PAPER • OPEN ACCESS

Enhanced photocatalytic CO₂ reduction activity of silvered titania prepared by wet deposition method

To cite this article: C T Handoko et al 2019 J. Phys.: Conf. Ser. 1282 012098

View the article online for updates and enhancements.

You may also like

- Electrodes for Nonaqueous Oxygen Reduction Based upon Conductive Polymer-Silver Composites Amy C. Marschilok, Shali Zhu, Christopher C. Milleville et al.
- La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.0}O₃ Current Collectors via Ag Infiltration for Microtubular Solid Oxide Fuel Cells with Intermediate Temperature Operation Masashi Mori, Yu Liu and Takanori Itoh
- Facile synthesis of ZnO–Ag nanocomposite and its photocatalytic activity Debasmita Sardar, Jayeta Maity, Manoj Kumar Ghosalya et al.

ECS Toyota Young Investigator Fellowship

ECS TOYOTA

For young professionals and scholars pursuing research in batteries, fuel cells and hydrogen, and future sustainable technologies.

At least one \$50,000 fellowship is available annually. More than \$1.4 million awarded since 2015!

Application deadline: January 31, 2023

Learn more. Apply today!

This content was downloaded from IP address 36.69.54.72 on 27/01/2023 at 09:06

Enhanced photocatalytic CO₂ reduction activity of silvered titania prepared by wet deposition method

C T Handoko¹, A Huda¹, M D Bustan^{2*}, B Yudono¹ and F Gulo^{1*}

¹ Program Studi Ilmu Lingkungan, Universitas Sriwijaya, Jalan Padang Selasa No. 524, Palembang 30121, Sumatera Selatan, Indonesia

² Program Studi Teknik Kimia, Fakultas Teknik, Universitas Sriwijaya, Jalan Palembang Prabumulih Km. 32 Indralaya Ogan Ilir 30862, Sumatera Selatan, Indonesia

*E-mail: djajashanta@yahoo.co.id; fgulo@unsri.ac.id

Abstract. Titania (TiO₂) was successfully modified with Ag nanoparticles by wet deposition method. The established structures adopt the anatase crystal structure and contain a mixture of Ag^{0} and Ag^{1+} species. The Ag loading triggers extended absorption in the visible light region. Furthermore, the Ag loading improves the photocatalytic CO₂ reduction efficiency compared to the pure TiO2. The optimal Ag loading is 2% molar ratio of Ag versus TiO2 and the photocatalytic activity will decrease with higher Ag loading. This improved efficiency may be attributed to the synergistic effect between electron trapping and Surface Plasmon Resonance (SPR) phenomenon of Ag nanoparticle on TiO₂ surface.

1. Introduction

The growing consumption of fossil fuels leads to greatly increase the atmospheric CO_2 levels. This fact causes tremendous concerns about the effect of global warming and future energy supply [1]. Thus, the research activity about CO_2 reduction and/or conversion has become a major focus for the scientists. The photocatalytic CO_2 reduction is one of the promising solutions to overcome this problem since it can reduce both of the CO₂ greenhouse gas emissions and solve the energy crisis, in an environmentally friendly manner. The photocatalytic CO₂ reduction produces some useful chemical feedstocks and fuels such as CO, formic acid, CH₃OH, H₂, and CH₄ [2-4].

Titania (TiO_2) is the most widely used photocatalyst material since it has higher photocatalytic activity at 300 nm $< \lambda < 390$ nm, chemical and physical stability, abundance in nature, low cost, and environmental benign [5–7]. However, utilizing pure TiO_2 still has some drawbacks. Some of the drawbacks of using pure TiO₂ in photocatalytic reactions are having a wide band gap (~3,2 eV) [8] and electron-hole recombination [9]. One way to overcome these disadvantages is by noble metal deposition [10].

The noble metals have a lower Fermi level than that of titanium oxide, thus photoexcited electron can migrate from the conduction band of TiO₂ to the deposited metal, while photogenerated holes remain in the valence band of TiO₂. The electron trapping process prevents the electron-hole recombination, thus it can increase the photocatalytic efficiency[10]. The noble metal deposition on the surface of the TiO₂ can also reduce the band gap energy and improve visible light absorption of TiO₂ through the Surface Plasmon Resonance (SPR) phenomenon [11]. Among of the noble metals, the Pt deposition is effective in increasing TiO_2 photocatalytic activity. However, due to a relatively

Sriwijaya International Conference on Basic and Applied Science	IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 1282 (2019) 012098	doi:10.1088/1742-6596/1282/1/012098

expensive price of Pt, other noble metals are used. Silver is the most promising deposited noble metals due to its low cost, easy preparation, and good composite properties with TiO₂ [12].

Several previous studies based on Ag/TiO_2 materials have been carried out for investigating photocatalytic CO_2 reduction activity. The products are varies depending on the material properties, material preparation, and also the reactor condition. The material properties itself depending on the Ag concentration deposited on TiO_2 surface. On the other hand, the reaction system includes the reactor design, light source, lamp power, wavelength, reactant phase, the amount of catalyst, and material pretreatment [13–16].

Herein, the Ag nanoparticles are deposited on the TiO_2 surface through wet deposition method due to the easy preparation and low cost. Furthermore, the effect of Ag loading on TiO_2 is studied for the photocatalytic CO_2 reduction to CH_4 in a gas-solid phase under a high-purity system.

2. Experimental Section

2.1. Sample Preparation

The Ag deposited on TiO₂ materials was prepared by simple wet deposition method. In brief, one mol of TiO₂ (Merck, \geq 99%) and 0.01 mol of AgNO₃ (Merck, \geq 99.9%) were dissolved with 100 mL of distilled water until slurry formed. The Ag loading was count as 1 mol% versus TiO₂. The mixture was stirred continuously for 4 hours and heated at 80 °C. The obtained slurry was allowed to settle overnight and then heated at 100 °C for 10 hours to evaporate the water. After 10 hours, the obtained-powder was ground using a mortar and calcined at 500 °C for 3 hours. The final powder was characterized by XRD and UV-vis spectrophotometer. The similar procedure was carried out for other different Ag loadings (2-4 mol% versus TiO₂). This procedure was similar to previous studies [17,18].

2.2. Photocatalytic CO₂ Reduction Test

The photocatalytic CO₂ reduction was performed under ultra-high vacuum high-purity gas-phase photoreactor [19–22]. The gas source was 6.0 He (99.9999% He) and 1.5% CO₂/He. The gas and H₂O mixture was obtained by passing the gas through the water saturator at 5 °C. The 200 W Hg/Xe lamp with the water filter was used as the light source. Before starting the CO₂ reduction measurement, the cleaning procedure was performed to make sure that the samples were free from carbon-containing species. The cleaning steps including pre-heated at 400 °C for 3 hours with a tubular furnace, batch cleaning, and flow cleaning. The batch cleaning was conducted by passing pure He through the water saturator until the reactor pressure reached 1500 mbar, and then the light was turned on for 6 hours. While the flow cleaning was done in the same way, but the He-H₂O mixture was only passed in the reactor. The photocatalytic CO₂ reduction experiment was performed with the similar procedure as batch cleaning step, except for the use of CO₂ gas as the reactant. Thus, the reactant consisted of 1.5% CO₂/He and H₂O. The products were analyzed using Shimadzu Tracera GC 2010 plus which was equipped with a barrier ionization discharge (BID) and flame ionized (FID) detector.

3. Results and Discussion

The XRD patterns (Figure is not shown) show that all samples adopt anatase crystal structure (JCPDS File No. 83-2243), indicating that Ag species is only deposited on TiO₂ surface and not incorporated into TiO₂ structure. The reflexes of Ag species peaks are appeared at $2\theta \sim 33^{\circ}$ and $\sim 44^{\circ}$. The first corresponds to the characteristic of Ag⁰ species with lattice plane of (200) (JCPDS File No. 04-0783), while the latter corresponds to the diffraction pattern of (111) planes of Ag₂O species (JCPDS File No. 41-1104). Furthermore, the UV-Vis investigation reveals that the Ag loading triggers the material absorption in the visible light region (400-700 nm) compared to the bare TiO₂. The broad absorption band from 400 nm to 700 nm attributes to the characteristic of Surface Plasmon Resonance (SPR) of Ag nanoparticle [23].

The products analysis are only focused on methane (CH_4) production, which is the most dominant product of the reaction, although the reaction also produces ethane (C_2H_6) and ethane (C_2H_4) in relatively small amounts. The material produces CH_4 even though CO_2 gas is not added as a reactant. This indicates that there are CO_2 species adsorbed on the surface of photocatalyst material. In addition

Sriwijaya International Conference on Basic and Applied Science	IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 1282 (2019) 012098	doi:10.1088/1742-6596/1282/1/012098

to adsorbed CO_2 species, it is likely that the materials also contain several carbon impurity species which are adsorbed during material preparation. The light irradiation at high temperatures can eliminate the adsorbed hydrocarbon [24]. The cleaning process can reduce unwanted CH_4 product around 50%. Thus, we ensure that the next CH_4 product originally comes from photocatalytic CO_2 reduction.

The CH₄ is only obtained when the materials are exposed to the light source. Figure 1 clearly shows the evolution of CH₄ during light irradiation. As depicted in Figure 1, all of Ag loading improves the photocatalytic efficiency in CO₂ reduction compared to the pure TiO₂. The final CH₄ evolution after 6 hours of radiation is 12.03 ppm, 17.20 ppm, 19.75 ppm, 14.01 ppm, and 13.18 ppm for the bare TiO₂, Ag/TiO₂ 1%, Ag/TiO₂ 2%, and Ag/TiO₂ 4%, respectively. The highest photocatalytic activity is found in Ag/TiO₂%. Further increase in Ag concentration (3% and 4%) leads to a gradual decrease in photocatalytic activity.

Figure 1. Photocatalytic CO₂ reduction over Ag/TiO₂ materials

This phenomenon can be described as follows. The Ag species act as electron trapping due to the lower Fermi energy level compared to TiO_2 . Thus, the photogenerated electron located in the conduction band of TiO_2 is quickly transferred to Ag species deposited on the surface of TiO_2 and prevent the electron-hole recombination [25]. Furthermore, the Schottky barrier energy is formed between TiO_2 surface and Ag metallic. This Schottky barrier blocks the retransferring electron process from Ag to TiO_2 , thus the electron remains in the Ag species [26]. These processes improve the electron-hole separation and finally increase the photocatalytic activity.

In addition, the SPR also contributes to improve photocatalytic activity of as-prepared materials. The SPR effect boosts electron energy in Ag nanoparticle when exposed to the visible light. The strong electron field of SPR triggers the fast reactions with the electron acceptor from reactant [13]. A synergistic effect between SPR and electron-hole separation gives a significant impact to the photocatalytic activity improvement.

Increasing the Ag loading after 2% blocks the active site of the photocatalyst, thus decreases the photocatalytic activity. Bensouici et al. (2015) investigated that an increase of Ag loading caused agglomeration phenomenon of Ag nanoparticles and eventually limit the contact between photocatalyst and the light source. Furthermore, the interface between Ag species and TiO_2 has high defect density and known as one of electron-hole recombination center [27].

Sriwijaya International Conference on Basic and Applied Science

IOP Conf. Series: Journal of Physics: Conf. Series 1282 (2019) 012098 doi:10.1088/1742-6596/1282/1/012098

The reaction possibility which occurs during the photocatalytic CO_2 reduction using Ag/TiO₂ material can be proposed following these equations.

$TiO_2 + hv \longrightarrow h_{VB}^+ + e_{CB}^-$	(1)
$h_{VB}^+ + e_{CB}^- \longrightarrow heat$	(2)
$e_{CB} \longrightarrow e_{Ag}$	(3)
e_{Ag}^{-} + hv (visible) $\longrightarrow e_{SPR}^{-}$	(4)
$h_{VB}^++H_2O \longrightarrow HO^-+H^+$	(5)
$HO^- + h_{VB}^+ \longrightarrow HO^-$	(6)
$H^+ + e_{SPR}^- \longrightarrow H^-$	(7)
$CO_2 + e_{SPR} \longrightarrow CO_2^-$	(8)
$CO_2^{-} + h_{VB}^+ \longrightarrow CO + OH^-$	(9)
$CO+ e_{SPR} \longrightarrow CO^{-}$	(10)
$\cdot CO^- + H^- \longrightarrow C + OH^-$	(11)
$C + H^{-} \longrightarrow CH$	(12)
$\cdot CH + H^{\cdot} \longrightarrow CH_2$	(13)
$CH_2 + H^{\cdot} \longrightarrow \cdot CH_3$	(14)
$\cdot CH_3 + H^{\cdot} \longrightarrow CH_4$	(15)

Where:

 h_{VB}^+ is the hole generated in valence band of TiO₂

 $e_{CB}^{\text{-}}$ is the photoexcited electron occurred in conduction band of TiO_2

 e_{Ag} is the electron transferred from TiO₂ to Ag

 e_{SPR} is SPR effect of Ag

When a photon with the energy higher than the band gap energy of TiO₂, the electron will be excited to the conduction band (CB) of TiO₂, while the hole is formed in the valence band (VB) (equation 1). The photogenerated electron and hole can also react together releasing heat (equation 2). This phenomenon is called recombination of electron-hole which makes the limitation of photocatalytic activity. The other non-recombined electron transferred from TiO₂ CB to the Ag surface as an electron acceptor (equation 3). SPR effect of Ag nanoparticle enhances the activity of trapped electron in Ag surface (equation 4). Active hole further can react with adsorbed water to produce HO⁻ and H⁺ (equation 5). The formed HO⁻ and H⁺ react with hole and electron, respectively to form hydroxyl radical and hydrogen radical (equation 6-7). At the same time, the adsorbed CO₂ species react with e_{SPR} for producing $\cdot CO_2^-$ (equation 9. Furthermore, the reaction between CO and e_{SPR}^- produces carbonyl radical as shown in equation 10. The C residue or surficial C is produced from the reaction between carbonyl radical and hydrogen radical (equation 11). Further reaction of this C residue with hydrogen radical produces intermediate species according to equation 12-14. The last step is the formation of CH₄ from the methyl radical and hydrogen radical (equation 15).

As described above that the Ag/TiO₂ materials consist of Ag⁰, Ag¹⁺, and TiO₂. This composite combines the heterojunction properties of Ag₂O/TiO₂ and also electron trap-SPR characteristic of Ag⁰. Figure 2 shows the schematic photocatalytic CO₂ reduction using Ag/TiO₂.

IOP Conf. Series: Journal of Physics: Conf. Series 1282 (2019) 012098 doi:10.1088/1742-6596/1282/1/012098

Figure 2. Scheme of photocatalytic CO₂ reduction over Ag/TiO₂ material

The electron trapping mechanism of Ag^0 and formation of CH_4 over Ag/TiO_2 photocatalyst have been discussed in equations 4-18. The CO_2 gas is more strongly adsorbed on Ag_2O species compared to Ag^0 . Stuve et al. (1982) revealed that the metallic Ag^0 requires pre-adsorption of O_2 molecules to adsorb CO_2 molecules. Therefore, the CO_2 cannot be adsorbed properly on Ag^0 species [28]. The photocatalytic mechanism in the presence of Ag_2O on TiO₂ surface is described as follows.

The Ag_2O/TiO_2 is the type II p-n heterojunction. When reaching equilibrium, TiO_2 (n-type semiconductor) has a positive charge, while Ag_2O (p-type semiconductor) has a negative charge. When a suitable photon energy exposes the material, several photoexcited electrons in the conduction band of Ag_2O migrates to the conduction band of TiO_2 . The photogenerated hole moves from valence band of TiO_2 to the valence band of Ag_2O . This electron-hole transfer occurs due to the formation of an electric field at the p- Ag_2O/n -TiO₂ heterojunction and eventually retards the electron-hole recombination [29]. Most electrons in the conduction band of TiO_2 directly contribute to the formation of CH₄ through the equations 11-18.

4. Conclusion

The Ag/TiO₂ in different loading (1-4%) was successfully synthesized by a simple wet deposition method. All of Ag loading show improvement in photocatalytic CO₂ reduction activity compared to the bare TiO₂. This improved efficiency due to the synergistic effect between electron trapping of Ag⁰ species and also SPR phenomenon occurred in Ag⁰ species. Furthermore, the mixed valence of Ag⁰ and Ag⁺¹ offers beneficial for photocatalytic performance due to the formation of both p-Ag₂O/n-TiO₂ heterojunction and electron trapping phenomenon of Ag/TiO₂ materials.

Acknowledgment

This research was funded by the Ministry of Research, Technology and Higher Education of Indonesia (grant number: 2064.31/D3/PG2017) and the German Ministry of Education and Research (BMBF) in the scope of the funding scheme CO₂Plus (Project-No. 033RC033, PROPHECY). The authors would like to thank colleagues from Heterogenous Photocatalyst Department of Leibniz Institute for Catalysis at the University of Rostock (LIKAT) for providing the photocatalytic CO₂ reduction measurement.

References

- Chen S, Pan B, Zeng L, Luo S, Wang X and Su W 2017 La₂Sn₂O₇ enhanced photocatalytic CO₂ reduction with H₂O by deposition of Au co-catalyst *RSC Adv*. 7 14186–91
- [2] Walsh J J, Jiang C, Tang J and Cowan A J 2016 Photochemical CO₂ reduction using structurally controlled g-C₃N₄ Phys. Chem. Chem. Phys. 18 24825–9
- [3] Dahl S and Chorkendorff I 2012 Towards practical implementation Nat. Mater. 11 100–1
- [4] Roy A, Chhetri M, Prasad S, Waghmare U V. and Rao C N R 2018 Unique Features of the Photocatalytic Reduction of H₂O and CO₂ by New Catalysts Based on the Analogues of

IOP Conf. Series: Journal of Physics: Conf. Series **1282** (2019) 012098 doi:10.1088/1742-6596/1282/1/012098

CdS, $Cd_4P_2X_3$ (X = Cl, Br, I) ACS Appl. Mater. Interfaces 10 2526–36

- [5] Lai Y, Chen Y, Zhuang H and Lin C 2008 A facile method for synthesis of Ag/TiO₂ nanostructures *Mater. Lett.* **62** 3688–90
- [6] Zhao B and Chen Y-W 2011 Ag/TiO₂ sol prepared by a sol–gel method and its photocatalytic activity *J. Phys. Chem. Solids* **72** 1312–8
- [7] Huang M, Xu C, Wu Z, Huang Y, Lin J and Wu J 2008 Photocatalytic discolorization of methyl orange solution by Pt modified TiO₂ loaded on natural zeolite *Dye. Pigment.* **77** 327–34
- [8] Zhang J, Zhou P, Liu J and Yu J 2014 New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO₂ *Phys. Chem. Chem. Phys.* **16** 20382–6
- [9] Low J, Cheng B and Yu J 2017 Surface modification and enhanced photocatalytic CO₂ reduction performance of TiO₂: a review *Appl. Surf. Sci.* **392** 658–86
- [10] Gupta S M and Tripathi M 2011 A review of TiO₂ nanoparticles *Chinese Sci. Bull.* **56** 1639–57
- [11] Eskandarloo H, Badiei A, Behnajady M A and Afshar M 2015 Enhanced photocatalytic removal of phenazopyridine by using silver-impregnated SiO₂-TiO₂ nanoparticles: optimization of synthesis variables *Res. Chem. Intermed.* **41** 9929–49
- [12] Vamathevan V, Amal R, Beydoun D, Low G and McEvoy S 2002 Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles J. Photochem. Photobiol. A Chem. 148 233–45
- [13] Liu E, Kang L, Wu F, Sun T, Hu X, Yang Y, Liu H and Fan J 2014 Photocatalytic reduction of CO₂ into methanol over Ag/TiO₂ nanocomposites enhanced by surface plasmon resonance *Plasmonics* 9 61–70
- [14] Yu B, Zhou Y, Li P, Tu W, Li P, Tang L, Ye J and Zou Z 2016 Photocatalytic reduction of CO₂ over Ag/TiO₂ nanocomposites prepared with a simple and rapid silver mirror method *Nanoscale* 8 11870–4
- [15] Kočí K, Matějka V, Kovář P, Lacný Z and Obalová L 2011 Comparison of the pure TiO₂ and kaolinite/TiO₂ composite as catalyst for CO₂ photocatalytic reduction *Catal. Today* 161 105– 9
- [16] Kočí K, Matějů K, Obalová L, Krejčíková S, Lacný Z, Plachá D, Čapek L, Hospodková A and Šolcová O 2010 Effect of silver doping on the TiO₂ for photocatalytic reduction of CO₂ *Appl. Catal. B Environ.* **96** 239–44
- [17] Kulkarni R M, Malladi R S, Hanagadakar M S, Doddamani M R and Bhat U K 2016 Ag-TiO₂ nanoparticles for photocatalytic degradation of lomefloxacin *Desalin*. *Water Treat.* 57 16111–8
- [18] Saha S, Wang J M and Pal A 2012 Nano silver impregnation on commercial TiO₂ and a comparative photocatalytic account to degrade malachite green Sep. Purif. Technol. 89 147– 59
- [19] Dilla M, Pougin A and Strunk J 2017 Evaluation of the plasmonic effect of Au and Ag on Tibased photocatalysts in the reduction of CO₂ to CH₄ J. Energy Chem. 26 277–83
- [20] Pougin A, Dilla M and Strunk J 2016 Identification and exclusion of intermediates of photocatalytic CO₂ reduction on TiO₂ under conditions of highest purity *Phys. Chem. Chem. Phys.* 18 10809–17
- [21] Dilla M, Mateblowski A, Ristig S and Strunk J 2017 Photocatalytic CO₂ reduction under continuous flow high-purity conditions: influence of light intensity and H₂O concentration *ChemCatChem* 9 4345–52
- [22] Dilla M, Schlögl R and Strunk J 2017 Photocatalytic CO₂ reduction under continuous flow high-purity conditions: quantitative evaluation of CH₄ formation in the steady-state *ChemCatChem* 9 696–704
- [23] Albiter E, Valenzuela M A, Alfaro S, Valverde-Aguilar G and Martínez-Pallares F M 2015 Photocatalytic deposition of Ag nanoparticles on TiO₂: Metal precursor effect on the structural and photoactivity properties J. Saudi Chem. Soc. 19 563–73
- [24] Wu J C S and Huang C-W 2010 In situ DRIFTS study of photocatalytic CO₂ reduction under UV irradiation *Front. Chem. Eng. China* **4** 120–6
- [25] Sclafani A and Herrmann J-M 1998 Influence of metallic silver and of platinum-silver

IOP Conf. Series: Journal of Physics: Conf. Series 1282 (2019) 012098 doi:10.1088/1742-6596/1282/1/012098

bimetallic deposits on the photocatalytic activity of titania (anatase and rutile) in organic and aqueous media *J. Photochem. Photobiol. A Chem.* **113** 181–8

- [26] Linsebigler A L, Lu G and Yates J T 1995 Photocatalysis on TiO₂ Surfaces: Principles, Mechanisms, and Selected Results Chem. Rev. 95 735–58
- [27] Bensouici F, Souier T, Dakhel A A, Iratni A, Tala-Ighil R and Bououdina M 2015 Synthesis, characterization and photocatalytic behavior of Ag doped TiO₂ thin film *Superlattices Microstruct.* 85 255–65
- [28] Stuve E M, Madix R J and Sexton B A 1982 An EELS study of CO₂ and CO₃ adsorbed on oxygen covered Ag(110) *Chem. Phys. Lett.* **89** 48–53
- [29] Sarkar D, Ghosh C K, Mukherjee S and Chattopadhyay K K 2013 Three dimensional Ag₂O/TiO₂ type-II (p–n) nanoheterojunctions for superior photocatalytic activity ACS Appl. Mater. Interfaces 5 331–7