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A B S T R A C T   

Background: Fetal heart defect (FHD) examination by ultrasound (US) is challenging because it involves low light, 
contrast, and brightness. Inadequate US images of fetal echocardiography play an important role in the failure to 
detect FHDs manually. The automatic interpretation of fetal echocardiography was proposed in a previous study. 
However, the low quality of US images reduces the prediction rate of computer-assisted diagnosis results. 
Methods: To increase the FHD prediction rate, we propose low-light fetal echocardiography enhancement 
stacking with a dense convolutional network classifier named “FetalNet.” Our proposed FetalNet model was 
developed using 460 US images to produce an image enhancement model. The results showed that all raw US 
images could be improved with satisfactory performance in terms of increasing the peak signal-to-noise ratio of 
30.85 dB, a structural similarity index of 0.96, and a mean squared error of 18.16. Furthermore, all reconstructed 
images were used as inputs in a convolutional neural network to generate the best classifier for predicting FHD. 
Results: The proposed FetalNet model increased the FHD prediction rate by approximately 25% in terms of ac-
curacy, sensitivity, and specificity and produced 100% predictive negative using unseen data. 
Conclusions: The proposed deep learning model has the potential to identify FHD accurately and shows potential 
for practical use in identifying congenital heart diseases in the future.   

1. Introduction 

Heart defect identification in utero using ultrasound (US) is still 
frequently missed in prenatal screening, which can result in severe 
morbidity or even death. Screening programs in most developed coun-
tries have reported a detection rate of only 30%–60%, which varies 
according to the type of cardiac defect and the sonographer’s skills [1]. 
A high volume of standard anomaly scans performed by each sonogra-
pher contributes significantly to the prenatal detection rate. Approxi-
mately 49% of missed cases are due to a lack of adaptive human skills 
when performing a standard anomaly scan [2,3]. The quality of US 
images also appears to play an important role in the success of prenatal 

detection of fetal heart defects (FHDs) [2,3]. Inadequate fetal heart US 
images were significantly more frequent in cases of undetected FHD 
compared with cases in which FHD was detected [1,3]. However, in 20% 
of undetected cases, FHDs are not visible, even though US images are of 
adequate quality [4,5]. Therefore, the quality of US images obtained 
from fetal heart screening during the second trimester’s standard 
anomaly scan should be improved to potentially increase the FHD 
detection rate [6]. 

Prenatal screening most commonly uses a US device to perform 
imaging modalities, given its non-ionizing radiation, low cost, non- 
invasiveness, and convenience in use [3,5]. Despite these advantages, 
there are major challenges to US, such as images having different tissue 
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contrast quality where the contrast available is low with imaging arte-
facts [3–6]. When an image is captured under insufficient light condi-
tions, low contrast, and low brightness, the pixel values are in a low 
dynamic range, thereby causing the image quality to decrease. Given 
that the whole echocardiogram appears very dark, it is difficult to 

clearly identify heart defects. Low contrast and visibility in US images 
cause serious effects that can lead to an incorrect diagnosis. Removing 
these degradations and transforming low-light US images into 
high-quality, sharp images in fetal echocardiography is helpful to 
improve the diagnosis and prognosis of FHDs [7,8]. Hence, it is neces-
sary to increase the quality of low-light US images in fetal echocardi-
ography before making a diagnosis. 

Low-light image enhancement (LLIE) methods can help increase the 
brightness, lightness, and contrast of medical images to improve inter-
pretation and visualization [8,9]. Many LLIE methods, mostly based on 
histogram equalization (HE) techniques [10] and contrast-limited 
adaptive HE (CLAHE), have been proposed and have achieved great 
success [11]. They involve a global adjustment process without 

Table 1 
Fetal echocardiography data to create FetalNet.  

Process ASD AVSD VSD Normal total 

Training 68 112 68 119 367 
Testing 22 28 14 29 93 
Unseen 10 10 10 10 40  

Fig. 1. Raw fetal echocardiography data showing heart defects: (a) ASD, (b) VSD, (c) AVSD, and (d) normal conditions.  

Fig. 2. Proposed FetalNet architecture CNN-based low-light image enhancement with a CNN classifier (DenseNet 201).  
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considering the change in brightness, which is prone to local over-
exposure, color distortion, and poor denoising. These HE methods cause 
serious color cast problems, and details in darkened areas will not be 
properly enhanced in many cases [8]. Various image processing 
methods exist to obtain images with stronger contrast and better 
brightness; however, all these models produce complex mathematical 
analysis [8]. 

The performance of an artificial intelligence (AI)-based medical 
image analysis system varies significantly with respect to the quality of 
images with simple algorithms [8,9]. Deep learning (DL)-based models 
have shown promising performance in various medical imaging mo-
dalities [12–18]. In the past few decades, various algorithms have been 
proposed to vary LLIE performance areas. DL-based convolutional 
neural networks (CNNs) have achieved great success in LLIE results, 
image super resolution, and other image-processing applications 
[12–14,19–21]. CNNs introduce convolutional layers into LLIE and 
achieve better results in terms of peak signal-to-noise ratio (PSNR) and 
structural similarity index (SSIM). 

Image enhancement models have been proposed to improve natural 
image quality; however, the reconstructed images obtained in these 
studies were not processed further. In the current study, reconstructed 
fetal heart images were further processed in a classifier model. The feed- 
forward learning approach based on convolutional layers is created to 
learn low-to-high-resolution mapping and evaluate it on fetal heart 
images. In summary, this study makes the following contributions:  

• Developed a CNN-based LLIE architecture to enhance fetal heart 
image quality;  

• Proposed a stacked architecture, CNN-based LLIE, and CNN-based 
classifier named “FetalNet” for improving the FHD prediction rate;  

• Implemented the FetalNet model to predict three classes of 
FHD—atrial septal defect (ASD), ventricular septal defect (VSD), and 

atrioventricular septal defect (AVSD)—and one class of normal 
condition; and  

• Evaluated the proposed FetalNet model on unseen data to ensure 
model robustness. 

2. Material and method 

2.1. Data preparation 

Fetal US videos were taken from General Hospital Muhammad 
Hoesin, Indonesia. The videos were recorded using a GE Voluson E6 
with a loop length of 2–20 s, and the file size was approximately 890 KB 
to 36.9 MB. The examination was assessed by US after an approximate 
gestational (menstrual) age of 18–24 weeks. The US videos were 
retrieved for retrospective analysis using the digital imaging and com-
munications in medicine (DICOM) format. For videos that had been 
obtained previously, the next step was to convert videos into frames or 
images and then resizing them to a resolution of 256 × 256 pixels. We 
used 460 images to develop the FetalNet model with three FHD con-
ditions—ASD, VSD, and AVSD—and normal conditions (Table 1). The 
learning process was conducted without data augmentation to maintain 
the actual clinical condition. To prove the heart defect model’s robust-
ness, we used two scenarios based on intra- and inter-patient (unseen) 
data. 

An increased depth indicates that a lower frequency is required for 
optimal imaging. Consequently, the images have a lower resolution. 
Over time, US machines have become more sophisticated, some of which 
use the returning second-degree harmonic of the original frequency to 
produce an improved image. However, they still produce low levels of 
lightness, contrast, and brightness. Good image quality is fairly subjec-
tive and is also relative to the capabilities of the US machine. Samples of 
raw US images on fetal echocardiography are depicted in Fig. 1. How-
ever, wall–chamber boundaries are difficult to see, particularly on 

Table 2 
CNN-based LLIE model with parameter selection to produce the best model.  

Adam optimizer, five layers, input size 300 × 300, reconstructed image size 350 × 250 

Fetal echocardiography epoch 500 epoch 1000 epoch 2000 

MSE SSIM PSNR MSE SSIM PSNR MSE SSIM PSNR 

US 1 22.65 0.96 31.93 19.16 0.97 32.95 18.11 0.97 33.02 
US 2 19.02 0.95 31.94 13.91 0.97 32.51 13.74 0.97 33.92 
US 3 18.03 0.97 31.73 15.93 0.97 31.79 15.41 0.97 33.21 
US 4 29.60 0.91 26.47 25.45 0.93 27.49 25.28 0.93 27.14 
US 5 15.01 0.97 30.31 12.59 0.97 29.60 11.72 0.97 30.74 
US 6 28.42 0.93 26.28 25.38 0.94 27.18 24.69 0.95 27.15 

Adam optimizer, seven layers, input size 250 × 250, reconstructed image 300 × 200 
Fetal echocardiography epoch 500 epoch 1000 epoch 2000 

MSE SSIM PSNR MSE SSIM PSNR MSE SSIM PSNR 

US 1 25.44 0.96 30.35 24.07 0.96 30.98 22.75 0.96 31.46 
US 2 19.77 0.96 30.82 17.87 0.97 31.93 16.93 0.97 33.18 
US 3 23.84 0.94 28.31 23.39 0.95 28.79 22.39 0.95 29.68 
US 4 29.46 0.89 25.27 28.65 0.91 25.49 27.79 0.91 25.27 
US 5 18.15 0.97 30.31 16.93 0.97 30.09 17.25 0.97 30.88 
US 6 29.32 0.92 24.99 28.31 0.93 25.15 27.33 0.93 25.08  

Table 3 
Benchmarking for three enhancement models.   

CNN model Retinex-Net model Autoencoder model 

MSE SSIM PSNR MSE SSIM PSNR MSE SSIM PSNR 

US 1 18.12 0.97 33.02 38.51 0.89 27.68 47.77 0.78 24.29 
US 2 13.74 0.97 33.92 44.22 0.89 26.55 37.87 0.84 24.57 
US 3 15.42 0.97 33.21 42.02 0.89 26.62 37.72 0.84 24.52 
US 4 25.28 0.93 27.14 30.12 0.85 26.21 39.15 0.70 21.63 
US 5 11.72 0.98 30.75 37.23 0.88 24.15 35.59 0.86 27.36 
US 6 24.70 0.95 27.15 34.99 0.85 24.27 37.61 0.72 21.06  
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difficult-to-image patients with much “noise” in the image. 
Accordingly, LLIE, as a pre-processing step, is of significance and also 

desired before predicting heart defects. The main difficulty in modeling 
LLIE on fetal echocardiography is how to collect a set of training data. 
Such a process relies on low- and high-resolution image pairs to train a 
network in a fully supervised manner. Unfortunately, such image pairs 
are unavailable in real-world applications, or the ground truth is un-
known. Therefore, we manually adjusted the contrast and brightness of 
low-light US images using software at the upper and lower threshold 
values for each pixel intensity [22]. By using such techniques, 
high-quality fetal echocardiography was created as the ground truth. 

Fig. 3. Sample of a reconstructed image with three architectures: CNNs, Retinex-Net, and Autoencoder.  

Table 4 
Performance comparison with other LLIE models based on DL.  

Model Implementation PSNR SSIM MSE 

Super resolution CNN [20] Brain image 37.02 0.97 – 
Deep convolutional network 

[21] 
Natural image – 0.92 – 

Deep Autoencoder [24] Natural image 24.27 0.61 – 
Super resolution CNN [25] Remote sensing image 28.19 0.83 – 
Proposed CNN-based LLIE Fetal 

echocardiography 
30.87 0.96 18.16  
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2.2. FetalNet architecture 

The FetalNet model is an extension of LLIE with a predicted model of 
a CNN classifier architecture. Our previous studies without the LLIE 
model failed to predict FHD in unseen data [17]. However, this model 
successfully predicted the wall chamber and aorta only under normal 
conditions. To improve the FHD prediction rate, we developed the 
FetalNet model in this study. The general methodology is depicted in 
Fig. 2 and summarized as follows:  

• Fetal echocardiography image enhancement was developed based on 
a CNN-based LLIE model. Such architecture consisted of a convolu-
tion layer as an input, a convolutional module for multiscale learning 
feature maps to produce an enhanced image, and a convolution layer 
as an output. The convolution input layer was used to generate 
uniform input data. The reconstruction module was used to learn the 
raw image with different kernels to improve the image quality in 
accordance with the image target that was prepared. The output 
layer was fused with the feature map to generate the reconstructed 
image.  

• The LLIE learning process used deep inception and residual networks 
adopted from a previous study [16] or https://github.com/BestJ 
uly/LLCNN. However, in the current study, we simplified the ar-
chitecture with one layer of input data, five layers of reconstruction 
modules, and one layer of output data. 

• The raw image size and the reconstructed image size were approxi-
mately 256 × 256 pixels. To increase US image quality, we used SSIM 
loss as the objective function of the LLIE network. SSIM loss is 
denoted by 1 − SSIM(p), where SSIM(p) is the SSIM that measures 
pixel p, which is explained in Ref. [16]. The learning rate was 
approximately 2 × 10− 4 with an Adam optimizer. A batch size 
ranging from 8 to 32 was used with epochs ranging from 500 to 2000 
with an early stopping mechanism.  

• To achieve outstanding performance, the high-quality US image 
target should have a PSNR value close to 35 dB and an SSIM value 
close to 1. We benchmarked three LLIE backbones—CNNs, Retinex- 
Net [23], and deep autoencoder [24]—to ensure the enhancement of 
the image quality performance.  

• The output of the LLIE model was a reconstructed image used as an 
input into the CNN classifier to predict FHDs. Eight CNN architec-
tures (ResNet 50, ResNet 121, DenseNet 102, DenseNet 201, VGG 19, 
Xception, MobileNet, and MobileNetV2) were compared to select the 
best FetalNet model evaluated only in unseen data. 

All of the networks were implemented using Python and the Pytorch 
1.7.1 library and trained using a computer with the following specifi-
cations: Intel® Core™ i9-9920X CPU @ 3.50 GHz processor with 
490,191 MB RAM, GeForce 2080 RTX Ti by NVIDIA Corporation GV102 
(rev a1), and an Ubuntu 18.04.5 LTS operating system. 

3. Result and discussion 

This section addresses various experiments to demonstrate the 
effectiveness of our approach. Comparisons with other methods are also 
presented. Three LLIE backbone architectures were created (CNNs, 
Retinex-Net, and Autoencoder) to enhance fetal echocardiography 
image quality. Eight CNN classifiers were developed to increase the FHD 
prediction rate. 

3.1. CNN-based LLIE model performance 

The PSNR value approaches infinity as the mean square error ap-
proaches zero. This shows that a higher PSNR value provides a higher 
enhancement. At the other end of the scale, a small PSNR value implies 
high numerical differences between the images. SSIM is a well-known 
quality metric used to measure the similarity between two images. It 
is designed by modeling any image distortion as a combination of the 
following three factors: loss of correlation, luminance distortion, and 
contrast distortion. The positive values of the SSIM index are in [0,1]. A 
value of 1 indicates a high correlation between the image and vice versa. 
Table 2 shows that our proposed model with 2000 epochs produced 
good performance with PSNR from 27 dB to 33 dB and an SSIM from 
0.93 to 0.91 (close to 1). This means that the a high correlation was 
reached between the target and the reconstructed images. 

Two CNN-based LLIE architectures were created based on five and 
seven convolutional block layers to achieve the best enhancement model 
(Table 2). The experimental results showed that the best LLIE archi-
tectures had an input size of 300 × 300, a reconstructed size of 350 ×
250, a batch size of 8, and a learning rate of 0.0001. The model used an 
Adam optimization function with five convolutional block layers and 
learning processes run on epoch 2000. 

To verify our selected CNN-based LLIE model’s effectiveness and 
robustness, we benchmarked using the Retinex-Net model [23] and the 
Autoencoder model [23]. The enhancement performance was compared 
in terms of the MSE, SSIM, and PSNR. The results showed that the 
proposed LLIE outperformed state-of-the-art models. Such a model 
produced a high PSNR from 27.14 dB to 33 dB, all SSIMs of over 93%, 

Fig. 4. FetalNet model with eight classifiers’ architecture with unseen data.  
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and all MSEs performed under 25% for six fetal heart US videos. All 
metrics show that our LLIE performance achieved satisfactory results 
(Table 3). This indicates that the error between the ground truth and the 
reconstructed image was low. Our model produced an MSE of approxi-
mately 18.16, implying that the reconstructed image had been properly 
restored. Furthermore, the quality of the restored image was improved. 
Using the CNN-based LLIE reaches an SSIM of a reconstructed image to a 
ground-truth image close to 1, indicating that the US image was 
improved. 

A sample of a reconstructed image using three LLIE architectures is 
depicted in Fig. 3. Low fetal echocardiogram, as raw data from an US, 
had lower lightness, brightness, and contrast. Ground truth data are 
unavailable in real-world settings. We used layers in Python to manually 
enhance fetal echocardiography to generate artificial, corresponding 
ground truth images. By using brightness and contrast adjustment [22] 
techniques, we improved fetal echocardiography at the upper and lower 
threshold values for each pixel intensity. We made a fair comparison 
with other DL architectures: Retinex-Net and the Autoencoder model. 

Fig. 5. Confusion matrix FHD prediction with and without LLIE in unseen data.  
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The LLIE in fetal echocardiography was an important process because 
low-quality images can reduce the prediction rate. With CNN-based 
LLIE, the quality can be improved in these three parameters. However, 
the DL-based LLIE method has limited medical applications, as found in 
the previous study. We benchmarked our proposed LLIE model with 
state-of-the-art models in a low-light image application [20,21,24,25] 
(Table 4). The proposed CNN-based LLIE architecture achieved better 
performance based on learning to map directly from low-to high-quality 
images, with 30.87 dB PSNR, 0.96 SSIM, and 18.16 MSE. This means 
that our model could enhance the lightness, brightness, and contrast of 
fetal echocardiography. 

3.2. FetalNet prediction performance 

In this study, reconstructed images from the LLIE model were used to 
predict FHDs. The model performance was considered successful or 
unsuccessful in classifying four classes (ASD, VSD, AVSD, and normal). 
To ensure that the developed model was reliable, we used eight CNN 
architectures: DensetNet 121, DenseNet 201, ResNet 50, ResNet 101, 
MobileNet, MobileNetV2, VGG19, and Xception. Based on the quanti-
tative analysis indicators, FetalNet with DenseNet 201 architecture 
produced better improvement than other CNN architectures. As shown 
in Figs. 4 and 5, the whole architecture could obtain classification tasks 
from images’ enhancements. However, the results of many methods 
were not sufficient or satisfactory, especially in terms of specificity. 

Based on the experiments, FetalNet architectures produce satisfac-
tory performances of approximately 90% in sensitivity, specificity, and 
accuracy. With a confusion matrix, FetalNet was evaluated for four 
classes: ASD, VSD, AVSD, and normal condition. DenseNet 201 pro-
duced a 100% predictive negative, whereas the proposed model could 
predict all normal conditions (Fig. 5). All FHD conditions were suc-
cessfully predicted with unseen data, even for AVSD, and FetalNet with 
DenseNet 201 improved the prediction rate by 7%–10%. 

An end-to-end FetalNet model was proposed to obtain reconstructed 
fetal echocardiography images from degraded low-light images. The 
model was applied to classify the four classes of FHD. The limitation of 
our proposed model was the limited number of fetal echocardiography 
US images, and the unseen data only included eight videos. Neverthe-
less, the amount of data was sufficient for neural networks in general. 
Therefore, the results were likely not significantly affected by the 
number of individual fetuses. The CNN-based LLIE shows potential for 
use in improving the quality of low-resolution and low-light images of 
fetal echocardiography. Furthermore, our proposed model typically re-
quires only a few seconds for LLIE, thereby supporting US device inline 
reconstruction for clinical applications. 

4. Conclusion 

Despite advancements in US imaging, the prenatal identification of 
FHDs is still low, based on population studies. The complex anatomy of 
the fetal heart, along with its small size and the diverse nature of fetal 
heart abnormality, adds to the examination’s complexity. In addition, 
the operator’s dependency on US, along with the variable position of the 
fetus within the abdomen, results in a lack of standardization, consis-
tency, and reproducibility. The fetal heart is very small, and US exam-
inations need to pass through the maternal and fetal bodies, causing 
higher noise and lower contrast in the images, making the examination 
and diagnosis a challenge for even the most experienced physicians. 
Hence, the enhancement of image quality is an important process to 
improve reproducibility and consistency in fetal heart evaluation. We 
proposed FetalNet for increasing image quality and FHD prediction 
automatically based on obstetric and genecology practices. Our results 
show that our proposed model has the ability to improve the FHD pre-
diction rate by 70% for new patients (unseen). We believe that fetal 
heart examination using the DL technique will hopefully result in the 
reproducibility and consistency of fetal echocardiography. 
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