KLASIFIKASI KATEGORI WAKTU KELULUSAN MAHASISWA MENGGUNAKAN DATA AKADEMIK SEBAGAI UPAYA PERINGATAN DINI BAGI MAHASISWA AKTIF MENGGUNAKAN ALGORITMA DECISION TREE, NAÏVE BAYES DAN SUPPORT VECTOR MACHINE STUDI KASUS : JURUSAN SISTEM INFORMASI UNIVERSITAS SRIWIJAYA

HANNA, NUR and Heroza, Rahmat Izwan (2022) KLASIFIKASI KATEGORI WAKTU KELULUSAN MAHASISWA MENGGUNAKAN DATA AKADEMIK SEBAGAI UPAYA PERINGATAN DINI BAGI MAHASISWA AKTIF MENGGUNAKAN ALGORITMA DECISION TREE, NAÏVE BAYES DAN SUPPORT VECTOR MACHINE STUDI KASUS : JURUSAN SISTEM INFORMASI UNIVERSITAS SRIWIJAYA. Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_57201_09031281722080.pdf] Text
RAMA_57201_09031281722080.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (2MB) | Request a copy
[thumbnail of RAMA_57201_09031281722080_TURNITIN.pdf] Text
RAMA_57201_09031281722080_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (4MB) | Request a copy
[thumbnail of RAMA_57201_09031281722080_0030068703_01_front_ref.pdf]
Preview
Text
RAMA_57201_09031281722080_0030068703_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Preview
[thumbnail of RAMA_57201_09031281722080_0030068703_02.pdf] Text
RAMA_57201_09031281722080_0030068703_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (593kB) | Request a copy
[thumbnail of RAMA_57201_09031281722080_0030068703_03.pdf] Text
RAMA_57201_09031281722080_0030068703_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (351kB) | Request a copy
[thumbnail of RAMA_57201_09031281722080_0030068703_04.pdf] Text
RAMA_57201_09031281722080_0030068703_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (556kB) | Request a copy
[thumbnail of RAMA_57201_09031281722080_0030068703_05.pdf] Text
RAMA_57201_09031281722080_0030068703_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (215kB) | Request a copy
[thumbnail of RAMA_57201_09031281722080_0030068703_06_ref .pdf] Text
RAMA_57201_09031281722080_0030068703_06_ref .pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (324kB) | Request a copy
[thumbnail of RAMA_57201_09031281722080_0030068703_07_lamp.pdf] Text
RAMA_57201_09031281722080_0030068703_07_lamp.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Request a copy

Abstract

Graduating on time is one of the indicators of student and campus success. Students are expected to graduate on time in 4 years or less. In real practice, students are not always able to complete undergraduate education within four years, this needs to be evaluated, but there is no valid data to determine the cause of the graduation rate that is not on time Understanding students who graduate on time is very important for educators or educators. campus for early warning efforts that can lead to student success in the long term so that timely graduation can be improved. Using academic data, classification will be carried out to determine the category of student study period. The algorithms used are Decision Tree, Naïve Bayes and Support Vector Machine (SVM). Cross-Industry Standard Process for Data Mining (CRISP-DM) is a standard that has been developed that is used to assist the analysis process of an industry as a problem solving strategy for companies or research departments.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Data mining, Prediksi, Naïve bayes, Decision Tree, Support Vector Machine, Waktu Kelulusan Mahasiswa
Subjects: Q Science > QA Mathematics > QA75-76.95 Calculating machines > QA76.9.B45 Big data. Machine learning. Quantitative research. Metaheuristics.
Q Science > QA Mathematics > QA75-76.95 Calculating machines > QA76.9.D343 Data mining. Database searching. Big data.
Q Science > QA Mathematics > QA8.9-QA10.3 Computer science. Artificial intelligence. Computational complexity. Data structures (Computer scienc. Mathematical Logic and Formal Languages
Divisions: 09-Faculty of Computer Science > 57201-Information Systems (S1)
Depositing User: Nur Hanna
Date Deposited: 23 Nov 2022 05:23
Last Modified: 23 Nov 2022 05:23
URI: http://repository.unsri.ac.id/id/eprint/82566

Actions (login required)

View Item View Item