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Abstract—The mobile robots rely on trajectory generation 

problem when they are navigating in several environments, for 
achieving the best path. One of the solution by using a heuristic 
method, named Particle Swarm Optimization (PSO). In the 
previous study, by using such method, the mobile robot can 
find the best route towards the target without collision, 
moreover, its simplicity in algorithms, implement easily and 
has few parameters to regulate. However, the PSO original 
algorithm can’t guarantee to produce an optimal solution. 
Local optimum still occurs especially in complex and dynamic 
environments, due to premature convergence. It causes the 
mobile robot collisions with obstacles and generates the long 
path to the target. In this paper, dynamic PSO is developed by 
using dynamic inertia function in setting parameter to 
accelerate convergence and re-initialization of particles 
performed to overcome the premature convergence. The 
comparison with three algorithms, such as OPSO, GPSO, and 
DPSO have analyzed in this paper. The proposed DPSO 
algorithm produce the optimum solution faster with the 
convergence of fewer than 150 iterations in static obstacles and 
200 iterations on the moving obstacle, 4% shorter traveled 
lengths, 13% more smooth, with fast processing and it 
guaranteed to avoid collisions and stable movement to achieve 
the target.  

Keywords— Route Optimization, Non-holonomic, Leader-
Follower, Particle Swarm Optimization 

I. INTRODUCTION 

The distributed robot’s coordination and control in a 
group have attracted many researchers over the past few 
years. One of many research topics is the problem of 
coordination between robots in controlling the formation of 
some robots on the some applications, such as unmanned 
ground robot, unmanned aerial robot, unmanned underwater 
robot, flying, and satellite [1][2][3][4][5][6]. Various 
strategies have been proposed with a variety of approaches to 
control the formation of a group of robots, including 
behavior-based, virtual structure and leader-follower 
[5][6][7][8]. 

In some environment like a factory, the leader-follower 
approach becomes an important research, due to they must 
be communication during the process to accomplish the 
tasks. In the leader-follower application, one or more robots 
are appointed as the leaders, and the others are the followers 
to achieve the target. The leader is a reference to follower 
robots, who need to position themselves and maintain the 
desired relative position with respect to the leader [8][9]. In 
such approach, to determine formation maneuvers, it is only 
necessary to determine the leader's path and, the desired 
relative position and orientation between the leaders and the 

followers. When the direction of the leader's movement is 
known, the desired position (distance and angle) of the 
followers relative to the leader can be achieved by using the 
local control of each follower. However, if a leader's robot 
fails it can lead to a failure of the entire controlling process.  

Hence, controlling the leader-follower robot in terms of 
position and orientation for achieving the targets, in rapid 
convergence time and high accuracy in dynamic 
environments is desirable. In such condition, the 
optimization route must be implemented on robotic control 
in a simple algorithm. A less computational resources very 
important requirement in leader-follower approach, due to 
swarm characteristic. Several approaches have been 
proposed with good performance results [8][10][11]. They 
implement leader-follower robot, with global information for 
sharing with each other. However, the computational cost is 
large, due to the complexities of the methods. When the 
algorithm is implemented in a simple robot with onboard 
sensor and processor becoming a major problem. 

Particle swarm optimization (PSO) algorithm one of the 
most efficient optimization strategies for continuous 
nonlinear optimization problems based-on global 
information about the environment. It can be designed with 
simple algorithms and produce smooth and efficient 
trajectory [12][13][14]. Unfortunately, the original PSO 
algorithm is difficult to balance between exploration and 
exploitation capability. To overcome the limitation, several 
authors proposed different methods to achieve better 
accuracy and convergence [15][16][17]. Only a few 
researchers propose a method in a multi-robot control 
system, especially on leader-follower configuration based on 
a kinematic model. Hence, this research becomes important 
to be done in the development of motion control and 
optimization route on leader-follower robot based on a non-
holonomic kinematic model in the Cartesian representation. 

The structure of this paper as follows. In section 2, the 
process of declining kinematic models using Cartesian 
coordinates for the control of the formation of two non-
holonomic mobile robots is described. In section 3, the 
design of route optimization with PSO method is explained. 
Some simulation results are included in section 4 to verify 
the feasibility of the model and the controller. While the 
conclusions and future work will be described in section 5. 

II. LEADER-FOLLOWER KINEMATIC SYSTEM 

In this section, the Cartesian coordinates for leader-based 
formation controls explain the kinematics model of the three-
wheeled robot team. In such model, left wheels and the right 
wheel are controlled and one freewheel for balancing. The 
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values of robot movement parameters are obtained,  is 
world coordinate, and  is a fixed Cartesian Coordinate 
of the leader robot. The parameters  and  are 
the global position of leaders and followers, where the 
subscript 'L' represents the leader and the subscript 'F' 
represents the follower.  is linear velocity of the leader and 

  is  linear velocity of the follower.  the angular 
orientation of the leader and  is the angular orientation of 
the follower [18].  

We can assume that the leader and follower robot follow 
the kinematics model of a unicycle robot in the inertial frame 
(see Fig. 1). The kinematics of each robot can be expressed 
as follow, 

�� � ������� � ��������

� �

where  is the general variable of an initial position of 
the robot T,  is non-holonomic 
transformation matrix, and  is forward kinematic matrix 
which is used to estimate position and speed. 

 

Fig. 1.  Leader-Follower Kinematic System 

The non-holonomic transformation of the mobile robot 
can be seen through the change of the three initial robotic 
position variables . By solving  (1) to the change in the 
velocity of the right wheel and the left wheel, the single 
robot kinematic can be transformed into  (2),  

�� � � ���������
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The modeling of the leader-follower system has been 
derived directly by the kinematic analysis of relative robot 
follower along the x and y coordinates associated with the 
robot leader. The leader L has configuration vector 

 while the follower F has a vector . 
The control inputs of the leader and the follower are the 
linear and angular velocities  and , 
respectively. The relative distance between leader and 
follower must be determined, thus they can be a move in the 

same trajectory. To illustrate the relative position between 
the robots, it’s projected the relative distance along the x and 
y directions. In x-y Cartesian coordinates, the distance 
between the robot leader and the follower robot is . By 
using the properties of trigonometric functions ie, a.b=|a| . 
|b| cos , the rotation matrix for robot follower is obtained 
shown in  (3) as follows: 

� � � ��������
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Based on Fig. 1, and assuming the relative distance can 
be derived using the matrix rotation in (3) the relative robot 
leader's distance to the follower robot is defined in  (4). 
Where the relative position the follower robot along the x-
direction is  and along the y-direction is  with relative 

orientation . 

���� �������������

If the position of the leader robot  is determined 

and ( , ) are known and fixed to achieve and maintain the 

desired formation, a parameter ( , )  must be controlled, 

then the position with respect to the robot leader can be 
determined. By controlling  →  where  is the desired 

relative position along the x direction and → , where  

is the desired relative position along the y-direction. In the 
normal conditions, the relative distance between the leader 
robot and the follower robot is , it needs to be 
simultaneously projected and to control the movement of the 
follower robot against the leader robot by using  (5) to (8) as 
follows, 
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In general, the leader-follower kinematic model can be 
generated as follow: 
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where  is the angular velocity of the follower robot, 
is the linear velocity of the follower robot,  is angular 

velocity the leader robot and  is the linear velocity the 
leader robot. By using the leader-follower approach,  and 

 is a time function that varies from input control  and .  

III. ROUTE OPTIMIZATION 

Particle swarm optimization (PSO) work based on the 
behavior of a herd of insects, such as ants, termites, bees or 
birds [15][17]. The algorithm mimics the social behavior of 
such organism. Social behavior consists of individual actions 
and the influence of other individuals in a group. The word 
"particle" denotes the individual. Each individual or particle 
behaves interconnected by using its own intelligence and 
also influenced the behavior of its collective group [15]. 
Thus, if one particle finds the right or short way to the target, 
the rest of the other group will also be able to follow the path 
immediately even though their location is far away in the 
group. There are two kinds of PSO algorithm such as 
original PSO and improved PSO [13][14][15][16]. In the 
original PSO (OPSO) algorithm the inertia weight ) is set 
1, thus the convergence speed of particles is fast, the 
adjustments of cognition and social component make 
particles search around in one point. It can produce a local 
minimum condition and the whole swarm will be converged 
at this position.  However, if the inertia weight value is 
selected about the whole swarm is hard to jump 
out of the local optimum. It produced fatal weakness from 
this characteristic because no global optimum (  is 
achieved. Hence, the dynamic inertia weight is desirable to 
regulate. 

In this paper PSO algorithm is used to optimize the 
leader-follower robot tends to the target without collision. 
Therefore, it works not only optimization process, also to 
control the leader movement. The dynamic inertia weight is 
needed, due to the leader-follower robot move in the 
unstructured and dynamic environment. The dynamic PSO 
(DPSO) is created by using  (11) and (12), 

�� � � � ���������
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Vector  is  the best previous 

position of the ith particle that gives the best fitness value, 
named personal best position . Vector 

 is the best particle among all the 

particles in the population, named global best ( . The 
weight of inertia  is used to balance the global exploration 
and local exploitation. , and  are a random number 

uniformly distributed between [0,1]. The velocity  is 

restricted to the range  in order to prevent the 
particles from flying out of the solution space. The 
acceleration coefficient  and  for making the better 

balance of the search space between the local exploitation the 
global exploration.  

In the leader-follower case, the PSO must ensure the 
leader achieved the target, and the follower robot can follow 
the leader but it must keep the formation without collision. In 
this paper, the dynamic inertia weight  and the learning 
factor  and  are improved in  (13) and (14). 

� � ��������
� ��������

The DPSO algorithm serves to control PSO capabilities 
in local searches efficiently and convergent to global 
optimum solutions. The inertia weight � is updated to obtain 
an adaptive � value for each iteration, therefore the value 
can be dynamic and capable of improving the expected 
optimization result. The greater the value of iteration, the � 
value will be smaller, and preferably, if iteration is still early, 
then the value � will tend to be larger. If the � value gets 
bigger, then the particle is more focused towards exploration, 
but as it gets smaller, it is more focused towards exploitation 
[15]. �1 and �2 are the acceleration coefficients or learning 
rate of a single current particle for a better balance between 
global exploration by all particles in neighboring topology 
and local exploitation in the best fitness achieved. In this 
paper �1 and �2 is used for finding the target and to avoid the 
obstacle, due to it must change the vector of velocity and 
vector position. However, its targets should be found in a 
short period of time. In this paper, proposes the dynamic 
linear adjustment strategy for learning factors. The 
expression is given in  (14) as follows, 

����� � � �������
� �������

where, and = final 

value,  = c initial value 

If the number of iterations is increased, the cognitive 
ability of the individual is gradually reduced by improvement 
of the learning factors and improve the global search ability 
of particles. This strategy can improve particle’s the global 
search ability in the whole search space in the early time and 
converge to the global optimum to the particles in the end.  

IV. RESULT AND DISCUSSION 

In this work, original PSO (OPSO), and Gaussian 
(GPSO) are compared to proposed dynamic PSO (DPSO) for 
the above-mentioned function minimization problems on 
leader-follower kinematic control. For such purpose, the 
number of swarm parameters about 50 particles and 1000 
maximum iteration is taken. However, the number of 
particles is not very influential on the optimum solution 
generated PSO, but it affects the speed of the process. If the 
number of particles that are too small can get stuck on the 
local optimum even though the processing time is very fast. 
In contrast, large amounts of particles are rarely trapped in 
local optimum, but the process takes longer. Respective 
inertia weights and acceleration coefficient are selected for 
balancing between exploration and exploitation capability. 
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To verify the proposed algorithm, the new model of 
leader-follower based on a non-holonomic system for target 
seeking is simulated. Static and dynamic obstacles are 
utilized in the testing environment. In Fig. 2(a) and (b), the 
leader-follower robot moves to reach the target with a static 
obstacle. The leader robot is a blue line and the follower 
robot is a red line. Two types of PSO are used to view 
movement performance. The obstacle avoidance passing 
near and reaching the goal with a short trajectory is 
performed by the leader-follower robot, it avoids the obstacle 
coming from the right, deviates from the straight line. The 
leader-follower robot using the OPSO is able to reach the 
target, but the resulting trajectory is not smooth, long 
processing time, and generating large amounts of data to 
reach the target. Using the proposed DPSO approach, the 
leader-follower robot movement performs better, smoother 
movements, shorter travel times and produce less data 
generation.  

 

(a) OPSO                        (b) DPSO 

 

   (c) OPSO                        (d) DPO 

Fig. 2.  Trajectory control in simple environment 

The movement of the leader robot by using OPSO 
requires a fairly long route in reaching the target, therefore 
the execution time becomes longer about 29.14 sec. 
Conversely, if the robot leader using DPSO in optimizing the 
robot’s route to be shorter, therefore the execution time 
becomes faster about 13.55. While the follower robot follows 
the movement of the robot leader in a relatively equal time 
with the time taken by the robot leader. Moreover, the 
movement of the leader robot is smooth, if DPSO is used and 
they can choose the simple way to find the target. In addition 
to test other environments a rectangular environment is 
created.  

The robot must move from the initial position to target 
position it can be seen in Fig. 2 (c) and (d). The robot moves 
not smooth with long trajectory by using original PSO. The 
performance not satisfying due to the time processing to 
finish the route by using OPSO about 29.15 sec for the leader 

and about 29.18 sec for the follower and in some point of the 
trajectory the leader-follower robot crash the wall. 
Meanwhile by using the DPSO, the processing time about 
13.50 sec for the leader and about 13.65 sec for the follower 
with short and smooth trajectory. Furthermore, the leader and 
the follower robot have the ability to maintain the position 
with the wall without collision.   

From the robot’s trajectory in Fig. 2 (c) and (d), it is seen 
that from the initial position the robot leader moves in search 
of the target and manages to find the target, the success of 
reaching the target is seen from the result of the route leading 
to a point. However, the route taken by the leader-follower 
robot using DPSO algorithm in achieving the target is more 
efficient than using the OPSO algorithm. It happens, due to 
DPSO algorithm, using parameter control of inertia function 
and coefficient acceleration to accelerate convergence and 
produce a global solution.  

 

(a) OPSO           (b) GPSO               (c) DPSO 

       

 (d) OPSO            (e) GPSO                   (f) DPSO 

Fig. 3. Trajectory control in the cluttered environment 

By using OPSO algorithm premature convergence 
always happens, the condition occurs when particles 
converge and particle velocity close to zero, but no global 
solution has been found. Based on the time taken by each 
robot using the OPSO algorithm from the starting point 
towards the target until the robot stops about 66 seconds 
while using the DPSO algorithm the time taken to reach the 
target faster only 31 seconds. DPSO algorithm using setting 
inertial parameters adaptable in accordance with the 
environmental dynamics that occur during the target search.  

In the complex environment (see. Fig. 3 (a) – (f)) by 
using DPSO produce small processing time compare to 
OPSO and GPSO. Due to the proposed algorithm have the 
ability to change the position and orientation leader-follower 
robot in an adaptive manner. The leader-follower have the 
ability to achieve the target, but especially OPSO, the robots 
can’t finish the task. They stop at one point, stack in the local 
minima (see Fig. 3 (a) and 3 (d)). However, by using GPSO 
and DPSO the task can be completed. The leader-follower 
use GPSO crash the wall (see. Fig. 3 (e) and 3 (b)), but still 
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move to the target. When they move based-on DPSO, the 
robot is able to reach the target without a collision, with a 
short route and fast processing time. Such condition also 
happens to the follower robot. 

V. CONCLUSION 

The social adaptation of knowledge for working and all 
individuals are considered the same generation based on the 
PSO algorithm. It has many advantages, such as the simple 
algorithm, good convergence performance, and the fewer 
control parameters. However, it does not provide a 
mechanism for escaping from local optimal solution and easy 
to fall into local extremum value. In case of leader-follower 
control, by using the original PSO, the leader always moving 
around in circles to find the target, and generate a lot of data 
to complete the task. Making the large search space for 
finding the possible solution space of the optimal solution by 
using inertia weight adjustment strategy into the original 
PSO. By using dynamic PSO, the leader-follower performs 
better, smoother movements, shorter travel times and 
produce less data generation by using the DPSO. The 
comparison results show that the proposed DPSO algorithm 
is more capable to obtain the global optimization solution 
and overcome the problem of local minima when the leader-
follower move in the complex and dynamic environment.  
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