DETEKSI KANTUK PADA PENGEMUDI MOBIL MENGGUNAKAN METODE RETINEX DAN CONVOLUTIONAL NEURAL NETWORK

ANANDA, ADITYA TRI and Fachrurrozi, Muhammad and Rachmatullah, Muhammad Naufal (2022) DETEKSI KANTUK PADA PENGEMUDI MOBIL MENGGUNAKAN METODE RETINEX DAN CONVOLUTIONAL NEURAL NETWORK. Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_55201_09021181924019.pdf] Text
RAMA_55201_09021181924019.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (3MB) | Request a copy
[thumbnail of RAMA_55201_09021181924019_TURNITIN.pdf] Text
RAMA_55201_09021181924019_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (6MB) | Request a copy
[thumbnail of RAMA_55201_09021181924019_0222058001_0001129204_01_front_ref.pdf]
Preview
Text
RAMA_55201_09021181924019_0222058001_0001129204_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Preview
[thumbnail of RAMA_55201_09021181924019_0222058001_0001129204_02.pdf] Text
RAMA_55201_09021181924019_0222058001_0001129204_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (615kB) | Request a copy
[thumbnail of RAMA_55201_09021181924019_0222058001_0001129204_03.pdf] Text
RAMA_55201_09021181924019_0222058001_0001129204_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (388kB) | Request a copy
[thumbnail of RAMA_55201_09021181924019_0222058001_0001129204_04.pdf] Text
RAMA_55201_09021181924019_0222058001_0001129204_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Request a copy
[thumbnail of RAMA_55201_09021181924019_0222058001_0001129204_05.pdf] Text
RAMA_55201_09021181924019_0222058001_0001129204_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (821kB) | Request a copy
[thumbnail of RAMA_55201_09021181924019_0222058001_0001129204_06.pdf] Text
RAMA_55201_09021181924019_0222058001_0001129204_06.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (187kB) | Request a copy
[thumbnail of RAMA_55201_09021181924019_0222058001_0001129204_07_ref.pdf] Text
RAMA_55201_09021181924019_0222058001_0001129204_07_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (218kB) | Request a copy
[thumbnail of RAMA_55201_09021181924019_0222058001_0001129204_08_lamp.pdf] Text
RAMA_55201_09021181924019_0222058001_0001129204_08_lamp.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (142kB) | Request a copy

Abstract

Deteksi kantuk pada pengemudi mobil pernah dibuat sebelumnya. Pendeteksian tersebut belum bekerja secara optimal jika citra wajah pengemudi mobil mempunyai intensitas cahaya yang kurang. Untuk mengoptimasi nilai intensitas cahaya tersebut dibutuhkan suatu metode Retinex. Retinex dapat mengoptimasi intensitas cahaya dari suatu citra dengan dibuktikan nilai indeks PSNR jauh lebih tinggi daripada metode non-retinex lainnya. Penelitian dilakukan dengan cara mengembangkan perangkat lunak yang dapat mengoptimasi intensitas cahaya pada citra wajah pengemudi mobil dengan menggunakan metode Retinex. Hasil dari pengujian dengan jumlah data 5500 gambar pengemudi mobil menunjukkan tingkat akurasi setelah diterapkan Retinex meningkat 5% dari tingkat akurasi tanpa menggunakan Retinex.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Optimasi Citra, Intensitas Cahaya, Deteksi Kantuk, Retinex, Convolutional Neural Network
Subjects: T Technology > T Technology (General) > T1-995 Technology (General)
Divisions: 09-Faculty of Computer Science > 55201-Informatics (S1)
Depositing User: Aditya Tri Ananda
Date Deposited: 12 Jan 2023 07:32
Last Modified: 06 Jun 2023 07:26
URI: http://repository.unsri.ac.id/id/eprint/85898

Actions (login required)

View Item View Item