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ABSTRACT Delineating the electrocardiogram (ECG) waveform is an important step with high significance
in cardiology diagnosis. It refers to extract the ECG morphology in start, peak, end points of waveform. Due
to various shapes and abnormalities presented in ECG signals, several conventional computer algorithms
always fail to extract the essential feature of heart information. Thus, it is critical to investigate an automated
ECG signal delineation with its result accuracy. In this study, we propose the delineation process by
using bidirectional long short-term memory (BiLSTM) classifier. Such process was conducted as one beat
to the next (beat-to-beat), that means the ECG waveform classification is start of P-wave1 to start of
P-wave2. However, such classifier lack of feature extraction process, reducing the classification accuracy
result. To improve the classifier performance, convolutional layers as facture extraction are stacked with
BiLSTM named ConvBiLSTM. We conducted the experimental based on seven-class ECG waveform using
a publicly available QT Database with annotation of the main waveforms to produce high accurate classifier,
i.e., Pstart – Pend, Pend – QRSstart, QRSstart – Rpeak, Rpeak – QRSend, QRSend – Tstart, Tstart – Tend, and
Tend – Pstart. It was found that the proposed model showed remarkable results with overall average
performances of 99.83% accuracy, 98.82% sensitivity, 99.90% specificity, 98.86% precision, and 98.84%
F1 score. Based on these promising results, the efficacy of the proposed stacked ConvBiLSTM model in
classifying ECG waveform provides a great opportunity to help cardiologists in diagnosis decision-making
for faster assessment.

INDEX TERMS ECG delineation, stacked convolutional layers, bidirectional LSTM, waveform
classification.

I. INTRODUCTION
Medical practitioners acquire information about the elec-
trical function of the heart via electrocardiogram (ECG)
signals. Each heart cycle of one normal ECG beat con-
tains three main waveforms, i.e., P-wave, QRS complex,
and T-wave. These waveforms have a standard amplitude
and time duration, indicating various heart conditions [1].
Relevant information from the ECG waveform must be
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approving it for publication was Jinming Wen.

extracted from the physiological signal to diagnose various
heart abnormalities [2]. To achieve high diagnostic accura-
cies, ECG analysis requires the knowledge to extract the
morphology of the ECG waves or/and segments (delin-
eation) [1], [3], [4]. For example, to atrial fibrillation (AF)
detection, at least we have to know P-wave absence, which
it is one of the ECG signal important features. This makes
P-wave delineation of great importance for AF detection.
However, to delineate and get the knowledge about the
location and morphology to detect start, peak, and end
point of three main ECG waveforms is quite troublesome.
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In addition, to diagnose such conditions, ECG signal anal-
ysis is time-consuming and requires years of training for
specialized knowledge acquisition [5]. Moreover, it suffers
from intraindividual variability, such as electrodeposition in
common multi-lead ECG, and noise influencing the sig-
nal waveform [5]. Therefore, the process of ECG delin-
eation that related to ECGwaveform classification with using
approach of beat-to-beat segmentation is still needed in clin-
ical practice.

Advanced computing systems can reduce such limitations
by permitting the automatic delineation of ECGs. Many
researchers have proposed various conventional computer
algorithms for ECG delineation. Pan and Tompkins [6] first
introduced an automated algorithm to periodically adjust
thresholds and parameters to adapt QRS morphology and
heart rate. Their algorithm successfully detects 99.3% of
QRS complexes. Laguna et al. [7] presented an automated
algorithm for locating the waveform (the start and ends of
the P-wave, QRS complex, and T-wave) in multi-lead ECG
signals. Li et al. [8] improved and proposed an algorithm
based on wavelet transform (WT) to detect ECG charac-
teristic points with the detection rate of QRS complexes
above 99.8%. Lin et al. [9] proposed a discrete wavelet trans-
form (DWT) for ECG waveform classification. They recon-
structed eight-level decompositions of DWT, i.e., P-wave
(levels 5 and 6), QRS complex (levels 2 to 4), and T-wave
(levels 4 and 5). Although these conventional ECGwaveform
technique as managed to achieve accuracy above 99.8%, their
approaches rely heavily on the accuracy of ECG segmenta-
tion and its feature analysis. There can be a high degree of
uncertainty and variability due to the subjective aspect of the
measurements in the segmentation and measurement phases.

Machine learning (ML) with intelligent processing
approaches has been implemented for ECG waveform clas-
sification and also obtained promising results, such as
Bayesian [10], k-means algorithm [11], hidden Markov
model [12], neural network [13], adaptive thresholding [14],
and particle swarm optimization [15]. Unfortunately, in a
conventional ML, the features are always extracted heuristi-
cally and hand-crafted. Deep learning (DL) can automatically
extract a hierarchical representation of the data and then
utilize the rest of the stacked layers to learn complex features
from simpler ones [16], [17]. In contrast to conventional ML,
DL may not require extensive human interaction and knowl-
edge for feature design [16], [18]. One of the outstanding DL
approaches is long short-term memory (LSTM). LSTM is a
variant of recurrent networks used to overcome the gradient
problem of recurrent neural networks (RNNs) by multiplica-
tive gates that enforce constant error flow through the internal
states of memory cells [19]. LSTM has successfully learned
long-term correlations in a sequence of ECG [5], [20].

Due to the superiority of LSTM architecture in prediction
capability for both past and future inputs [21], this study
proposing a bidirectional phase of LSTM, named bidirec-
tional LSTM (BiLSTM). Such a method is appropriate for
sequential data processing based on forward and backward

time steps [19], [22]. BiLSTM architecture was concerned for
classifying the start and end of beat-to-beat ECG waveform
in seven-class i.e., Pstart – Pend, Pend – QRSstart, QRSstart –
Rpeak, Rpeak – QRSend, QRSend – Tstart, Tstart – Tend, and
Tend – Pstart. The ECG waveform is dynamically changed
every time depending on the frequency setting and the signal
length. However, the BiLSTM technique lacks of feature
extraction to recognize the dynamic ECG waveform [23].
Due to this problem, the aim of this study to improve the
BiLSTMarchitecture stackedwith a convolutional neural net-
works (CNNs) architecture as feature extraction to increase
the classifier performance. CNNs can generate local features
of the ECG signal sequence to recognize regional patterns
in the convolution window [24], [25]. The convolution layer
of CNNs helps to extract and learn by weight-sharing and
modify the low-level hierarchical and invariant features from
the raw data [26]. Previous studies about an automated delin-
eation with DL with accurate and precise results are still
limited. Besides, stacking of two DL architectures, i.e., con-
volutional layer and BiLSTM (ConvBiLSTM), has not been
explored in depth. Hence, it is imperative to investigate the
DLmodel improvement to increase the delineation waveform
ECG result.

To best our knowledge, some previous studies that used DL
implementation only limited to three main ECG waveform
delineation. Therefore, in this study, we give the contributions
and novelty are as follows:

• Developing stacked ConvBiLSTM architecture as fea-
ture extraction and classifier models;

• Proposing accurate BiLSTM classifier based on
seven-class of ECG waveform;

• Implementing the proposed model for ECG waveform
classification that conducted by using beat-to-beat seg-
mentation to simplify the process with a highly accurate
result;

• Validating the proposed stacked model with an ECG
waveform which manually annotated by experts to
insure its performance.

The rest of this paper is organized as follows: Section II
presents the related work of this study. Section III describes
the theory and background of proposed deep learning archi-
tecture. Section IV presents material and method comprising
ECG raw data and the proposed stacked ConvBiLSTM archi-
tecture, and Section V presents the results and discussion.
Finally, the conclusions are presented in Section VI.

II. RELATED WORKS
Deep learning (DL) has been successfully used in various
biomedical signal processing, especially for automated ECG
waveform classification in several past year. Some intelli-
gent processing methods have been proposed for DL algo-
rithms, such as autoencoder (encoder-decoder), CNNs, and
LSTM framework. Londhe and Atulkar [1] conducted a con-
cept of image segmentation for ECG wave segmentation,
called semantic segmentation. They proposed a hybrid model
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based on ConvBiLSTM to attend the semantic segmenta-
tion of ECG waveforms. The input model was 5,000 × 1
time series for P-wave, QRS complex, and T-wave classi-
fication. In the convolution layer, batch normalization and
ReLU were implemented as activation functions. They pro-
posed two layers of BiLSTM with 250 and 125 units.
Overall, they achieved an average accuracy of 97.64%.
Wang et al. [2] introduced domain knowledge to delineate
the fiducial points of ECG signals (Pon, Poff, QRSoff, QRSon,
Ton, and Toff) under the encoder-decoder framework. They
allowed the encoder-decoder model to extract ECG features.
Sodmann et al. [27] implemented CNNs for ECG rhythm
annotation. They generated a model with 9-layered CNNs,
comprising convolution and pooling layers, batch normaliza-
tion, activation function, and dropout. The ECG segmentation
comprised 450 samples, or 1,500 milliseconds.

Malali et al. [28] proposed convolutional LSTM (Con-
vLSTM) to segment the ECG waves. The input model of
a 700 × 4 was fed into the input and convolution layers.
They compared eachwave segment using the ConvLSTMand
BiLSTM models. The results of ConvLSTM outperformed
the BiLSTM model, with higher accuracy, sensitivity, and
F1-score. They used a QT database from PhysioNet, in which
the sample is divided into rhythm segments each of length
700 data points (2.8 seconds). They only focused on segment-
ing the P-wave, QRS complex, and T-waves and achieved
above 92.73% accuracy. Peimankar and Puthusserypady [29]
proposed a combination of CNNs and LSTM, named the
DENS-ECG algorithm, to detect onset, peak, and offset of
P-wave, QRS complex, and T-wave, and most of the incor-
rect cases in all three classes are classified into No-wave.
They generated three convolution layers of CNNs and two
layers of BiLSTM. They achieved the performance of the
proposedDENS-ECGmodel in raw and filtered signals above
76.80% and 96.53% sensitivity, respectively. Finally, in our
previous work [23], we implemented BiLSTM for P-wave,
QRS complex, T-wave, and isoelectric line classification. The
proposed method outperformed a unidirectional LSTM with
an overall average of 99.64% accuracy. Based on the works
mentioned above, DL has successfully proven its ability for
ECG delineation.

Based on the previous studies, DL has proposed for ECG
delineation. However, those studies were only limited to
three ECG waveforms (P-wave, QRS complex, and T-wave)
and the performance results under 99% accuracy. With such
approaches, this study improved the ECG delineation by
using beat-to-beat segmentation into seven-class of ECG
waveform classification based on stacked ConvBiLSTM
structure. The stacked convolutional layers can learn tempo-
ral information from ECG signals followed by BiLSTM to
learn short- and long-term dependencies.

III. THEORY AND BACKGROUND
The stacked ConvBiLSTM architecture was conducted to
increase the performance of ECG waveform classification.
The convolution layers were used only for feature extraction,

and ECG waveform classification was processed using
BiLSTM.

A. CONVOLUTIONAL LAYERS
A convolution layer, as a part of CNNs, is an automatic
extraction of the input model, which can extract deep features
from ECG signal data points [1]. The convolution process can
be expressed as follows [30]:

amij = ϕ(bi +
M∑
k=1

wikxj+k−1) = ϕ(bi + wTi xj) (1)

where amij is the activation of the jth neuron of the ith filter
for the mth convolutional layer, M is the kernel size, ϕ is
the neural activation function, bi is the shared bias of the
ith filter, wi = [wi1 wi2 . . .wiM ]T are the shared weights
of the ith filter, and xj = [ xj xj+1 . . . xj+M−1]T are the
correspondingM inputs.

B. BIDIRECTIONAL LSTM
To learn short- and long-term dependencies, BiLSTM is a
part of RNNs. RNNs in the backward pass often encounter
gradient problems, i.e., vanishing or exploding gradients. The
gradient problems are caused by the RNNs’s iterative nature,
whose gradient is essentially equal to the recurrent weight
matrix raised to high power. These iterated matrix powers
cause the gradient to grow or shrink exponentially in the
number of time steps [31]. LSTM tends to overcome this
problem by multiplicative gates that enforce constant error
flow through the internal states of memory cells (ct ). LSTM
learns long-term correlations in a sequence and obviates the
need for a prespecified time window [19]. Feedback loops
at hidden layers of RNNs are unidirectional. Unidirectional
means the process from left to right, in which the flow of the
information is only in the forward direction [32]. Schuster
presented new concepts of sequence learning in which the
information flow is in forward and backward feedback [21].
The connections in the forward direction help us learn from
previous representations, and those going backward help us to
learn from future representations, called ‘‘bidirectional RNNs
(BiRNNs).’’ BiRNNs can be learned to use all available input
data for a specific timeframe in the past and future [33]–[35].
With the BiRNNs approach, the BiLSTM equations are used
to calculate two parallel directions; forward (ft ) and backward
(bt ) passes are given below [36], [37]:

LST EM1
ft = tanh(W 1

iEh
xt +W 1

EhEh
LSTM

E1
t−1 + b

1
Eh

(2)

LST
←

M
1

bt = tanh(W 1

i
←

h
xt +W 1

←

h
←

h
LSTM

←

1
t+1 + b

1
←

h
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From (4) and (5), the output of the BiLSTM layer at a
time t is:

y1t = tanh(W 1
hEoLST EM

1
t +W

1
h←o
LST

←

M
1

t + b
1
0, (4)

where the output depends on LST EMt and LST
←

M t ; h0 is ini-
tialized as a zero vector.
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IV. MATERIAL AND METHOD
A. DATASET
The PhysioNet: QTDatabase (QTDB) comprised 105 fifteen-
minute excerpts of two-channel ECG Holter recordings.
The database includes various QRS and ST-T morphologies.
The 105 records were chosen primarily from existing ECG
databases, including the MIT-BIH Arrhythmia Database,
MIT-BIH Normal Sinus Rhythm (NSR DB), the European
Society of Cardiology ST-TDatabase (courtesy of Prof. Carlo
Marchesi), and several other ECG databases. However, for
this study, we are only used ten records of QTDB: MIT-BIH
Normal Sinus Rhythm as baseline for training and validating
ECG waveform classification. QTDB has segmented beat by
beat that consists of three main ECG waveforms (P-wave (p),
QRS-complex (N), and T-wave (t)) in all records. For all
experiments conducted in this study, we are only concerned
in one complete beat. If there is an incomplete beat, (one of
the waveforms is missing) the record is excluded.

QTDB records have record names, e.g. record.dat (contain
the signal file), record.hea (describe the format of signal file),
record.atr (include the original annotation), record.ari (con-
tain QRS annotation), record.pu0 and.pu1 (contain the auto-
matic waveform start and end), and record.man, record.qtn,
and record.qnc (contain manual annotation). In this study,
we are only conducted the automatic QRS annotations
obtained by record.pu0, which contain the automatic wave-
form onsets and end in signals 0 as detected by ecgpuwave.
The QTDB supplied the input to the waveform-database
(WFDB) ecgpuwave function. The ecgpuwave provided the
exact location of all waveforms in the signal. The ecgpuwave
output was written as a standard WFDB-format annotation
file related to the specified annotator that utilized as label or
‘ground truth’ for ECG waveforms.

B. NOISE REMOVAL
ECG signals become corrupted during acquisition due to
different types of artifacts and interferences, such as muscle
contraction, baseline drift, electrode contact noise, power
line interference, etc. [38]–[40]. Generally, discrete wavelet
transform (DWT) is used for ECG signal preprocessing (noise
removal) because of the properties of a good representation
non-stationary signal and the possibility of dividing the ECG
signal into different bands of frequency [29], [38]–[40]. The
DWT is realized by passing the signal, where x(n) is the dis-
crete input signal with length n, through a series of low-pass
(g[n]) and high-pass filters (h[n]) [41]. DWT is used to ana-
lyze signals at various resolution levels; wavelet coefficients
calculate the number of decomposition levels to perform a
sequence of signal processing operations [9]. The denoising
efficiency is measured using the signal-to-noise ratio (SNR
or S/N). SNR provides information about the signal quality.
The input SNR (SNRi) is defined as:

SNRi = 10 log10

[∑
n x

2(n)∑
n r

2(n)

]
(5)

The output SNR (SNRo) is given by the following equation:

SNRo = 10 log10

[ ∑
n x

2
d (n)∑

n (xd (n)− x(n))2

]
, (6)

where x(n) is the original with length n, r(n) is the added noise
signal, and xdn is the denoised signal.

In this study, ECG raw data preprocessing was imple-
mented for DWT for noise removal. For each of the mother
functions, such as haar, db4, db6, coif4, bior6.8, sym5, sym8,
and bior3.5, we calculated SNR values (refer to Table 1).
A ratio exceeding 0 decibel (dB) or above 1:1 means more
signal than noise. Table 1 shows ten records of QTDB:
MIT-BIH Normal Sinus Rhythm, in which the maximum
SNR value was reached by bior6.8, with 15.53 dB. Hence,
we implemented bior6.8 as the mother function for ECG
noise removal.

TABLE 1. The SNR value of QTDB: MIT-BIH normal sinus rhythm database.

C. STACKED CONVBILSTM
A total of 370 nodes, which was the beat-to-beat (start of
P-wave1 to start of P-wave2) was used for input. In our exper-
iments based on QTDB, the maximum node of Pstart1 – Pstart2
is 370. If the beat of Pstart1 – Pstart2 is less than 370 nodes,
we perform zero padding technique. This technique was done
by adding the value 0 (zero) until the signal has a length of
370 nodes. Every one-dimensional CNNs filter kernels have
size of 3 with stride 1. The rectified linear unit (ReLU) func-
tion was adopted with four convolution layers (8, 16, 32, and
64 filters). By setting the negative value of the neuron to zero
to accelerate the training speed, the ReLU activation function
eliminates redundancy. The proposed stacked ConvBiLSTM
architecture can be seen in Fig. 1. In addition, Table 2 lists the
details of the proposed model, which all the processes can be
summarized as follow;
• The ConvBiLSTM architecture consists of two main
parts; the ECG waveform feature extraction with con-
volutional layers and BiLSTM classifier.

• The input of ConvBiLSTM is the ECG waveform which
bounded by a vector label indicating the class of each
node. The class label is formed in vector with size of
(370, 1);

• The input timesteps with dimension (370, 1) are fed into
the convolutional layer equipped with ReLU activation
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FIGURE 1. The proposed stacked ConvBiLSTM architecture for ECG waveform classification.

function. This process results feature maps with the size
of 370, 64;

• The features output from the last convolutional layer was
passed into a BiLSTM layer. However, the features need
to be adjusted so it can feed into the BiLSTM classifier.
Hence, the features were set into 370 timesteps and each
timestep contains 64 features.

• The BiLSTM architecture was constructed with
64 BiLSTM cells and 512 nodes for each forward and
backward direction (1024 nodes in total). This archi-
tecture produces an output size of (370, 8) (including
zero-padding).

• This output contains the probability class for each node.
One class that has the highest probability value is
selected as the output prediction from the model.

• At the end of Fig 1, a vector with size of (370, 1) was
formed as the predicted class of each node, from start of
P-wave1 to start of P-wave2

We are also provided the informal language to represent
pseudocode that can be seen in Algorithm. 1.

For the experiments, this study generated the stacked
ConvBiLSTM models for ECG waveform classification in
two cases: (1) four-class classification comprised P-wave
(Pstart – Pend), QRS complex (QRSstart – QRSend), T-wave
(Tstart – Tend) and No-wave classification, and (2) seven-class
classification.We compared the experiment of the ECGdelin-
eation in our previous work [23], which limited to three
main ECG waveform (P-wave, QRS-complex, T-wave and
other waveforms belong to No-wave class) to this current
study. The current study is not only focus to delineate the
start and end of three main ECG waveforms points, but
also the ECG segments, e.g., Pend – QRSstart(PR- segment),

Algorithm 1 ConvBiLSTM
Parameters: input x (370,1), output yt (370,8)
1: For each epoch do:

# CNNs Feature Extraction
2: For each convolutional layer do:
3: for each sample in X do:
4: Calculate amij from X by Eq.1
5: End for

#Dimension of a is (370 − KernelSize + 1,
FilterSize)

6: If amij length < 370 do:
7: Apply zero-pad to amij

#Dimension of a is
(370, FilterSize)

8: End if
9: End for

#Dimension of a is (370,64)
#BiLSTM Classifier

10: For each sample in a do:
11: Calculate Forward Pass of a by Eq.2

12: Calculate Backward Pass of a by
Eq.3

# Dimension of the output a is
(370,2∗NeuronSize)

13: Calculate yt by Eq.4
14: End for
15: End for

QRSend– Tstart(ST-segment), and Tend – Pstart. For the label-
ing process of four and seven-class cases, we used one-hot
label encoding (categorical encoding) to represent each class
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TABLE 2. The description of stacked ConvBiLSTM features.

using scikit-learn Python library. Label encoding is a tech-
nique for handling categorical variables which assigned a
unique integer.

Each fine-tuned hyperparameters of the two cases is listed
in Table 3. We fine-tuned followed by varying learning rates
ranging from 10−1 to 10−5 (Models 1–5), and then the hidden
layers number of LSTM (Models 6–9) for four-class classifi-
cations. The learning rate is the most vital hyperparameter,
which controls how quickly the model is adapted to the
learning problems. The selected learning rate based on the
result performance is presented in Table 4. As we can see
in Table 4, model 5 outperformed models 1-4 in accuracy,
sensitivity, specificity, precision, and F1-score measurement.
The selected learning rate was implemented to fine-tune the
hidden layer from one to five hidden layers. The best model
of nine models for four-class classification cases that used
unidirectional LSTM was compared with the bidirectional
LSTM (Model 10). We also conducted the convolution layers
and BiLSTM classifier for Model 11. For seven-class classi-
fication, we generated four models of stacked ConvBiLSTM
structure. The difference between the hyperparameter models
lies only in the batch size value (1, 2, 4, and 8).

D. PLATFORM
We conducted an experiment on a workstation with one
Intel(R) Core (TM) i7-10700K CPU@ 3.80Ghz processor

with 32 GB RAM, and one NVIDIA GeForce RTX
2070 Super 8GBGPU.All experiments were run onWindows
10 Pro 64 Bit. We implemented our Python codes in the
Spyder 4.1.5 deep learning framework and libraries, i.e., ten-
sorflow, keras, numpy, pandas, sklearn, matplotlib, and the
native Python WFDB package. Our experiments compared
the stacked ConvBiLSTM models using some metrics to
evaluate the experimental performance: accuracy, sensitivity,
specificity, precision, and F1-score.

V. RESULTS AND DISCUSSION
The ECG signal was segmented to achieve a fixed
window size of 370 nodes, starting from Pstart1 to
Pstart2 (start of P-wave1 to start of P-wave2), which con-
tained one heartbeat at a normal heart rate. The sample of
one normal heartbeat can be presented in Fig. 2. A total
of 8,572 beats comprised 7,715 training and 857 validation
sets. The model was trained over 300 epochs, with a learning
rate of 0.0001 and categorical cross entropy as the loss metric.
For classification tasks, we have implemented common per-
formancemetrics (accuracy, sensitivity, specificity, precision,
and F1-score) that calculated and obtained based on valida-
tion (refer Tables 5 and 7) and testing dataset (Table 8).

As stated before, this study generated a two-case model
(refer to Table 3): four and seven-class of ECG wave-
form classification. Table 4 shows the accuracy, sensitivity,
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TABLE 3. The fine-tuned hyperparameters of stacked ConvBiLSTM architecture for four and seven-class classification.

TABLE 4. The average performance of four and seven-class ECG waveform classification models.

specificity, precision, and F1-score for each case. In four-
class classification, we obtained the worst performance in
models 1 and 2, in which the models used a learning

rate 10−1. In order to enhance the performance, we tried
a smaller learning rate from 10−3 to 10−5. Consequently,
the performances increased in terms of accuracy, sensitivity,
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TABLE 5. The performance of the selected model for seven-class ECG waveform classification.

TABLE 6. The comparison results of the selected model (model 2) without the stacked convolutional layers.

FIGURE 2. The sample of ECG beat at normal heart rate from
Pstart1 – Pstart2.

specificity, precision, and F1 score. All performances were
achieved above 97.47% (Models 2–5). Still, to get a bet-
ter performance, we also fine-tuned the models with dif-
ferent hidden layers, from one to five layers (Models 6–9).
The performances obtained were above 98.81%. From the
results, it can be concluded that the learning rate and hid-
den layers affected the performance of ECG waveform
classification. Although smaller learning rates required more
training epochs, but it can give much better performance
results. It allowed the model to learn a more optimal or even
globally optimal set of weights.

A unidirectional LSTM layer was implemented for
a four-class classification model. Among the models,
the best model was also compared to the BiLSTM
and stacked ConvBiLSTM models represented in Mod-
els 10 and 11, respectively. Although the gap results
from both models did not differ significantly, overall,
Model 11 outperformed Model 10 in all metrics perfor-
mance. We employed all fine-tuned hyperparameters for the
seven-class classification model using this model. Besides

learning rate and hidden layers, we also fine-tuned a
batch size (1, 2, and 4). From Models 1–4, the results’
accuracy and specificity performance did not differ con-
siderably, around 99.83% and 99.90%, respectively. The
delineation result of each model is almost the same as
the ecgpuwave annotation (refer to Fig. 3). However,
Model 2 achieved the highest sensitivity and F1-score:
98.82% and 98.84%. Overall, Model 2 had the best per-
formance among other models, with an average of 99.83%
accuracy, 98.82% sensitivity, 99.90% specificity, 98.85%
precision, and 98.84% F1-score. Therefore, Model 2 was
selected as the best model for ECG waveform classifi-
cation, with the average result shown in Table 5. From
Model 2, we obtained the highest performance of QRS
complex. It can be stated that the selected models can
detect QRS complex more accurately and faster. Our model
could outperform some conventional methods for QRS com-
plex detection, such as low-pass differentiator [42], Hilbert
transform [43], multiple higher order moments [33], Phasor
transform [34], etc.

In the experiment, we generated the BiLSTM model
without the convolution layers of CNNs for seven-class
classification. The results were quite decreased in accuracy,
sensitivity, specificity, precision, and F1-score (see Table 6).
As we suggested, the convolution layers will improve the
performance results, showing the locations and strength of a
detected function in an input due to the same filter to an input
results in amap of activations (featuremap). Its ability insures
an automatic learning of many filters in parallel specific to a
training dataset. In the experiments, the convolution layers
contained a filter set whose parameters were required to be
learned. To compute an activation mapmade of neurons, each
filter was convoluted with the input volume.
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FIGURE 3. The results comparison ECG waveform of ecgpuwave and stacked ConvBiLSTM models for seven-class case.

TABLE 7. The results performance of the abnormal database from model 2 with stacked ConvBiLSTM architecture.

TABLE 8. The performance evaluation of unseen data testing (expert/.q1c).

The proposed stacked ConvBiLSTM was also trained in
some abnormal databases that contain the several heart dis-
orders, such as MIT-BIH Arrhythmia, MIT-BIH long-term,
MIT-BIH ST change, MIT-BIH supraventricular arrhythmia,

and European ST-T (refer to Fig. 4). For MIT-BIH arrhyth-
mia, the average accuracy, sensitivity, specificity, precision,
and F1-score exceeded 93%. The database is more success-
ful in detecting P-wave (blue bar) than QRS complex and
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FIGURE 4. The results performance of seven-class classification for abnormal database.

T-wave. It can be happened due to the arrhythmia is asso-
ciated with prolongation P-wave was reflected the atrial con-
duction. Thereof, our proposed model could be implemented
in some arrhythmia cases, such as AF. AF can be related to
irregular supraventricular tachycardia (SVT) without P-wave
and irregularly irregular QRS complex [35].

The performance results decreased when it was trained
on MIT-BIH long-term, which the worst case was around
85% sensitivity for Qend-Tstart (orange bar) class. The aver-
age performance exceeded 94.85% for accuracy, sensitiv-
ity, specificity, precision, and F1-score. The performance
results of MIT-BIH ST change, MIT-BIH supraventricular
arrhythmia, and European ST-T databases achieved good
results and were above 99.62% accuracy. The worst case
in the MIT-BIH ST change database was Pend-Qstart or
PR-segment (yellow bar) with only 93.81% precision. This
also applied to MIT-BIH supraventricular arrhythmia and
European ST-T databases; the precision of the PR segment

was only 94.67% and 94.30%, respectively. A moderately
common ECG sign associated with clinically silent pericar-
dial effusion was PR-segment depression, and it was an ECG
predictor of inflammatory pericardial involvement. Changes
in the PR-segment are relative to the baseline formed by the
T-P segment.

As a result of average performance, the selected model
was well trained on MIT-BIH ST change, with all per-
formances exceeding 97.54% (refer to Table 7). Unfortu-
nately, for MIT-BIH long-term, the sensitivity was only
achieved at 94.85%. The other performances were below
other abnormal databases. A too long signal recording
could cause a normal T-wave to overlap with other T-wave
classes: inverted, only upwards, only downwards, bipha-
sic negative-positive, or biphasic positive-negative. Due to
the raw data condition, in which the two signals differed,
the long-term signal had more noise compared to the ST
change.
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TABLE 9. The benchmark study of ECG waveform classification.

In order to test the generalization of proposed model,
the stacked ConvBiLSTM was tested on unseen data that
were manually annotated by experts. Unseen data is a set
of testing data that is never seen or tested before. If the
model produces a good generalization, it may make a correct
prediction in unseen data. Although the QT database was
provided to two experts for manual annotation of the ECG
waveform classification, only one expert was used as unseen
data testing in this study, i.e., record (.q1c). When the pro-
posed stacked ConvBiLSTM was tested in all records (.q1c),
the results were decreased and obtained an average of 88.09%
sensitivity, 86.62% precision, and 86.65% F1-score (refer to
Table 8). Overall, for the QRS complex, we obtained a poor
performance with the worst class classification of 69.13%
precision for Qend-Tstart (ST-segment). It can be affected
by the elevation between depolarization and repolarization
of ventricles of ST-segment. Unfortunately, for this study,
we didn’t concern of a displacement of ST segment.

Different to ecgpuwave annotation, all the records were
manually annotated by experts, which only provides between
30 and 100 representative beats, not in all lengths of records.
Only normal heart rate beats were annotated. In records

with significant QRS morphology, around 20 beats of each
non-dominant morphology were also annotated. Therefore,
the proposed model obtained the poor performance for
ST-segment classification.

Some previous studies has adopted record.q1c using
deep learning algorithm [4], [44]. Abrishami et al., [4]
explored P-wave detection using fully-connected net-
works, LeNet-style convolutional networks (ConvNet)
with dropout, and LeNet-style ConvNet without dropout.
Costandy et al., [44] had also proposed a fully convolutional
networks with the use of segmentation via U-Net architec-
ture. However, they experimented the ECG signals that con-
verted to two-dimensional (2-D) ECG images. Our proposed
stacked ConvBiLSTM outperformed the performance results
of P-wave detection of previous mention studies with 99.31%
accuracy (refer Table 8).

The difference in ECG waveform results annotated by
experts and the our proposed stacked ConvBiLSTM are
shown in Fig. 5. A green block color (Qend–Tstart) was mis-
classified as an orange block color (Tstart–Tend). Owing to the
problem, the selected stacked ConvBiLSTM model had poor
performance. However, this could happen because the record
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FIGURE 5. The sample results of manually annotated by expert and
proposed stacked ConvBiLSTM model.

(.q1c) annotations of QTDatabase were audited to correct the
inconsistencies detected (e.g., misplaced or missing annota-
tions) and changed to the regular annotation symbols. The
manual annotations were made by experts using a SUNwork-
station with waveform analyzer, viewer, and editor (WAVE)
tools. The tools still have variance noises, such as baseline
wander, electrode motion artifact, and muscle noise, which
can affect the testing performance of experts. Unfortunately,
this study was unconcerned about the aforementioned noises.
Still, the selected model of stacked ConvBiLSTM that used
ecgpuwave annotations still has many frictions, especially for
P- and T-wave classification.

In this study, we have compared ECG waveform classi-
fication between our proposed model and other DL tech-
niques such as encoder-decoder, CNNs, and LSTM (refer to
Table 9). The previous research has classified the main ECG
waveform, from Pstart - Tend. Different to them, we added
the isoelectric line from Tend – Pstart2. In our previous
work [23], we conducted a BiLSTM model for P-wave,
QRS complex, T-wave, and isoelectric lines. We achieved
a good performance with an average accuracy, sensitivity,
and F1-score of 99.64%, 98.74%, and 98.78%, respectively.
However, to achieve greater generalization than we stated
in our previous study [23], we had to add automatic feature
extraction.

Although the results look promising, there are some limi-
tations to our study:
• To generate the proposed model, we only used the
ground truths or label annotated by the ecgpuwave due
to the limitation of manual annotation by an expert.

• The preprocessing steps for ECG delineation still need
adjustment to differ ECG frequency sampling, leads, and
various noises.

• The process of ECG delineation, we only concerned to
determine the start and end of ECG waveform without
considering the specific heart disorders.

• The proposed model was only validated by a limited
expert. We did not validate the proposed model in other
ECG delineation databases; more datasets could achieve
greater generalization.

VI. CONCLUSION
To provide a heart diagnosis, ECG wave information has
become a gold standard. Heart wave formation gives some
fiducial points to represent the abnormality, such as P-wave,
QRS complex, and T-wave. Automated ECG delineation is
a crucial yet insufficiently addressed area in automated heart
diagnostics. This study explored automated delineation with-
out using the fiducial point, but it directly segmented beat-
to-beat from ECG waveform signal recording. We proposed
the stacked DL method by synergizing CNNs for spatial
feature extraction and BiLSTM to classify each sample of the
ECG waveform into one of the seven-class ECG waveform
classification. Utilizing such feature extractors addresses the
various heart wave formations that can be easily recognized
for an accurate diagnosis. Feature vectors generated by the
CNNs are the input timesteps to the sequence learner archi-
tecture through a time distributed layer in the BiLSTM archi-
tecture. BiLSTM captured the temporal attributes of ECG
signals and classified them to produce an accurate result.
Our proposed stacked model showed outstanding results,
with all average performances ranging of 99.83% accuracy,
98.82% sensitivity, 99.90% specificity, 98.86% precision,
and 98.84% F1 score. Our study demonstrated that the
stacked ConvBiLSTM model is a powerful network able to
capture the temporal attribute of the ECG signal using beat-
to-beat as local features to yield ambitious results. The ability
to segment, identify, and classify heart waveforms augments
the possibility of impacting future research in cardiology.
Also, it can be implemented in clinical practice to interpret
some specific heart abnormalities that related to delineation
process with real-time performance analysis.
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