ARMILIA, SONIA and Efendi, Rusdi (2018) PENGENALAN HURUF HIJAIYAH TULISAN TANGAN DENGAN MENGGUNAKAN EKSTRAKSI CIRI GEOMETRIC MOMENT INVARIANT DAN SELF ORGANIZING MAPS. Undergraduate thesis, Sriwijaya University.
Text
RAMA_55201_09111402032_compressed.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (1MB) | Request a copy |
|
Preview |
Text
RAMA_55201_09111402032_8826630017_01_front_ref.pdf - Accepted Version Available under License Creative Commons Public Domain Dedication. Download (367kB) | Preview |
Text
RAMA_55201_09111402032_8826630017_02.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (203kB) | Request a copy |
|
Text
RAMA_55201_09111402032_8826630017_03.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (517kB) | Request a copy |
|
Text
RAMA_55201_09111402032_8826630017_04.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (238kB) | Request a copy |
|
Text
RAMA_55201_09111402032_8826630017_05.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (62kB) | Request a copy |
|
Text
RAMA_55201_09111402032_8826630017_06_ref.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (90kB) | Request a copy |
Abstract
Handwriting hijaiyah recognition has a high degree of difficulty. Handwriting recognition problems are the size and shape of handwriting that are not fixed. This study aims to develop Self Organizing Maps (SOM) Algorithm to recognize handwritten hijaiyah. Also in this study using extraction feature Geometric Moment Invariant (GMI). The data used in the study using primary data in the form of handwritten hijaiyah image. The result of handwriting hijaiyah recognition using GMI and SOM has an accuracy of 95%.Because in the extraction of GMI characteristics unchanged on rotational treatment, this study made the introduction of handwriting hijaiyah data that rotated with an accuracy of 92%.
Item Type: | Thesis (Undergraduate) |
---|---|
Uncontrolled Keywords: | Huruf Hijaiyah, Tulisan Tangan, Ekstraksi Ciri, Geometric Moment Invariant, Self Organizing Maps. |
Subjects: | T Technology > T Technology (General) > T58.5-58.64 Information technology > T58.5 General works Management information systems Cf. HD30.213 Industrial management Cf. HF5549.5.C6+ Communication in personnel management Cf. TS158.6 Automatic data collection systems (Production control) |
Divisions: | 09-Faculty of Computer Science > 55201-Informatics (S1) |
Depositing User: | Mr Halim Sobri |
Date Deposited: | 19 Sep 2019 06:07 |
Last Modified: | 19 Sep 2019 06:07 |
URI: | http://repository.unsri.ac.id/id/eprint/8099 |
Actions (login required)
View Item |