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Abstract
Detecting cardiac abnormalities between 14 and 28 weeks of gestation with an apical four-chamber view is a difficult

undertaking. Several unfavorable factors can prevent such detection, such as the fetal heart’s relatively small size, unclear

appearances in anatomical structures (e.g., shadows), and incomplete tissue boundaries. Cardiac defects without segmentation

are not always straightforward to detect, so using only segmentation cannot produce defect interpretation. This paper proposes

an improved semantic segmentation approach that uses a region proposal network for septal defect detection and combines two

processes: contour segmentation with U-Net architecture and defect detection with Faster-RCNN architecture. The model is

trained using 764 ultrasound images that include three abnormal conditions (i.e., atrial septal defect, ventricular septal defect,

and atrioventricular septal defect) and normal conditions from an apical four-chamber view. The proposed model produces a

satisfactory mean intersection over union, mean average precision, and dice similarity component metrics of about 75%,

87.80%, and 96.37%, respectively. Furthermore, the proposed model has also been validated on 71 unseen images in normal

conditions and produces 100% sensitivity, which means that all normal conditions without septal defects can be detected

effectively. The developed model has the potential to identify the fetal heart in normal and pathological settings accurately.

The developed deep learning model’s practical use in identifying congenital heart disorders has substantial future promise.
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1 Introduction

Since it is vital to understand congenital heart diseases

(CHDs), an accurate examination of fetal heart anatomy

and structure is essential [1]. As the most prevalent con-

genital disability, CHDs account for nearly 48% of deaths

during infancy in the USA from 1999 to 2006 [2, 3]. It has

been known that early diagnosis and proper treatment

would significantly improve the survival of infants with

CHDs [4]. Due to their inexpensive cost and radiation-free

characteristics, ultrasounds (US) are often utilized during

regular obstetrics to identify fetal cardiac abnormalities [1].

Prenatal ultrasound is used to diagnose CHDs between 14

and 28 gestational weeks in clinical practice [1, 5]. A

cardiac defect is a clinically significant subtype of CHDs

with abnormalities in anatomy and heart structure. This

defect is caused by an incomplete septum connection

between the lower and upper chambers of the heart either

in the atrium, ventricle, or both, which vary in size. The

most common types of cardiac defects are atrial septal

defect (ASD), ventricular septal defect (VSD), and atri-

oventricular septal defect (AVSD) [1]. Exploring cardiac

defects in a fetus is critical for investigating these complex

associations.

Clinicians use four views for fetal heart anatomy and

structure examination: four-chambers (4C), left and right

ventricular outflow tract (LVOT/RVOT), and three-vessel

trachea (3VT). The 4C view is a straightforward normal

fetal cardiac scan, while the LVOT, RVOT, and 3VT views

are more sophisticated. However, the apical four-chamber

(A4C) is only a basic standard view. This indispensable

view reveals the embryonic heart’s architecture and struc-

ture, allowing clinicians to assess the key cardiac structures

including the epicardium, levocardia, left ventricle, left

atrium, right ventricle, right atrium, and descending aorta

[5, 6]. Regrettably, clinicians must possess an extensive

theoretical background and clinical competence to com-

prehend such structures [7–9]. Analyzing fetal hearts

manually interpreting US images is difficult due to the

following factors: (i) signal dropout, artifacts, missing

boundaries, attenuation, shadows, and speckle noise may

all influence the image formation features inherent to US

images.; (ii) the fetal heart is small-sized with a complex

structure, fast movements, and a low signal-to-noise ratio;

and (iii) full fetal heart structure detection is complicated,

even for experienced physicians. As a result, fetal heart

examination using US would not be optimal [5, 6, 10, 11],

with prenatal detection rates of only 30–50% reported in

developed countries [12]. Many undetected cardiac septal

defects occur because the structural fetal heart view was

not captured properly and precisely, or because the defect

was exhibited but not identified by the operator due to the

low-quality picture.

Accurate identification of cardiac defects on A4C may

give pathological information and save physicians signifi-

cant time examining and quantifying defect severity. Sev-

eral technique-based computer-aided diagnosis solutions

have been proposed to solve medical imaging problems

[13–18]. However, such methods use mathematical models

to process medical imaging, which have high computa-

tional complexity and require an image pre-processing

stage before reaching a medical diagnosis. Methods with

multiple levels of medical image representation, which

process raw data automatically without the image pre-

processing stage, are desirable for performing accurate

segmentation, classification, or detection tasks. Deep

learning (DL) approaches have been proposed to overcome

the challenges above, and they have shown promising

results [15, 19]. For example, the fully convolutional net-

works (FCNs) model developed for real-world clinical US

data, achieves a classification error rate of 23.48% [8]. To

cope with unconstrained psoriasis pictures for computer-

aided diagnosis, deep convolutional neural networks

(CNNs) are developed, followed by an MV base point

tracking technique to fetal left ventricle segmentation in

echocardiographic sequences [16]. The performance indi-

ces of the proposed scheme were higher than 93%, and its

mean average precision (mAP) rates were at least 85.9%

[10]. A novel DL-based approach has been proposed to

identify fetal cardiac standard planes from 2D US videos

[6]. For the task of identifying the four standard planes, the

proposed network achieved an accuracy of 92% and an

average F1-score of 0.919.

However, the fetal cardiac defects are infrequently

detected during routine obstetric visits, significantly

impacting the construction of a DL model for defect

detection. Bear in mind that DL is highly dependent on the

availability of huge labeled datasets since the limited

amount of data may decrease its performance accuracy.

CNNs are one of the most common and efficient methods

that address medical imaging problems [9, 20, 21]. More-

over, CNNs are suited for recognizing the patterns in US

images [6], even for relatively small datasets that produce

excellent performance [19, 22]. Most existing researches

have been undertaken to explore the use of CNNs for

classification [23], object detection [24, 25], and segmen-

tation [26, 27].

Image segmentation for fetal echocardiography using

CNNs provides a new research opportunity to produce a

precise and reliable method. CNNs constructed from the

segmentation results are used to track the fetal heart’s

organ growth, especially its anatomy measurements, and

can potentially reduce human errors in monitoring heart

abnormalities in the fetus [5, 15, 19, 28]. Several
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segmentation models have been developed to overcome

inherent artifacts and low image quality [11, 21, 29–31].

Medical images with leakage, blurred borders, and subject-

to-subject variations can reach a 94% detection rate

[19, 21]. Some attempts have been made to address these

issues, but more focus has been on adult heart problems.

Pixel-based image segmentation has been successfully

developed for fetal heart segmentation, and it is even

effective with a small number of images [9, 20, 22].

However, the segmentation result cannot completely

interpret an abnormality, as it only recognizes the heart

structure’s contour and heart-chamber (i.e., atrium, ven-

tricle, aorta, valve, and levocardia). The incomplete wall-

chamber boundary should be diagnosed in a defective fetal

heart in terms of the defect position and size. Furthermore,

the lack of septal defect in the fetal heart is another

notable limitation of previous studies [8]. Therefore, there

is a need to consider US fetal heart anatomy segmentation

for further investigation. The main objective of cardiac

septal defect detection is to detect the position of a defect

in the septum. Such a position would determine the

abnormality type. Therefore, the improved object detection

model with a segmentation approach can facilitate an

accurate decision in septal defects interpretation. In this

study, two CNNs architectural models are combined. The

proposed method produces accurate defect detection via a

pre-trained and fine-tuned end-to-end network. In short,

this article makes the following contributions:

• An improved semantic segmentation with region pro-

posal network architecture for fetal heart defect inter-

pretation from an A4C view is proposed.

• A pre-trained semantic segmentation model and fine-

tuned object detection model are taken into account to

simplify the algorithm.

• Three different conditions of cardiac defect (i.e., ASD,

VSD, and ASD) and normal conditions are

incorporated.

• The robustness of the proposed approach is demon-

strated by carrying out inter-patient images in normal

conditions.

We break down the remainder of this work as follows.

Section 2 outlines pertinent works in the existing body of

knowledge. Section 3 details the technique used in this

research, while Sect. 4 explains the findings and discussion.

Finally, Sect. 5 summarizes the findings and makes rec-

ommendations for further research.

2 Apical four-chamber view segmentation
and detection approaches

This section summarizes various approaches reported in

the literature. Zheng et al. [32] formulated a heart chamber

segmentation as a twofold learning problem for anatomical

structure localization and boundary delineation. Numerous

authors have addressed ultrasound image segmentation

from the A4C view. Nakphu et al. [33] proposed a Marker-

controlled Watershed segmentation method. Pre-process-

ing and filtering parameters have affected segmentation,

where the morphological technique was found to be the

most effective pre-processing approach. Additionally,

dummy images were used for testing the segmentation

algorithm. Cao et al. [34] used a new convexity pursuit

segmentation algorithm. Syeda-Mahmood et al. [35]

incorporated a modified parametric distorted elliptic shape

model to capture aberrations from the heart’s typical

appearance to discriminate between normal and patholog-

ical left ventricular shapes. Kang et al. [36] proposed a

novel framework (e.g., gradient-assisted localized active

contour model) to segment the four chambers of the heart

automatically. To verify the proposed four-chamber seg-

mentation approach, the authors asked a cardiologist with

nine years of clinical experience to manually segment the

four chambers in each dataset. Zheng and Comaniciu [37]

developed an automatic object identification and segmen-

tation system based on marginal space learning. The

locations can be consistently identified and used to guide

the automatic model fitting process. During mesh modifi-

cation, the authors enforced mesh point correspondence. As

a result, creating a statistical form to guide the automated

segmentation process is straightforward.

A large body of work has been completed using deep

learning-based methods, which provide a different insight

into US image segmentation. In [38], the authors suggested

a strategy for segmenting the left ventricle (LV) in the A4C

view that combines deep, fully convolutional networks

with optical flow estimates. Subsequently, Jafari et al. [39]

adopted a semi-supervised approach for LV segmentation.

This approach is based on the development of an inverse

mapping between segmentation masks and their corre-

sponding echo frames using a generative model. This

generator is subsequently leveraged to enhance a U-Net-

generated LV segmentation mask. Work in Alsharqi et al.

[40] employed a mask R-CNN model for recognizing the

geometrical features of the LV. Fully convolutional net-

work (FCN) and adversarial training were employed in

Arafati et al. [41], while Painchaud et al. [42] introduced a

restricted variational autoencoder for the purpose of

learning a representation of viable cardiac structures.

Leclerc et al. [43] proposed an encoder-decoder deep CNN
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method to segment cardiac structures from 2D echocar-

diographic images. Yang et al. [44] examined the seg-

mentation performance of DeeplabV3 and U-Net in the

A4C view of fetal echocardiography. Dong et al. [45]

presented the aggregated residual visual block network

(ARVBNet) as a new real-time detection model for

anatomical features in A4C planes.

A method of lesion detection (e.g., where the lesion is

localized within the image) can be done by manual or

automated feature engineering. Some prior works had

proposed feature extraction techniques before applying

machine learning algorithms. For instance, Zhou et al. [46]

considered the LogitBoost algorithm to automatically

classify cardiac view as a multiclass object detection.

Similarly, Park et al. [47] presented an automatic system

for cardiac view classification by characterizing local and

global evidence, specific knowledge, and applying Logit-

Boost. A machine learning approach called shape regres-

sion machine was adopted for efficient segmentation of the

LV endocardial [47]. Two feature extraction techniques,

i.e., statistical features and histogram features, were con-

sidered in Balaji et al. [48] to automate cardiac view

classification. Lili et al. [49] adopted a modified imbal-

anced Adaboost algorithm called ImAdaboost for four-

chamber plane recognition in cardiac ultrasound images

where SIFT features were used as features. Work in Kha-

mis et al. [50] combined spatiotemporal feature selection

and a dictionary learning-based classifier to enhance the

classification accuracy of echocardiograms. Lastly, Yang

et al., 2020 utilized RetinaNet, comprised of the residual

network (ResNet), the feature pyramid network, and two

fully convolutional networks for classifying A4C images

[44].

3 Material and method

Detecting cardiac defects from the A4C view between 14

and 28 weeks’ gestation is a very difficult task. The seg-

mentation process views abnormal fetal heart anatomy

using contour boundaries. Still, using only object seg-

mentation cannot produce an interpretation of the defect’s

position and severity. This section outlines the specific

material and methods used within this study. The whole

process workflow, shown in Fig. 1, is comprised of five

phases: data acquisition, data pre-processing, segmenta-

tion, defect detection, and model evaluation. All stages are

described in the following section.

3.1 Data acquisition

The datasets were gathered in an Indonesian hospital. The

raw videos are extracted from video echocardiography

equipment and range in size from 1.02 to 331 MB in the

digital imaging and communications in medicine (DICOM)

format. All videos are converted to two-dimensional US

images of the same quality and size (e.g., 400 9 300). The

dataset employed in this study comprises 764 fetal heart

images only in an A4C view with four conditions: ASD,

VSD, AVSD, and normal. The distribution of the fetal US

images for ASD, VSD, AVSD, and normal is outlined in

Table 1.

3.2 Data pre-processing

To produce reliable results, segmentation and object

recognition algorithms should first comprehend the entire

image’s global spatial features. However, to detect the

position of the defects in the septum, two different labels

are needed as the ground truth for segmentation (GT-S) and

the ground truth for object detection (GT-O). In the seg-

mentation process, each GT-S label is made based on the

fetal heart contour (see Fig. 2b, f, j, m), while for the object

detection process, each GT-O label is made based on the

defect region of interest (RoI) (see Fig. 2d, h, l, o). All GTs

were labeled according to clinical characteristics by qual-

ified clinicians from the hospital’s echocardiography

department.

3.3 Proposed stacking U-Net and faster-RCNN
architecture

This section discusses the overall technique and procedures

used to develop a more accurate DL model for fetal heart

segmentation and defect diagnosis using the A4C view.

Fetal heart segmentation utilizes U-Net architecture [19],

while defect detection uses Faster-RCNN architecture [51].

The U-Net model only has convolution and max-pooling

layers without a fully connected layer [19]. Likewise,

Faster-RCNN architecture consists of region proposal

networks (RPNs) and the detector network [51]. The

detector also includes a CNNs backbone, a region of

interests (RoIs) pooling layer, fully convolutional networks

(FCNs), two sibling branches for classification, and

bounding box regression. The proposed DL model is

depicted in Fig. 3, which can be described as follows:

• U-Net architecture is leveraged to generate the cardiac

segmentation model. The architecture is made up of an

encoder acting as a contraction path and a decoder

acting as an expansion path, which are linked by a

sequence of layered dense convolutional blocks. The

structure is comprised of an encoder and a decoder sub-

network with the objective of bridging the semantic

disparity between the encoder and decoder feature maps

preceding to fusion.
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• A ReLU function activates each convolution process in

U-Net, and the output layer uses the sigmoid function.

The U-Net hyperparameters include 1000 epochs, a

batch size of 64, a learning rate of 0.00001, a smoothing

loss of 1–5, and a threshold of 0.5 with Adam

optimizer. The U-Net model is designed based on two

models of down filter for encoder and decoder structure.

The filter structure is (16, 32, 64, 128, 256, 128, 64, 32,

16). Three types of loss function were used: binary

cross-entropy (BCE), dice coefficient (DC), and Soft-

Max with ranges between 0 and 1. It selected the best

model that produces satisfactory performances.

• The output of the U-Net model is an image in which

each pixel is assigned to either 0 or 255, indicating the

foreground or background object. The semantic seg-

mentation result of fetal heart contour from U-Net

becomes an input to the Faster-RCNN model for

detecting the defect position. Faster-RCNN is com-

posed of two components. The first module is RPNs

that propose RoIs, and the second module is the Fast

R-CNN detector, which utilizes the RPNs model’s

proposed regions. The RPNs and detection network

exchange full-image convolutional features, allowing

practically cost-free region proposals, while the FCNs

concurrently predict object boundaries and abjectness

indices at each position.

• The Faster-RCNN model is developed using four

different backbone architectures: VGG16, VGG19,

Resnet50, and MobilenetV1. All architectures are

compared to select the best detection, regression, and

classification performance. Several hyperparameters in

the whole structure are selected, such as a single batch

size with a 0.001 learning rate and a 0.9 momentum.

The pre-trained model uses two hundred feature

learnings to achieve the best defect detection sensitiv-

ity. Moreover, the model was trained with 100 epochs

equipped with the Stochastic gradient descent (SGD)

and Adam as optimizer. The anchor box scales were

fine-tuned using 128, 256, and 512 pixels, while the

aspect ratio was 1:1, 1:2, and 2:1, respectively. Finally,

all bounding boxes are predicted with a non-max

suppression overlapping threshold of 0.7, and the

overlapping classifier is 0.5.

The proposed model was developed on a computer

equipped with an NVIDIA GeForce RTX 2080 GPU and a

3.60 GHz Intel(R) CoreTM version 9 CPU. Each image is

processed in 9 s, while testing takes 147 ms.

3.4 Evaluation metrics

This study validates the proposed model using precision,

sensitivity, pixel accuracy, mean intersection over union,

Fig. 1 Main automated fetal cardiac defect detection processes based on a deep learning technique

Table 1 The distribution of fetal

heart images utilized throughout

the training, validation, and

testing stages

Condition Training samples Validation samples Testing samples Total

ASD 133 21 – 154

VSD 158 20 – 178

AVSD 159 25 – 184

Normal 155 22 71 248

Total 605 88 71 764
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mean accuracy, and dice similarity coefficient [15]. The

performance of a classifier is commonly represented in a

confusion (e.g., contingency) matrix, which has four ele-

ments: true positive, false positive, true negative, and false

negative. Let Cii;Cij;Cjj; and Cji be true positive, false

positive, true negative, and false negative, respectively.

Precision and sensitivity scores are obtained as follows.

Precision ¼
Pn

i¼1 CiiPn
i¼1 Cii þ

Pn
y¼1 Cij

ð1Þ

Raw Image Contour GT-S GT-O

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 2 Steps involved in data pre-processing (from left to right): raw

image, fetal heart contour, ground truth for segmentation (GT-S), and

ground truth for object detection (GT-O). Three septal defects, i.e.,

ASD (a–d), VSD (e–h), and AVSD (i–l), and normal conditions (m–

p), are shown. Green lines are wall-chamber contour, red boxes are

the hole, white color objects are the septum, and overlap between

green and red lines are the segmented result by U-Net (Color

figure online)
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Sensitivity ¼
Pn

i¼1 CiiPn
i¼1 Cii þ

Pn
y¼1 Cji

ð2Þ

The pixel accuracy (PA) is specified as the ratio between

correctly classified pixels and the total number of pixels. It

is formally defined as:

PA ¼
Pn

i¼1 CiiPn
i¼1

Pn
j¼1 Cij

ð3Þ

where n is the number of classes and Cij is the number of

pixels in class i that are predicted as class j.

In addition, mean intersection over union (mIoU)

depicts the intersection percentage between the labeled

mask and the predicted output. More formally, it is

acquired by taking the average of each class’s IoU value

over all classes as follows.

mIoU ¼ 1

n

Xn

x¼1

CiiPn
j¼1 Cij þ

Pn
y¼1 Cji � Cii

ð4Þ

Mean accuracy (MA) specifies the accuracy ratio for each

class and the overall average (e.g., n) It can be expressed

as:

MA ¼ 1

n
¼

Xn

x¼1

CiiPn
j¼1 Cij

ð5Þ

Finally, the dice similarity coefficient (DSC) metric that

has been widely known in medical imaging applications is

also employed. The DSC between a predicted image D and

a ground truth image R, both of size k� l is specified as:

DSC D;Rð Þ ¼ 2

Pk�1
a¼0

Pl�1
b¼0 DabRab

Pk�1
a¼0

Pl�1
b¼0 Dab þ

Pk�1
a¼0

Pl�1
b¼0 Rab

ð6Þ

where a and b denote the pixel, indicating the height k and

width l, respectively. The range of the DSC is ½0; 1�, and a

greater DSC depicts to a better fit between D and R.

4 Result and discussion

The primary finding of this work is outlined and discussed

in this section. The A4C segmentation is conducted by

using the CNNs-based U-Net architecture. The model is

validated by other two-loss functions, DC and BCE. Before

the defect detection process is carried out, the wall cham-

ber and aorta must be segmented. The segmentation

approach is constructed using three different down-filtering

(DF) schemes and an up-filtering (UF) scheme for the

encoder and decoder structure, respectively. The process is

performed to choose the optimal architecture of the enco-

der-decoder structure. Model 1 is developed with DF (8,

16, 32, 64, 128, 64, 32, 16, 8); model 2 is developed with

DF (16, 32, 64, 128, 256, 128, 64, 32, 16); and model 3 is

developed with DF (32, 64, 128, 256, 512, 256, 128, 64,

32); while model 4 is developed with UF (128, 256, 512,

1024, 2064, 1024, 512, 256, 128). All performance results

in terms of precision, sensitivity, PA, mIoU, MA, and DSC

are shown in Table 2. Model 3 with the DF scheme per-

forms best compared to other models. Moreover, the loss

function is tuned to select the best U-Net model so that a

small number of false segmented pixels can be obtained

during the testing process. Three different loss functions,

i.e., dice coefficient, BCE, and SoftMax, are tested in the

experiment. Figures 4 and 5 show the performance results

of U-Net models with various loss functions in terms of

precision, sensitivity, PA, mIoU, MA, and DSC. Based on

the results, BCE outperforms dice and SoftMax’s overall

performance metrics.

Fig. 3 Proposed architecture. Input images from US are segmented, while the output becomes an input of RPNs to detect the heart defect
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Figure 6 visualizes the contour segmentation results in

four types of images: raw image, GT image with green

lines in contour, the predicted image with red contour lines,

and an overlap contour area between GT and the predicted

image. The proposed segmentation model achieves above

90% in all performance metrics (see Table 2), implying

that the proposed U-Net architecture demonstrates a

promising result in automatic segmentation of the contour

region. Furthermore, segmentation performance is good for

each class, with false-positive rates of 0.32%, 0.10%,

0.08%, and 0.09% for ASD, VSD, AVSD, and normal

condition, respectively. These rates indicate that the num-

ber of falsely segmented pixels is quite small since the

proposed model can accurately predict all heart-chamber

contour conditions. The precision and sensitivity metrics

are significant in measuring the segmentation results

because both are sensitive to over-segmentation and under-

segmentation. If the prediction is over-segmented, the

precision score will be low, while an under-segmented

prediction will result in a low sensitivity value. Therefore,

high precision and sensitivity values mean the boundaries

in both segmentations are in the correct positions. Sensi-

tivity and precision are evaluation metrics that measure

how pixel boundaries match the predicted segmentation

and ground truth.

The PA and mIoU are the most common metrics used

for evaluating how well the segmentation model performs.

The PA metric is used to assess the percentage of pixels in

each correctly classified image. In this study, the proposed

U-Net architecture predicts each pixel’s image class and

reports each class’s prediction separately and globally

across all categories. Figure 7 shows each class’s pixel

accuracy for ASD, VSD, AVSD, and normal conditions.

While using the proposed segmentation model, each class’s

pixel accuracy tends to be near-perfect accurate (e.g.,

achieving 100% accuracy).

To validate the proposed model, the results are com-

pared with other segmentation architectures such as

U-Net?? [52] and V-Net [53]. These models are chosen

since they have shown remarkable performance in the

medical field. Figure 8 compares the prediction results of

three architectures. The experimental results show that the

U-Net architecture provides major efficiency gains over

U-Net?? and V-Net, yielding average improvements

concerning the precision, sensitivity, PA, mIoU, MA, and

DSC metrics. It is worth mentioning that U-Net produces

97.06% precision and 95.76% sensitivity, which are better

than those produced by V-Net. It exhibits an average

improvement of 23% in sensitivity and precision metrics

over V-Net. Moreover, the U-Net produces a mIoU 16%

over that of V-Net. It is shown that U-Net is likely better

adequate for semantic segmentation of 2D images than

V-Net. The pixel accuracy of the U-Net architecture is

higher (e.g., around 0.36 and 4.27%) than U-Net?? and

V-Net, respectively (see Fig. 8).

This study represents fetal heart defect detection based

on the Faster-RCNN approach to effectively screen for

abnormalities in a fetal heart. Faster-RCNN is trained with

four different backbones in the RPNs such as VGG16,

Table 2 Segmentation results for four conditions using the best U-Net

model

Condition Performance (%)

Precision Sensitivity PA mIoU MA DSC

ASD 95.73 96.14 99.50 95.82 97.92 95.89

VSD 94.58 97.74 99.51 96.00 98.68 96.08

AVSD 96.64 98.58 99.82 97.56 99.22 97.60

Normal 92.94 96.67 99.84 94.96 98.28 94.76

Fig. 4 Filter tuning to search the optimal U-Net model

Fig. 5 Loss function tuning to search the optimal U-Net model
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VGG19, ResNet50, and MobilenetV1. RPNs are an

important part of Faster-RCNN. Using a translational

invariant, the model has a bounding box around the iden-

tified objects (e.g., defect). RPNs are trained until a small

loss is achieved. The score is based on the projected box

that overlaps the most with a ground truth box in terms of

IoU. As seen in Table 3, Faster-RCNN with VGG16

architecture as the backbone can detect a heart defect in the

septum with large mAP (87.80%). Therefore, VGG16 is

the best backbone model in the proposed DL model.

In summary, Table 3 and Fig. 8 demonstrate that the

proposed DL model (e.g., a combination of Faster-RCNN

and U-Net) produces 96.33% mIoU, 96.37% DSC, and

87.80% mAP for three septal defect conditions, i.e., ASD,

VSD, AVSD, and normal conditions, respectively. Fig-

ure 9 shows the results of the detection of a septal defect.

Raw Image GT Predicted Overlapping Area

(a)

(b)

(c)

(d)

Fig. 6 Segmentation results of U-Net with respect to the following

conditions: a ASD, b VSD, c AVSD, and d Normal. The green lines

depict the expert’s GT characterization, the red lines indicate the

U-Net segmentation’s wall-chamber contour image, and the green–

red lines represent the overlap between the two (Color figure online)
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All examples are from the U-Net model test set. The pro-

posed model can predict defective RoI with more than a

90% confidence value (see Fig. 9a–d). In addition, using 71

images of the invisible data, the proposed model success-

fully distinguishes a normal from an abnormal fetal heart.

In Fig. 9, it is shown that the absence of a bounding box is

detected in normal data. In contrast, the presence of a

bounding box is detected based on the location of the

defect where the abnormality occurs for abnormal data.

Based on the performance obtained after analysis with this

approach, the performance is not good enough for unseen

data due to the multidimensional structure of the fetus.

As for benchmark, we compare the proposed model with

three cases: (i) individual Faster-RCNN, (ii) other seg-

mentation models, and (iii) other object detection model:

• Individual Faster-RCNN cannot detect the defect in the

atrium with mAP 20.10% and both atrium and ventricle

with mAP 30.45% (see Table 4). A septal defect is

likely to be detected during the second and third

trimester with the grayscale US. The defect size is not

more than 3–4 mm, with many shadows [5]. The fetal

heart images are natural with a wide range of semantic

patterns, color, and intensities; they also contribute to

detection difficulty [6, 10]. Without contour segmenta-

tion, the Faster-RCNN detected the small object like a

defect. However, using an improved model provides

more efficient performance results with the ability to

detect all defect positions in the atrium, ventricle, and

both.

Fig. 7 Pixel accuracy performance of the proposed model for a ASD, b VSD, c AVSD, and d normal conditions

Fig. 8 Performance comparison of three different architectures for

segmentation task

Table 3 Performance results of

Faster-RCNN with different

backbones

Backbone mAP defect (%)

VGG16 87.80

VGG19 73.17

ResNet50 61.82

MobilenetV1 70.18
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• The proposed approach is validated against existing

object detectors in clinical applications. As shown in

Table 5, three previous works (e.g., [10, 28, 54, 55]

segmenting the left ventricle, head, thorax, and abdo-

men of the fetus produce 94.5%, 96.84%, 93.30%, and

90% w.r.t DSC metric, respectively, while one work

(e.g., [54]) for fetal cardiac views reaches 95%. Our

proposed model for fetal heart segmentation achieves a

good performance of 96.37% w.r.t DSC metric. Further

research is needed to measure US image quality to

better understand data with varying image quality.

• The contour segmentation process is combined with

Faster-RCNN to detect the defect in the septum. This

process provides more effective performance results,

and the detection model is relatively faster than other

object detectors (see Table 6). Compared with some

previous works in [56–59], their performance results are

lower than 80%, while our proposed model produces

87.80% and 96.37% in terms of mAP and DSC,

respectively. This means that the predicted cardiac

defect in the septum has a large overlap with the ground

truth. However, it is necessary to conduct an extensive

experiment using unseen image samples regarding

septal defect conditions.

The CNNs approach with stacking U-Net and Faster-

RCNN architecture is applied layer by layer in this

research, with no features provided beforehand. Conse-

quently, the proposed approach has the benefit of providing

a complete picture of the fetal heart’s anatomical structure,

indicating that the developed model accurately segments

the fetal heart in A4CH while also identifying a septal heart

septum defect. As far as we are concerned, neither study on

segmenting the fetal heart image nor identifying cardiac

defects utilizing this stacking architecture has been

attempted. Although the findings show promise in terms of

segmentation and diagnosis of fetal cardiac abnormalities,

there are major drawbacks to this study: (i) to identify

CHDs, solely the fetal heart on a 4CH view is employed,

(ii) the extent of the defect is not properly considered while

assessing the degree of CHD, and (iii) to improve perfor-

mance, the number of fetal heart imaging data collections

with normal and defective fetal heart structures should be

increased.

Fig. 9 Cardiac defect detection using the proposed model. a ASD, b VSD, c AVSD, and d normal. Red color denotes the segmentation result by

U-Net, and yellow color refers to object detection by Faster-RCNN (Color figure online)

Table 4 Comparison results between the improved model and indi-

vidual Faster-RCNN

Defect Position mAP (%)

Proposed model Faster-RCNN

Atrium 91.07 20.10

Ventricle 82.14 67.66

Atrium and ventricle 65.76 30.45

Table 5 Performance comparison with other segmentation techniques

Method Fetal object segmentation DSC (%)

Dynamic CNNs [10] Fetal left ventricle 94.50

CNNs-based Link-Net [28] Fetal head 96.84

DW-Net [54] Fetal thorax 93.30

CNNs ? HOG [55] Fetal abdomen 90

Proposed model Fetal Heart 96.37

Table 6 Performance comparison with other detection tasks

Object detection Performance (%)

mIoU mAP DSC

Breast lesions [56] – – 91.42

Lung nodules [57] – – 70.00

Oral diseases [58] – – 74.00

Nucleus [59] 70.54 59.40 –

Septal defect with Faster-RCNN – 37.57 –

Proposed model 75 87.80 96.37
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5 Conclusions

This paper proposes an improved Faster-RCNN model to

automate heart-chamber segmentation and automatically

detect the septum defect using 764 US images. The pro-

posed deep learning was constructed via the combination

of architecture U-Net and Faster-RCNN. Based on the

experiment, the proposed model achieved good perfor-

mance by 75.00%, 96.37%, and 87.80%, with respect to

mIoU, DSC, and mAP metrics, respectively, surpassing

other similar segmentation techniques, e.g., CNNs. The

proposed model was also successful in a testing scenario

using 71 unseen normal class images, accomplishing 100%

sensitivity, showing that the proposed model could recog-

nize the normal class effectively without any misclassifi-

cation error. However, there are several limitations to this

work. According to the defect detection result, perfor-

mance accuracy must be improved. The lower accuracy

happens mainly due to the data set’s limitation, inconsis-

tent image quality, variances in specific anatomic struc-

tures, and variability of the image size. Moreover, the

proposed model was trained on images from US equip-

ment, e.g., GE Volluson P8, without considering the

echocardiogram variability. Further experiments with lar-

ger datasets from different US equipment are necessary to

improve the robustness of the model. The proposed deep

learning model’s generalizability and adaptability should

be considered for future work. All experiments were car-

ried out on the same dataset, where the training set was

randomly split and would have an identical distribution

with the testing set. Although the results look promising,

the view of the fetal heart discussed in this work was

limited to the A4C view. Therefore, future research should

incorporate other views, such as right RVOT, LVOT, and

3VT.
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