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ARTICLEINFO ABSTRACT

Keywords: Fetal cardiac anatomical structure interpretation by ultrasound (US) is a key part of prenatal assessment. Un-
Computer vision fortunately, the numerous speckles in US video, the small size of fetal cardiac structures, and unfixed fetal po-
YOLOWT

sitions make manual detection processes difficult. To alleviate such problems, a deep learning model was
developed to fully automate the processing of fetal echocardiographs with 2-dimensional cross-sectional images.
The weakness of such an approach is that a physician immediately interprets US video with 3-dimensional ob-
jects to diagnose patients in clinical practice. To improve fetal cardiac anatomical structure interpretation via US
for accurate and real time diagnosis, this paper proposes a real-time fetal cardiac substructure detection using US
video with the You Only Look Once (YOLO) framework. In YOLO, an end-to-end neural network makes pre-
dictions for cardiac substructure objects, boxes, and class probabilities simultaneously. To achieve reliable
performance, 40 fetal echocardiography videos were trained with the new YOLOV? architecture and fine-tuned
to work optimally and run efficiently. We conducted with nine fetal cardiac substructure objects such as the left
atrium, right atrium, left ventricle, right ventricle, tricuspid valve, pulmonary valve, mitral valve, aortic valve,
and aorta. The results yielded the highest mean average precision of 82.10%, reaching 17 frames per second
(FPS) for nine cardiac substructure objects in 0.3 ms. The main finding of our study is that with even a limited
number of US videos, YOLOV7 can detect fetal cardiac substructure objects in real-time. Such a network can work
efficiently to detect small fetal cardiac objects automatically in a rapid phase with the help of proper fine-tuning.
This work mainly assists medical experts in the fetal cardiac anatomy diagnostic process.

Object detection
Fetal echocardiography

1. Introduction cardiac substructure should be recognized in normal anatomy. The
normal cardiac substructure anatomy is divided into (i) the four main
chambers, the left atrium (LA), right atrium (RA), left ventricle (LV),
right ventricle (RV); (ii) the four valves, the tricuspid (TV), pulmonary

(PV), mitral (MV), and aortic (AV); and (iii) one aorta (Ac) that dis-

Automated cardiac video ultrasound (US) interpretation has the
potential to transform clinical practice in multiple ways, including
enabling serial assessment of cardiac function by nonexperts in primary

care and rural settings [1]. With such an approach, for example, US
interpretation in utero can allow early prenatal detection of most
congenital heart diseases [2]. US interpretation varies at different stages
of pregnancy and may evolve in utero with advancing gestational age
[2]. Petal US is a key aspect of prenatal health assessment across preg-
nancies worldwide due to its noninvasive nature, relatively low cost, and
portability. As such, different aspects of the physiological assessment of
a developing fetus rely upon an understanding of fetal US videos [4]. For
fetal cardiac malformation to be detected accurately via US, the whole
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tributes blood rich in oxygen throughout the body [1,2,5].

The process requires specific training based on theory and practical
tests to manually produce accurate and precise cardiac substructure
interpretation through US video. One of the greatest limits related to the
US involves interpersonal variability, meaning that it depends on the
skills of the examining physician and the patient's condition [6].
Moreover, analyzing these nine fetal cardiac substructures is extremely
challenging due to several key factors, such as numerous speckles in US,
the small size of the fetal heart, unfixed fetal positions, and category
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Fig. 1. The general methodology for real time detection of fetal cardiac substructure using US video.
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indistinction caused by the similarity of cardiac chambers [7,8]. To
relieve such problems, a computer-aided method that helps physicians
automatically locate fetal cardiac objects has attracted much attention
in recent years [8,9]. Such procedures can assist physicians in auto-
matically diagnosing fetal cardiac structures and can contribute signif-
icantly to the early diagnosis of congenital heart diseases. In addition, a
strategy with automated fetal US interpretation could involve handheld
devices used by nonexperts at point-of-care locations (eg, primary care
clinics).

Computer-aided deep learning (DL) method has recently been widely
used in US imaging for fetal echocardiography analysis due to its strong
ability to leam invariant features [10-17]. DL can employ devices to
imitate the human cognitive process, such as learning, applying, and
solving complex problems [4]. Convolutional neural networks (CNNs),
as representative architectures of a DL model, have strong feature power
and learn robust and discriminative features from medical images. In a
recent work by Zhang et al. [1], researchers employed a DL model to
fully automate the processing of echocardiographs, including disease
detection, image segmentation, and structure and function quantifica-
tion. In another work on fetal cardiac images by Arnaout et al. [18], they
used an ensemble of neural networks to classify complex congenital
heart disease with satisfactory results. However, the experiment was
conducted on 2-dimensional cross-sectional cardiac US images, whereas
in clinical practice, physicians immediately use US video with 3-dimen-
sional objects to diagnose patients.

Feature information in 2D US image sequences can be weak and
obscured due to speckling, acoustic shadowing and other artefacts [13],
thereby reducing the accuracy of the detection process. To improve the
detection rate, multiobject detection in US videos requires superior
methods to integrate spatial and temporal linkages of salient features,
which is the nature of simultaneously localizing anatomical structures
[12]. Petal cardiac object detection based on US video in real time would
greatly facilitate analysis, leading to proper diagnoses [19-21].
Real-time detection and localization in freehand US was proposed with a
DL model, but 2D fetal standard scan plane images were used [22]. One
of the real-time object detection frameworks proposed based on You
Only Look Once (YOLO) is a state-of-the-art framework [21]. A YOLO
network directly predicts the location and class probabilities of objects,
completely achieving end-to-end optimization of detection perfor-
mance. However, there are three main drawbacks of such a YOLO
network that make it highly challenging in terms of increasing accuracy
and precision: (i) the accuracy of YOLO is not as high as that of Fast
R—CNN [16] and that of Faster R-CNN [17]; (ii) the networks have
difficulty detecting and localizing small objects in images that appear in
groups [21,23]; and (iii) fetal US video with lower contrast and

brightness and with speckle noise make YOLO computationally [23].
This can lead to overfitting, difficulty accurately localizing the fetal
cardiac structure, and poor performance in the detection task due to the
size of the fetal cardiac in utero is approximately 4-8 cm (the size will be
smaller for cardiac substructure) with low quality video.

Hence, improvements must be made to the YOLO network model
according to the characteristics of the fetal US videos dataset. The
developed model is expected to achieve satisfactory performance.
Motivated by the limitations of the state of the art in this area, the
contributions of our work are as follows.

¢ A model for real-time US video detection of nine fetal cardiac sub-
structure objects in normal anatomy is designed.

e The object detection performance of fetal echocardiography is
improved with the YOLOV? architecture

s The proposed model is validated and evaluated with six YOLO
frameworks.

2. Material and method

The general methodology of our experiment is shown in Fig. 1. There
are three main steps: image acquisition and labelling, object detection
using the proposed algorithm with YOLOv7, and result validation using
four metrics, mean average precision, frames per second, confusion
matrix and a precision-recall curve.

2.1. Image acquisition and fetal cardiac annotation

Collecting a well-defined dataset is key to research on real-time fetal
cardiac detection using US video. In our study, 60 US videos of normal
structures were obtained from patients undergoing routine pregnancy
tests in their second trimester at the obstetrics and genecology depart-
ment of Mohammad Hoesin General Hospital, Indonesia. All US videos
were identified with two experienced experts with waived consent for
compliance. The inclusion criterion was fetuses of 18-24-weeks gesta-
tional age [15]. Specifically, the patient scans were recorded using a GE
Voluson E6 instrument with a loop length of 2-20 s, and a file size of
approximately 890 kB to 36.9 MB was used to generate the US images.
Detection of fetal cardiac substructure objects is challenging for the
model, possibly because of the smaller size of the fetal heart or the
decrease in characteristic features [8-10]. The fetal cardiac normal
anatomy was determined by reviewing the clinical report for each US
video, and the experts annotated the selected fetal US for learning
purposes. All US images were stored in the original Digital Imaging and
Communication in Medicine (DICOM) format. Since US images do not
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Fig. 2. Ground truth box of nine fetal cardiac substructure objects by expert.

Table 1
The YOLOV7 network structure.

Type Filter  Size Qutput
Input Layers 128 52 « 52 128 =« 128
Backbone ConvZD 32 « 3x 3 3z 416 « 416 128 =« 128
Residual Block 1 = 64 64 208 « 208
Residual Block 2 = 128 128 104 = 104 64 « 64
Residual Block 8 = 256 256 52 « 52
Residual Block 8 = 512 512 26 « 26 64« 64
Residual Block 4 = 1024 1024 13 « 13 32« 32
FFN ConvZD 5 L 384 52 « 52 16 = 16
Concat 384 52 « 52
ConvZD + Up2D 128 52 « 52 B« 8
n vZD 5 L 1024 13 « 13
Loss ﬁ:vﬂ)3x3+C0nZDlxl 255 52 « 52 B« 8
Function ConvZD 3 x 3 4 Con2D1 x 1 255 26 « 26
ConvZD 3 x 3 4 Con2D1 x 1 255 13 « 13
Avg Pool Global -
Connected 1000 -
Softmax - -

convey color information, the images were stored as grayscale bitmaps.
Sample fetal cardiac annotations are depicted in Fig. 2. The anotated
process for nine fetal cardiac substrutures is conducted object by object
utilizing LabelMe software. All the data after the annotation process
were named the ground truth box.

2.2. Proposed YOLOv7 for fetal cardiac substructure detection

In this work, we mainly explore and evaluate different YOLO ar-
chitectures with different model training parameter values in the
detection of nine substrutures in fetal cardiac anatomy. These YOLO
architectures learn from the annotated set, which has major advantages
over more traditional approaches that use hand-crafted features [21].
This model takes 2D images as input, making its adaptation to 3D
medical images the first challenge. Every US scan slice was used as a
single image for inference and training. Once the bounding boxes were
found on every 2D image, 3D generalization of the non-maximum sup-
pression algorithm was performed. This post-processing step groups the
2D boxes with threshold criteria corresponding to their intersection over
union (loU) to generate 3D bounding boxes. This study focused on the

YOLOv7 framework, a new architecture for small objects with added
instance segmentation to the YOLO arch (Fig. 1.) [24]. Many trans-
former backbones and arches were included,, as well as multitask
training. As asimple and standard training framework for any detection
and instance segmentation task, the main difference between YOLOv7
compares other architectures is the backbone of YOLOV? is based on
DarkNet53 with extended efficient layer aggregation network (E-ELAN)
(Table 1). The E-ELAN structure use group convolution to increase the
cardinality of the added features, and combine the features of different
groups in a shuffle and merge cardinality manner. Such operation can
enhance the features learned by different feature maps and improve the
use of parameters and calculations [24].

Our previous works on fetal echocardiography analysis were based
on instance segmentation; however, only 2D echocardiograms were
used [8,16]. We wanted to upscale our model from frame (2D) to video
(3D) to expand the real-time fetal echocardiography detection system.
This paper is the first to study real-time fetal cardiac substructure
detection using the YOLOV7 framework. All the networks were imple-
mented and evaluated by the Pytorch 1.7.1 library and trained using a
computer with the following specifications: an Intel® Core™ 19-9920X
CPU @ 3.50 GHz with 490191 MB of RAM, a GeForce 2080 RTX Ti
graphics card by NVIDIA Corporation GV102 (rev al) and the Ubuntu
18.04.5 LTS operating system.

2.3. Model evaluation

Ourmodel was validated based on the mean average precision (mAP)
value. The AP is calculated by a formula based on the following sub-
metrics: a confusion matrix (CM), the loU, the recall (R), and the pre-
cision (P). The average precision, taken over all classes, is called the
mean average precision (mAP) [8,21]. Another metric is the frames per
second (FPS) value, which measures how fast our object detection model
processes US video and generates the desired output [21]. The perfor-
mances of YOLOvSn, YOLOvSs, YOLOv6n, YOLOv6s, YOLOv?, and
YOLOv7-tiny were measured based on the mAP value. Detections were
considered true positives or false positives based on the area of overlap
with ground-truth bounding boxes. The mAP is a popular metric used to
measure localization accuracy and calculate localization errors in object
detection models. The mAP value should exceed 50% for measuring
decision performance, where mAP is the overlap area between the
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Table 2
Performance of the six YOLO models.

Object mAP Performance (%)
van vhs vbs vén v7 V7tiny
—“ BE.50 B9.50 56.78 67.56 S0.40 B5.70
RA B85.90 B6.20 66.72 52.23 92.20 B6.20
Ly 91.90 BE.30 73.56 43.21 94,80 B1.20
RV B4.40 7550 B9.90 77.81 BE.30 7E.00
AD B9.8BO BER.60 S0.08 B3.51 B7.40 B0.30
™V 66.50 7200 B89.23 7112 66.80 64.20
MV 69.70 66,70 TEB.98 66.45 69.20 51.11
PV 59.40 6370 56.23 B0.01 71.20 62.00
AV 64.60 76.00 66.54 B6.32 7B.40 63.90
Avrg. mAP 77.70 7850 77.82 67.95 B2.10 72.50
Table 3
Comparison of model evaluation.
Model Size FPS  mAP'M Speed” ' "Fp 16 Speed’ ' MFp32
(%6) b32 (ms) b32 (ms)
YOLOwvSn 640 15 7770 1.40 1.30
YOLOvSs 640 25 7850 1.50 1.10
YOLOwvEs 640 17 77.82 0.38 1.10
YOLOwvEn 640 18 67.95 0.33 1.07
YOLOVT 640 17 B210 0.30 0.80
YOLOVT- 640 17 7250 0.30 0.70
tiny

predicted bounding box and the ground-truth bounding box. An mAP
value = 0.5 was considered a positive prediction, while an mAP value <
0.5 was considered a negative prediction.

Informatics in Medicine Unlocked 36 (2023) 101150

3. Results and discussion

We developed a DL method to detect nine fetal cardiac substructure
objects in normal US anatomy for accurate localization. Our approach is
the first to focus on a YOLOv7 framework, which has not been used for
fetal cardiac substructure detection. In a previous study, one possible
reason for the delayed use of YOLO is its low accuracy in detecting small
objects [21,23]. However, our model succeeded in detecting nine fetal
cardiac objects, even though the fetal cardiac size is only approximately
4-8 cm in the 21st to 28th week of gestation. Table 2 shows the object
detection performance achieved with YOLOv5n, YOLOv5s, YOLOv6nD,
YOLOv6s, YOLOV7, and YOLOv7-tiny architectures. YOLOv7 produced
satisfactory performance, with an mAP of 82.10% and 17 FPS for 0.3 ms.
QOur propose real-time object detection model achieved fewer trainable
parameters and fast processing and was accurate (Table 3).

In this work, the mAP threshold was set at 50%, meaning that the
overlap between the ground-truth bounding box and the detected box
returns a 0.5 score. The higher the score is, the more accurate the model
detection. As the result shows, the proposed object detection model
produced LA, RA, LV, RV, AD, TV, MV, PV, and AV performances with
an mAP exceeding 50%. From the six YOLO models, YOLOv7 reached
the best value for nine objects, with an mAP of 82.10%. In addition, the
YOLOv7 evaluation model produced high FPS, mAPVAL, Speedv100 Fp
16 b32, and Speedv1 00 Fp 32 b32 scores (Table 3). This metric indicates
the performance of YOLOV? in terms of the object detection processing
time for all frames in the validation model.

The CM for all YOLO networks is shown in Fig. 3. The loU values
reflects the resulting matches between the ground truth and detected
box. For each ground truth box, the YOLO algorithm generates an IoU
with every detected box. A match is found if both boxes have an loU
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Fig. 3. The confusion matrix for six YOLO architectures.
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Fig. 4. PR curve for six YOLO architectures.

greater than or equal to 0.5. Only detections with a IoU score greater
than or equal to 0.5 are considered, and anything under this value is
discarded. YOLOv7 achieved a higher IoU value for each class, indi-
cating that it outperformed other YOLO networks (Fig. 3). This means
that our proposed model can detect nine classes of fetal cardiac object
with an IoU over 0.5 with satisfactory results: the IoU values are 0.96,
0.87, 0.94, 0.85, 0.92, 0.80, 0.72, 0.77, and 0.81 for the LA, RA, LV, RV,
Ao, TV, MV, PV and AV, respectively. Objects that are part of the ground
truth but were not detected are counted in the last column of the matrix
(in the row corresponding to the ground-truth class) as false positives
(FPs). Objects that are detected but are not part of the confusion matrix
are counted in the last row of the matrix (in the column corresponding to
the detected class) as false negatives (FNs).

The YOLO algorithm should have both high precision (P), and high
recall (R). These two metrics are shown in the PR curve. A PR curve plots
the precision against recall for different confidence threshold values, but
most algorithms often involve a trade-off between the two. A good
precisison-recall (PR) curve has a higher area under curve (AUC). Based
on the experiment, YOLOv7 achieves achieve high precision and recall,
an average AUC of 0.821 with mAP of 0.5, and the AUC of each class has
a higher value outperforms the other YOLO models (Fig. 4).

The sample of detection results for the nine fetal cardiac sub-
structures based on the ground truth and detected bounding boxes as
depicted in Fig. 5. The mAP for the four cardiac chamber objects (LA,
RA, RV, and LV) reached over 88%; however, the mAP for the four valve
objects (TV, MV, PV, and AV) only reached over 66%. This occurs
because the cardiac valve can open and close, changing the shape of the

heart. It is important to adjust the size of the region of interest (Rol) to
ensure that the whole valve can be detected. However, the overall per-
formance of YOLOv7 reached mAP values above 50% for all detected
objects, even though all the objects were extremely small. This indicates
that the proposed YOLO model is not problematic for small object sizes,
which was a weakness of the YOLO model in previous studies [21,23].

A sample of the validation results based on the proposed YOLOv7?
model obtained using a dataset of nine fetal cardiac substructure objects
from patients with normal cardiac anatomy as depicted in Fig. 6. The
bounding boxes detected with YOLOv5 to YOLOv7-tiny have mAP
values. The fetal cardiac score threshold was set to 50% (0.5) for the
mAP. Nine fetal cardiac substructure (LA, RA, RV, LV, TV, MV, PV, AV,
and AQ) were detected by the proposed model using such a threshold.
Although the ground truth had a speculated perimeter, the proposed
YOLOv7 model accurately defined the boundary of the nine fetal cardiac
objects. The proposed architecture successfully detected each object
with a high object score of approximately 91 %; in contrast, false-positive
detection was associated with a much lower object score of approxi-
mately 30%.

The benchmark performance of our proposed YOLOv? model
compared to the current state-of-the-art method for detecting fetal car-
diac substructures in US videos is depicted in Table 4. Unfortunately, the
number of previous studies are limited, especially for real-time detection
with YOLO in fetal echocardiography; thus, comparisons were only
made with two experiments by Qiao et al. [25] and Komatsu etal. [26].
As a result, the proposed YOLOv7 achieved the best performance among
all the models proposed by Refs. [25,26]. This YOLOV? network
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Fig. 5. The localization results. Ground truth and detection box of nine different anatomical cardiac substructure.




A. Iriani Sapitri et al.

YOLOv5n

Informatics in Medicine Unlocked 36 (2023) 101150

YOLOvVSs

Fig. 6. The sample of real time detection for nine fetal cardiac substructure objects using US video with YOLOvS5n, YOLOv5s, YOLOv6n, YOLOv6s, YOLOVZ, and

YOLOV7-tiny.

Table 4
Comparison with the state-of-the-art methods in fetal cardiac substructure
detection.

Model mAP FPS Number of objects

YOLOv4Slim [25] 0.75 BO 4 cardiac substructure

YOLOv4 [25] 0.82 74

CBAM-YOLOv4Slim [25] 0.590 30

MEHAM-Y OLOv4Slim [25] 0.91 43

SONO-YOLOV2 [26] 0.685 - 18 cardiac substructure

Proposes YOLOV? 0.92 30 4 cardiac substructure
0.82 17 9 cardiac substructure

demonstrates the effectiveness of our proposed model in detecting nine
cardiac substructures. As illustrated in Table 4, the proposed model
achieves a state-of-the-art mAP of 92% for four cardiac substructures
and 82% for nine cardiac substructures while maintaining a comparable
testing speed. In detecting the fetal cardiac substructures, the challenge
is recognizing the valve due to the fetal cardiac chambers being small
and suffering from unfixed positions and category indistinction caused
by the similarity of cardiac chambers. However, the proposed model was
able to localize each object of the fetal cardiac anatomy. The DL-based
YOLOv7 architecture has proven to be a state-of-the-art for real time
object detection system that supports this process. Such a method can
assess the quality of fetal cardiac substructure detection based on the
relative size of the region of interest and the key anatomical structures
within it.

Despite the promise of these study, the limitations of our approach

must be noted. This approach is limited as it was not tested on US videos
of fetal cardiac anatomy with abnormalities. A validation model based
on more realistic fetal cardiac US videos (i.e., videos with extra noise,
morphological variations, and normal and abnormal structures) will be
essential to fully understand the rationale and robustness of the pro-
posed model. In addition, YOLOv? added errors to fetal cardiac object
localization, and heavily pathological fetal cardiac slices were not
classified properly; therefore, the bounding boxes generated were not
perfectly aligned with the objects of interest.

4. Conclusion

An automated echocardiographic interpretation approach can
potentially enable the democratization of health care. Studies taking
place earlier in a disease course and in geographic areas with limited
specialized expertise should be facilitated. In this paper, we propose a
YOLOv7 model to accurately locate nine important fetal cardiac sub-
structures, the RA, LA, RV, LV, TV, PM, MV, AV and Ao in a real-time.
The YOLOv7 model showed promising results for fetal cardiac detec-
tion, suggesting that its promise in fetal cardiac organ recognition, even
with few US scans as a training set. The validation results demonstrate
the ability of the model to generalize to a broad range of fetal cardiac
anatomies. The detection of nine important fetal cardiac substructures is
the first step in congenital heart disease research. With promising fetal
cardiac detection precision, the proposed model has excellent potential
for clinical application. In addition to clinical use, such a method could
also facilitate research and discovery by standardizing and accelerating
analysis of the millions of echocardiograms archived within medical
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