3x_{16} + 2x_{17} + 2x_{19} \ge 75$ $x_{2} + 2x_{3} + 3x_{4} + 4x_{5} + 5x_{6} + x_{8} + 2x_{9} + 3x_{10} + 4x_{11} + x_{13} + 2x_{14} + 3x_{15} + x_{17} + 2x_{18} + x_{20} \ge 6$ $x_{7} + x_{8} + x_{9} + x_{10} + x_{11} + 2x_{12} + 2x_{13} + 2x_{14} + 2x_{15} + 3x_{16} + 3x_{17} + 3x_{18} + 4x_{19} + 4x_{20} + 5x_{21} \ge 4$ $17y_{1} + 15y_{2} + 12y_{3} + 10y_{4} + 7y_{5} + 5y_{6} + 2y_{7} + 13y_{9} + 11y_{10} + 8y_{11} + 6y_{12} + 3y_{13} + y_{14} + 9y_{15} + 7y_{16} + 4y_{17} + 2y_{18} + 6y_{20} + 3y_{21} + y_{22} + 2y_{23} \ge 75$

 $y_2 + 2y_3 + 3y_4 + 4y_5 + 5y_6 + 6y_7 + 7y_8 + y_{10} + 2y_{11} + 3y_{12} + 4y_{13} + 5y_{14} + y_{16} + 2y_{17} + 3y_{18} + 4y_{19} + y_{21} + 2y_{22} \ge 6 \\ y_9 + y_{10} + y_{11} + y_{12} + y_{13} + y_{14} + 2y_{15} + 2y_{16} + 2y_{17} + 2y_{18} + 2y_{19} + 3y_{20} + 3y_{21} + 3y_{22} + 4y_{23} \ge 4 \\ x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 + x_{10} + x_{11} + x_{12} + x_{13} + x_{14} + x_{15} + x_{16} + x_{17} + x_{18} + x_{19} + x_{20} + x_{21} \ge 1 \\ y_1 + y_2 + y_3 + y_4 + y_5 + y_6 + y_7 + y_8 + y_9 + y_{10} + y_{11} + y_{12} + y_{13} + y_{14} + y_{15} + y_{16} + y_{17} + y_{18} + y_{19} + y_{20} + y_{21} \\ \end{cases}$

 $+ y_{22} + y_{23} \ge 1$

 $x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}, x_{18}, x_{19}, x_{20}, , x_{21} \ge 0$

width, $j = 1,2,3, \dots, 23$.

By using the LINDO 61, the optimal solution of Model (9) is Z = 12, $x_1 = 9$, $x_2 = 2$, $x_5 = 1$, $x_{19} = 1$, $y_4 = 2$, $y_{23} = 28$. Based on the optimal solution obtained, we have some of the results, as shown below.

Z = 12 means that we must use 12 pieces of stocks with dimension 3,000 mm × 3,500 mm,

 $x_2 = 2$ means that we use the 2nd cutting pattern two times, $x_5 = 1$ means that we use the 5th cutting pattern one time, $x_{19} = 1$ means that we use the 19th cutting pattern one time, The value of x_1, x_2, x_5 , and x_{19} means that the 1st, 2nd, 5th and 19th are cutting patterns based on the length in the first stage. Also the value of y_4 and y_{23} means that the 4th and 23rd are cutting patterns based on the width. $y_4 = 2$ means that the 4th cutting pattern is cut two times, and $y_{23} = 28$ means that the 23rd cutting pattern is cut 28 times based on the width. From the results, there are still many cutting patterns chosen. And if we use the optimal patterns, there will be many surplus for the first item. Compare to the research by [18], Model (9) in this research are still not useful enough in solving the problem with data in Table 1, because of the surplus items.

IV. CONCLUSIONS

Based on the results and discussion, the N-Sheet model can be used for single stock CSP where it can include the cost component of pattern set. The pattern set-up cost consists of the cost of the inventory per unit in each period, the cost of using each item and the cost of determining the pattern. These costs have been determined from the beginning of the cutting pattern. The optimal solution obtained shows that there is a great deal of surplus for the first item. The solution shows that the N-Sheet CSP Capacitated Multi-Period model is not useful enough in solving problems in the data of Table 1.

For further research, the Cutting Stock Problem model's more extensions are critically essential to improve than previous models. We suggest computational tests for further study.

ACKNOWLEDGMENT

This research is supported by Universitas Sriwijaya through Sains, Teknologi dan Seni (SATEKS) Research Grant Scheme, 2020.

REFERENCES

- R. Macedo, C. Alves, and J. M. Valério de Carvalho, "Arc-flow model for the two-dimensional guillotine cutting stock problem," *Comput. Oper. Res.*, vol. 37, no. 6, pp. 991–1001, 2010, doi: 10.1016/j.cor.2009.08.005.
- [2] S. Octarina, M. Radiana, and P. B. J. Bangun, "Implementation of pattern generation algorithm in forming Gilmore and Gomory model for two cutting stock problem," dimensional in IOP Conference Series: Materials Science and Engineering, 2018, vol. 300. no. 1. doi: 10.1088/1757-899X/300/1/012021.
- [3] W. Rodrigo, "A Method for Two-Dimensional Cutting Stock Problem with Triangular Shape Items," *Br. J. Math. Comput. Sci.*, vol. 3, no. 4, pp. 750–771, 2013, doi: 10.9734/bjmcs/2013/5165.
- [4] C. Arbib, F. Marinelli, and P. Ventura, "Onedimensional cutting stock with a limited number of open stacks: Bounds and solutions from a new integer linear programming model," *Int. Trans. Oper. Res.*, vol. 23, no. 1–2, pp. 47–63, 2016, doi: 10.1111/itor.12134.
- [5] N. Ma, Y. Liu, Z. Zhou, and C. Chu, "Combined cutting stock and lot-sizing problem with pattern setup," *Comput. Oper. Res.*, vol. 95, pp. 44–55, 2018, doi: 10.1016/j.cor.2018.02.016.
- [6] Y. Cui, C. Zhong, and Y. Yao, "Pattern-set generation algorithm for the one-dimensional cutting stock problem with setup cost," *Eur. J. Oper. Res.*, vol. 243,

no. 2, pp. 540–546, 2015, doi: 10.1016/j.ejor.2014.12.015.

- [7] S. Octarina, M. Janna, E. S. Cahyono, P. B. J. Bangun, and L. Hanum, "The modified branch and bound algorithm and dotted board model for triangular shape items," in *Journal of Physics: Conference Series*, 2020, vol. 1480, no. 1, doi: 10.1088/1742-6596/1480/1/012065.
- [8] S. Octarina, V. Ananda, and E. Yuliza, "Gilmore and gomory model on two dimensional multiple stock size cutting stock problem," *J. Phys. Conf. Ser.*, vol. 1282, no. 1, 2019, doi: 10.1088/1742-6596/1282/1/012015.
- [9] T. Liu, Z. Luo, H. Qin, and A. Lim, "A branch-andcut algorithm for the two-echelon capacitated vehicle routing problem with grouping constraints," *Eur. J. Oper. Res.*, vol. 266, no. 2, pp. 487–497, 2018, doi: 10.1016/j.ejor.2017.10.017.
- [10] S. Octarina, D. G. Juita, N. Eliyati, and P. B. J. Bangun, "Set Covering Model in Solving Multiple Cutting Stock Problem," *Sci. Technol. Indones.*, vol. 5, no. 4, p. 121, 2020, doi: 10.26554/sti.2020.5.4.121-130.
- [11] T. Y. Lin, S. M. Chen, and M. T. Yu, "Solving the cutting-stock problem by using the Sequential Quadratic Programming optimization method," *IEEE Int. Conf. Ind. Eng. Eng. Manag.*, vol. 2016-Decem, pp. 1699–1702, 2016, doi: 10.1109/IEEM.2016.7798167.
- [12] J. F. V. Julliany Sales Brandão1, Alessandra Martins Coelho, Felipe do Carmo, "Study of Different Setup Costs in SingleGA to Solve a One-Dimensional Cutting Stock Problem," *GSTF J. Comput.*, vol. 2, no. 1, pp. 1–6, 2012, doi: 10.5176_2010-2283_2.1.118.
- [13] A. Tandabani, S. Janakiraman, and S. Pothula, "Cutting Stock Problem Original.Pdf."
- [14] N. Braga, C. Alves, R. Macedo, and J. V. De Carvalho, "Combined cutting stock and scheduling: A matheuristic approach," *Int. J. Innov. Comput. Appl.*, vol. 7, no. 3, pp. 135–146, 2016, doi: 10.1504/IJICA.2016.078724.
- [15] N. Rodrigo, "One-Dimensional Cutting Stock Problem with Cartesian Coordinate Points," *Int. J. Syst. Sci. Appl. Math.*, vol. 2, no. 5, p. 99, 2017, doi: 10.11648/j.ijssam.20170205.14.
- [16] N. Ma, Y. Liu, and Z. Zhou, "Two heuristics for the capacitated multi-period cutting stock problem with pattern setup cost," *Comput. Oper. Res.*, vol. 109, pp. 218–229, 2019, doi: 10.1016/j.cor.2019.05.013.
- [17] S. Octarina, P. B. J. Bangun, and S. Hutapea, "The Application to Find Cutting Patterns in Two Dimensional Cutting Stock Problem," pp. 1–5, 2017.
- [18] P. B. J. Bangun, S. Octarina, and A. P. Pertama, "Implementation of branch and cut method on nsheet model in solving two dimensional cutting stock problem," in *Journal of Physics: Conference Series*, 2019, vol. 1282, no. 1, doi: 10.1088/1742-6596/1282/1/012012.

Some Numerical and Analytical Solutions to an Enzyme-Substrate Reaction-Diffusion Problem

Sudi Mungkasi

Department of Mathematics, Faculty of Science and Technology, Sanata Dharma University Yogyakarta, Indonesia sudi@usd.ac.id

Abstract-We consider an enzyme-substrate reactiondiffusion problem. Unsteady and steady state models are recalled. For the unsteady state case, the model is in the form of a second order partial differential equation. We solve the unsteady state model using the explicit numerical finite difference method, which is forward difference in time and centered difference in space. For the general steady state case, the model is in the form of a second order ordinary differential equation. We solve the general steady state model using the explicit first order Euler's numerical method. For the particular steady state case of the unsaturated catalytic kinetics, we derive the exact analytical solution using the characteristic method of ordinary differential equations. For the particular steady state case of the saturated catalytic kinetics, we derive the exact analytical solution using the direct-integration method. The obtained exact analytical solutions are identical with the existing exact analytical solutions derived using the variational iteration method. With the aid of computer, the enzyme-substrate reaction-diffusion problem can be solved and simulated successfully for both unsteady and steady state cases.

Index Terms—enzyme-substrate system, finite difference method, reaction-diffusion problem, saturated steady state, unsaturated steady state

I. INTRODUCTION

Chemical reaction problems may incorporate diffusion. This process is then called a reaction-diffusion problem. The reaction-diffusion process has been modelled into a mathematical equation. The derivation involves the so called Michaelis–Menten kinetics. The Michaelis–Menten kinetics itself has been widely recognised in chemistry for reaction problems [1, 2, 3, 4, 5, 6, 7].

A number of authors provide some studies of reactiondiffusion in chemical reaction problems. Lyons et al. [8, 9] derived a dimensionless model of the problem, where the system was a boundary value problem. The model of Lyons et al. [8, 9] was then studied by Rahamathunissa and Rajendran [10], where the system was changed to an initial value problem. Furthermore, Mahalakshmi and Hariharan [11] provide an approximation method for solving the initial value problem that was considered by Rahamathunissa and Rajendran [10]. The unsaturated and saturated steady state solutions to the initial value problem have been obtained by Rahamathunissa and Rajendran [10] using a variational iteration method. The variational iteration method was due to He [12, 13, 14] and it has been successfully used to solve various problems [15, 16, 17, 18, 19, 20, 21, 22, 23, 24] including the mathematical chemistry areas [25, 26, 27, 28, 29, 30].

In this paper, we provide an alternative method to solve unsaturated and saturated steady state problems. We implement the characteristic and direct-integration methods for ordinary differential equations in solving the unsaturated and saturated steady state problems. We also provide the unstability property of the equilibrium solution. In addition, finite difference methods for solving the unsteady and steady state problems are provided. Finite difference method has been shown to be powerful for solving various problems [31, 32, 33, 34, 35], which also include mathematical chemistry areas [36, 37, 38, 39, 40, 41, 42, 43, 44, 45].

This paper is simply organised as follows: we recall the mathematical models and provide their analytical properties; then, numerical finite difference methods are presented; afterwards, numerical results and discussion are provided; and finally, some concluding remarks are written.

II. MATHEMATICAL MODELS AND THEIR PROPERTIES

Enzyme-substrate reaction-diffusion models have been derived by Lyons et al. [8]. In this section, we recall the models of unsteady and steady state cases.

A. Unsteady state model

We consider the following unsteady state dimensionless model $(2 + 1)^{2} = (2 + 1)^{2}$

$$\frac{\partial u(x,t)}{\partial t} = \frac{\partial^2 u(x,t)}{\partial x^2} - \frac{\gamma u(x,t)}{1 + \alpha u(x,t)}$$
(1)

with initial condition

$$u(x,0) = 0,$$
 (2)

and boundary conditions

$$\frac{\partial u(0,t)}{\partial x} = 0, \qquad u(1,t) = 1.$$
(3)

Here the space domain is $0 \le x \le 1$, the time domain is $t \ge 0$, and u(x,t) represents the concentration of substrate at any position x at any time t. In addition, parameters α and γ are positive constants relating to the reaction process (see [8, 9, 10, 11] for details).

B. Steady state model

For the steady state condition, time t does not influence the dynamics of the system. Therefore, the steady state model is the following ordinary differential equation

$$\frac{d^2u(x)}{dx^2} - \frac{\gamma u(x)}{1 + \alpha u(x)} = 0.$$
 (4)

Let us consider the function

$$f(u) = -\frac{\gamma u}{1 + \alpha u}.$$
(5)

This function f is zero if and only if u = 0. This u = 0 is the equilibrium solution. As

$$f'(u) = -\frac{\gamma}{(1+\alpha u)^2},\tag{6}$$