Cite this: New J. Chem., 2011, 35, 2245-2252

Octahedral niobium cluster-based solid state halides and oxyhalides: effects of the cluster condensation *via* an oxygen ligand on electronic and magnetic properties[†]

Bruno Fontaine,^a Stéphane Cordier,^{*a} Régis Gautier,^{*a} Fakhili Gulo,^{ab} Jean-François Halet,^a Berislav Perić^{ac} and Christiane Perrin^{*a}

Received (in Montpellier, France) 29th April 2011, Accepted 1st June 2011 DOI: 10.1039/c1nj20377k

The influences of an oxygen ligand on the structural, magnetic and electronic properties of octahedral niobium cluster-based oxides and oxychlorides are reported. The Nb₆ metal cluster is edge-bridged by twelve inner ligands and additionally bonded to six apical ligands to form Nb₆Lⁱ₁₂L^a₆ units (L = Cl, O) wherein oxygen and chlorine are perfectly ordered. Oxygen favours the interconnection of clusters *via* double O^{i-a}/O^{a-i} bridges in a similar way to the double S^{i-a}/S^{a-i} bridges found in Chevrel phases based on face capped Mo₆Lⁱ₈L^a₆ units. Periodic density functional theory (DFT) calculations confirm that increasing the number of inner oxygen ligands at the expense of chlorine atoms favours the 14 metal-electron (ME) count per octahedral cluster unit. It is also shown that weak interactions occur between neighbouring clusters. Indeed, magnetic measurements performed on A_xNb₆Cl₁₂O₂ (A = Rb, x = 0.816(8); A = Cs, x = 1) series containing 15-ME species evidence antiferromagnetic interactions at low temperatures. Broken-symmetry DFT calculations of exchange parameters within spin dimer analysis confirm the experimental results.

Introduction

The term *metal atom cluster*, introduced by F. A. Cotton in the early 1960's, defines a finite group of metal atoms held together *via* metal–metal bonds.¹ Typical examples are found for octahedral nano-sized metallic clusters of transition elements which are easily obtained by solid state synthesis at high temperatures. They are associated with halogen or chalcogen ligands to form $[(M_6L_{12}^i)L_6^{a/n-} \text{ and } [(M_6L_8^i)L_6^{a/n-} \text{ units } (a = apical, i = inner).^2$ As sketched in Fig. 1, M₆ clusters are bonded to six terminal ligands (L^a) in both kinds of units but they are edge-bridged by twelve inner ligands (Lⁱ) in the $[(M_6L_{12}^i)L_6^a]^{n-}$ unit (M = Nb, Ta, W) and face-capped by eight inner ligands (Lⁱ) in the $[(M_6L_8^i)L_6^a]^{n-}$ unit (M = Mo, W, Re). The intrinsic properties of M₆ cluster units—one- or two-electron reversible redox process, magnetism and luminescence—depend on the

E-mail: rgautier@ensc-rennes.fr, stephane.cordier@univ-rennes1.fr, christiane.perrin@univ-rennes1.fr; Fax: +33 22323 8199; Tel: +33 22323 8122

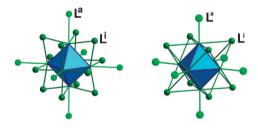


Fig. 1 Representation of edge-bridged $(M_6L_{12}^i)L_6^a$ (left) and facecapped $(M_6L_8^i)L_6^a$ (right) units.

nature of the metal and the ligands. The solubilisation of M_6 solid state compounds provides $[(M_6L_{12}^i)L_6^{a})^{n-}$ or $[(M_6L_8^i)L_6^{a}]^{n-}$ discrete building blocks in solution with specific physicostructural properties that can be used, *via* soft chemistry routes, in the design of hybrid organic/inorganic assemblies,³ organometallic stars and dendrimers,⁴⁻⁶ luminescent nanoparticles,^{7,8} liquid crystals^{9,10} or coordination polymeric framework¹¹⁻¹³ as well as molecular junctions.^{14,15}

The structures of niobium octahedral cluster halides are built up from either discrete or interconnected units in one, two or three directions of space (noted 1-, 2- and 3D respectively) by common L^{a-a} apical ligands (1-D: $Cs_2Nb_6Br_5F_{12}^{-16}(Cs_2Nb_6Br_5F_7F_2^{-a}F_4^a$ according to the Schäfer notation),² 2-D: $Li_2Nb_6Cl_{16}$ ($Li_2Nb_6Cl_{12}^iCl_{4/2}^{a-a}Cl_2$),¹⁷ 3-D: Nb_6F_{15} ($Nb_6F_{12}^iF_6^{a-a}$)¹⁸ and $Na_2NbF_6-Nb_6F_{12-x}i_xF_6^a$ (X = Cl, Br)^{19,20} series). In the Nb_6L_{15} 3-D compounds ($Nb_6L_{12}^iL_{6/2}^{a-a}$)

^a Sciences Chimiques de Rennes, UMR 6226, CNRS—Université de Rennes 1-Ecole Nationale Supérieure de Chimie de Rennes, CS 50837, 35708 Rennes Cedex 7, France,

^b Sriwijaya University, Department of Chemical Education, Palembang, Indonesia

^c Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia

[†] We dedicate this work to Didier Astruc on the occasion of his 65th birthday.