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A B S T R A C T   

Analysis of electrocardiogram (ECG) signals is challenging due to the complexity of their signal morphology. Any 
irregularity in a cardiac rhythm can change the ECG waveform. A reliable machine learning model is developed 
here to provide substantial input to cardiologists and help confirm their diagnoses. To achieve high diagnostic 
accuracy, nearly all ECG analytics tools require records of the positions and morphologies of various segments of 
P-waves, QRS complexes, and T-waves to be kept in ECG records. However, analyzing such vast amounts of ECG 
records is not always easy. In most cases, it is challenging and highly time-consuming. Hence, an in-depth 
investigation regarding automatic ECG signal delineation is necessary. This paper proposes an automated 
delineation algorithm for ECG waveform signals that utilizes recurrent neural networks (RNNs) with bidirec-
tional long short-term memory (LSTM) architecture. This delineation process consists of four steps: noise 
cancellation, ECG waveform segmentation, ECG signal classification in four classes (P-wave, QRS complex, T- 
wave, and isoelectric line) and model evaluation. The classification is conducted based on time duration, and 
each waveform is determined by using annotated data from the well-known QT database (QTDB). The results 
show that the proposed model produces satisfactory performance for the four classes in terms of average ac-
curacy, sensitivity, specificity, precision, and F1-score, with values of 99.64%, 98.74%, 99.75%, 98.81%, and 
98.78%, respectively. The proposed model is validated with abnormal ECG signals from the QTDB, i.e., MIT-BIH 
Arrhythmia, MIT-BIH ST Change, MIT-BIH Supraventricular Arrhythmia, European ST-T, and MIT-BIH Long- 
Term ECG. The results show that bidirectional LSTM can delineate ECG signals from QTDB in both normal and 
abnormal conditions. The proposed delineation method could be utilized in potential applications following 
further investigation.   

1. Introduction 

The electrocardiogram (ECG) is an electrophysiological signal that 
contains a large amount of valuable information about the electrical 
activity of the heart. ECG waveforms are seen in clinical assessments of 
heartbeats and include P-waves, QRS complexes, and T-waves [1,2]. The 
amplitudes and time intervals of ECG waveforms provide insight on 
heart rhythm abnormalities and heart diseases such as ischemia, QT 
syndrome (long and short), and myocardial infarction [2–4]. ECG 
waveform delineation is utilized for determining characteristics such as 
amplitudes and time intervals. Performing an accurate delineation, 

however, is quite a difficult task for many reasons: (i) P-waves have low 
amplitudes and can be obscured by electrode motion or muscle noise 
[2]; (ii) P- and T-waves can be biphasic, which increases the difficulty of 
accurately determining the starting points or endpoints of the waves [2]; 
(iii) P-waves can be absent, although they can also partially overlap with 
the T-waves from the previous beat in rapid heart rate patterns [3]; and 
(iv) some arrhythmia entities cannot contain all the standard ECG waves 
[5]. The start of the wave is the initial onset of the signal, while the end 
of the wave is the offset of the signal. Therefore, designing an automated 
and accurate ECG delineation would be useful for making good decisions 
about heart rhythm abnormalities. 
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The importance of an automatic delineation algorithm is that it 
recognizes the individual waveform components of P-waves, QRS 
complexes, and T-waves. These signal recognition processes include the 
ECG positions (onset, peak, and offset) and the magnitudes from all 
waveform components [5]. In previous studies, the automated delin-
eation of ECG signals was widely performed in a way that aimed to 
measure the width or duration of the waves [6,7]. However, the starting 
and ending points of the durations were very complicated and difficult 
to measure. Due to this, it always appears in well-known and distin-
guishable frequency bands. Several automated methods for making such 
measurements have been proposed, such as linear regression, logistic 
regression, and classification [3,4,8,9]. Regression was the most prom-
inent method, as it was utilizable when all the attributes were numeric, 
while classification was used when all the attributes were categories. 
However, the ability of the two methods to draw boundaries between 
the two classes was restricted at some points. An essential challenge is to 
find more than one boundary to partition the set. Several algorithms 
have been proposed in the literature to accomplish this, including 
threshold-based algorithms [10], hidden Markov models [11], curve 
fitting [12], wavelet transforms [13], and machine learning techniques 
[3,14,15]. For most current algorithms, the typical strategy is to extract 
the P-waves, QRS complexes, and T-waves. The accuracy of the overall 
device, therefore, depends greatly on the accuracy of the segmentation 
of the ECG and the measurement of its features. However, due to the 
subjective nature of the measurements in the segmentation and mea-
surement phases, there is always a high degree of uncertainty and 
variability. Thus, designing and developing an automated delineation 
algorithm for ECG signals in a robust condition is a crucial process [16]. 

Several studies have been undertaken to evaluate the performance of 
these algorithms. Unfortunately, there is a lack of standardized data-
bases containing a reasonably large number of carefully annotated 
heartbeats with manually performed waveform boundary measure-
ments. This situation reflects the enormous effort a clinician must un-
dertake to manually annotate a statistically relevant collection of QRS 
complexes. Deep learning (DL) with automated feature learning allows 
multi-layered computational models based on traditional neural net-
works to learn from multi-level abstraction representations of data [17]. 
DL is a relatively new approach, but in many healthcare applications, it 
has shown a promising capacity for data synthesis [18–20]. Neural 
networks are used for complex cardiological tasks—in particular, 
detection of heartbeats in arrhythmia [8], discrimination between hy-
pertrophic functional and pathological remodeling patterns [21], risk 
stratification and heart failure prognosis [22], and various imple-
mentations of ECG analysis [23,24]. 

To the best of our knowledge, studies of DL application in automated 
delineation for detecting and predicting P-waves, QRS complexes, and 
T-waves are still limited. In contrast, ECG waveform signal delineation 
needs to be accurately performed. In this study, we present the idea of 
performing automated delineation by using DL. The delineation of ECG 
waveforms only focuses on identifying ECG cardiac waves. Hence, the 
design and development of an automated delineation algorithm for ECG 
waveform signals using DL were needed to investigate the issue in 
greater depth. Among DL architectures, recurrent neural networks 
(RNNs) are one type of architecture that can model a sequence of data, e. 
g., in ECG signal processing. RNNs can be implemented for sequential 
prediction to model the flow of time directly. RNNs and their variants 
(long short-term memory (LSTM) and gated recurrent units (GRUs)) can 
be improved in aspect, as their performance can be optimized by 
providing the classifier with crafted features [25]. However, in some 
cases, LSTM performs better than GRU [25,26]. Hence, accurate ECG 
delineation using RNNs with LSTM architectures is desirable. One of the 
characteristics of an ECG signal is its sequence. The sequence of an ECG 
signal detects and records the strength and timing of the electrical ac-
tivity occurring in a person’s heart. RNNs with LSTM architectures have 
a powerful architecture that has been successfully and accurately 
implemented for ECG delineation [27]. Therefore, by combining the 

advantages of RNNs with LSTM architectures and the characteristics of 
ECG signals, this paper uses RNNs with LSTM architectures as a method 
for delineating ECG signals. The contributions and novelties of the paper 
are as follows:  

• ECG signal waveforms were classified for automating delineation 
from the start of a P-wave to the start of the next P-wave;  

• Each sample was classified into four durations of cardiac waves—P- 
waves, QRS complexes, T-waves, and isoelectric lines—to produce 
the identification of temporal features;  

• The bidirectional LSTM architecture was used for classification;  
• The signal delineation is evaluated for normal and abnormal QTDB 

datasets. 

The rest of this paper is organized as follows. In Section 2, we explain 
the methods used in this research. We present our results and a discus-
sion in Section 3 and evaluate the performance of our proposed method 
in Section 4. Finally, we review our conclusions in section 5. 

2. Methods 

2.1. Discrete wavelet transform 

ECG signals are typically distorted by different forms of signal noise, 
including artifacts such as power lines; the most common of these are 
highlighted in Ref. [28]. This noise affects the quality of the signal and 
decreases the accuracy of interpretation. Because of the noise and 
interference, information of interest cannot easily be extracted from the 
raw signal, which must initially be processed before generating a model 
for ECG interpretation [29–32]. To achieve the purpose of denoising 
ECG signals, this paper uses a wavelet transform (WT). The wavelet 
transform, especially the wavelet package decomposition (WPD), can be 
separated into high- and low-frequency content in noisy signals [33]. 
The wavelet analysis was applied to specific biomedical engineering 
problems, including reducing noise in ECG signals [28,34]. Wavelet 
transformation is a time-frequency technique that represents local ECG 
signal information in the time and frequency domains to change the 
low-frequency and high-frequency sub-bands separately through time 
window and frequency window settings [35]. The denoising wavelet 
algorithm comprises three steps: decomposition of the wavelet, coeffi-
cient processing, and wavelet reconstruction [36]. The discrete wavelet 
transforms (DWT) of a one-dimensional signalf [n] can be calculated by 
simultaneously passing it through a high-pass and a low-pass filter. If a 
low-pass filter has the impulse responseg[n], then its DWT can be eval-
uated by calculating the convolution of an original signal with an im-
pulse response defined as follows, 

y[n] = (f * g)[n] =
∑∞

k=− ∞
f [k].g[n − k] (1) 

The result of the decomposition is filtered again using the soft 
thresholding method (Equation (1)) with a universal threshold (Equa-
tion (2)). The results of the first-level decomposition are used to calcu-
late the threshold value as, 

t= σ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2 log N

√
(2)  

where σ =
median (|cDj|)

0.6457 , andNis length of signal or data (array) 

2.2. RNNs-LSTM architecture 

Artificial neural networks (ANNs) possess two drawbacks: (i) an 
inability to deal with temporal data, which requires fixed input and 
output sizes, and (ii) the limitations of networks that cannot address 
future input based on past input [37]. These drawbacks exist because 
ANNs are independent and omit everything from previous feed-forward 
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input. They concentrate only on a particular input and then map it 
directly to an output vector. The output from sequential input is only 
significant when all inputs are dependent on each other because the 
whole input is useful. 

In contrast, recurrent neural networks (RNNs) offer more flexibility 
in processing various input and output sizes by using their memory to 
produce output that functions dependently based on the entire history of 
input [38]. RNNs allow modeling to be performed over a sequence or 
chain of a vector. These sequences can be either input, output, or even 
both. One of the architectures for RNNs is long short-term memory 
(LSTM). This architecture was proposed to solve the vanishing or ex-
ploding gradient problem, which was addressed by RNNs [26,39]. RNNs 
with LSTM architecture are appropriate for sequential data processing 
based on time-steps [40,41]. This study was concerned with the time 
duration (in seconds) of detecting the onset-offset points of P-QRS-T. 
The architecture of LSTM is slightly different when compared to the 
RNNs standard due to the existence of a complicated mechanism called 
the memory cell. The memory cell learns the input in an intelligent way 
to enable the LSTM network to process and store the information for 
short-term and long-term memory. By using the gate mechanism, the 
memory cell cycle monitors the amount of information from the previ-
ous time-step that contributes to the current output based on three 
components: (1) input, (2) forget, and (3) output gate [26] (Fig. 1). 
Fig. 1 illustrates the processes of forward pass and backward pass in 
LSTM architecture based on the previous (xt− 1), current (xt), and next 
times (xt+1). Both types of pass are described in what follows. 

2.2.1. Forward pass 
The forward pass calculates as input x with a length T by starting t+

1and recursively applying an update equation while adding t. The 
scripts i, f , and o refer to the input, forget, and output gates from the 
block, respectively. The script crefers to one of the C memory cells. At 
the time t, LSTM receives a new input in the form of vector xt(including 
bias) and the output of the vector ht− 1in the previous time-step. The 
weight of the one cell to input, forget, and output gates annotated as Wc,

Wi,Wfand Wo respectively. The one cell parameters of the input value, 
input, forget, and output gates (at , it , f t ,ot)can be described in equations 
(3)–(6) as, 

at = tanh
(
Wcxt +Ucht− 1) (3)  

it = σ
(
Wixt +Uiht− 1)= σ

(
î
t)

(4)  

f t = σ
(
Wf xt +Uf ht− 1)= σ

(
f̂
t)

(5)  

ot = σ
(
Woxt +Uoht− 1)= σ(ôt) (6) 

By ignoring non-linearity, all equations (3)–(6) become equation (7) 
as, 

zt =

⎡

⎢
⎢
⎣

ât

î
t

f̂
t

ôt

⎤

⎥
⎥
⎦=

⎡

⎢
⎢
⎣

Wc

Wi

Wf

Wo

Uc
Ui
Uf
Uo

⎤

⎥
⎥
⎦ ⋅

[
xt
ht− 1

]

=W⋅It (7) 

The memory cell ct values are updated by combining at and the 
contents of the previous cell ct− 1. It processes by using the combination 
of the magnitude of the gate input itand forget gate f t . Finally, the LSTM 
cell calculates the output htvalue by passing an updated cell value 
through non-linearity (⊙ denotes the elementwise product). 

ct = it ⊙ at + f t ⊙ ct− 1 (8)  

ht = ot ⊙ f (ct) (9)  

2.2.2. Backward pass 
Back-propagation through time (BPTT) is known as backward pass in 

the LSTM architecture. The backward process differentiates the equation 
(8) or δct = ∂E

∂ct and equation (9) or δht = ∂E
∂ht. By using the chain rule 

equations (8) and (9) become, 

∂E
∂oti

=
∂E
∂hti

⊙
∂hti
∂oti

= δhti ⊙ f
(
cti
)

or δot = δht ⊙ f (ct) (10)  

∂E
∂cti

=
∂E
∂hti

⊙
∂hti
∂cti

= δhti ⊙ o
t
i

(
1 − f 2( cti

))
or δct + = δht ⊙ ot ⊙

(
1 − f 2(ct)

)

(11) 

The activation function f is used in this phase is Tanh. The sign + =

for calculating the gradient, for each time-step t+ 1. Updated the 
memory cell of LSTM (at ,it ,f t, and ct− 1) on equations (3)–(5) respectively 
in backward pass process as, 

∂E
∂ati

=
∂E
∂cti

⊙
∂cti
∂ati

= δcti ⊙ i
t
i or δat = δct ⊙ it, (12)  

∂E
∂iti

=
∂E
∂cti

⊙
∂cti
∂iti

= δcti ⊙ a
t
i or δit = δct ⊙ at, (13)  

∂E
∂f ti

=
∂E
∂cti

⊙
∂cti
∂f ti

= δcti ⊙ c
t− 1
i or δf t = δct ⊙ ct− 1, (14)  

∂E
∂ct− 1
i

=
∂E
∂cti

⊙
∂cti

∂ct− 1
i

= δcti ⊙ f
t
i or δct− 1 = δct ⊙ f t (15) 

To compute the input, forget, and output gate in the backward pass 
phase, parameter zt in equation (7) (forward phase) is updated to 

become δzt by changing all parameters δât
, δ̂i

t
,δ f̂

t
, and δôtas, 

Fig. 1. The LSTM architecture based on previous, current and next time.  

S. Nurmaini et al.                                                                                                                                                                                                                               



Informatics in Medicine Unlocked 22 (2021) 100507

4

δât = δat ⊙
(
1 − tanh 2(ât)

)
(16)  

δ̂i
t
= δit ⊙ it ⊙ (1 − it) (17)  

δf̂
t
= δf t ⊙ f t ⊙ (1 − f t) (18)  

δôt = δot ⊙ ot ⊙ (1 − ot) (19) 

Equations (16)–(19) can be written in the matrix form as, 

δzt =
[
δât, δ̂i

t
, δf̂

t
, δôt

]T
(20)  

and, 

δIt =Wt ⊙ δzt (21)  

then, 

It =
[
xt
ht− 1

]

(22) 

Based on equations (7), (20) and (21), the weight can be updated in 
the LSTM network by using equation (22) as follow, 

δWt = δzt ⊙ (It)T (23)  

3. Experimental studies 

In this study, the proposed RNNs with stacked LSTM algorithms 
developed for the automatic delineation of ECG waveform signal 
morphology using the QTDB consisted of the following main steps: (1) 
extracting the raw data from the QT Database, (2) preprocessing con-
sisting of noise cancellation using DWT, and (3) classifying the ECG 
waveforms using RNNs with bidirectional LSTM for P-waves, QRS 
complexes, T-waves, and isoelectric lines based on time duration. All the 
phases of the proposed method are presented in Fig. 2. 

3.1. Dataset 

In this study, we used the QT Database (QTDB). Raw ECG data were 
obtained from the well-known Physionet public dataset [42]. The QTDB 
consists of 105 ECG recordings taken over 15 min from two-channel 
Holter-ECG recordings, including various QRS and ST-T morphologies. 
All recording samples were taken at 250 Hz. The current database is an 
excellent source of varied and well-defined ECG data. The records were 
chosen primarily from among existing ECG databases, including 15 
MIT-BIH Arrhythmia records, 6 MIT-BIH ST Change records, 13 MIT-BIH 
Supraventricular Arrhythmia records, 33 European ST-T records, 4 
MIT-BIH Long-Term ECG records, 10 MIT-BIH Normal Sinus Rhythm 
records, and 24 BIH “Sudden Death” records. The total QTDB dataset 
comprises about 105 records, and the sample of raw data for the six 
databases can be seen in Fig. 3. All records consist of a signal with the 
files record.dat, record.hea, and record.atr, which were assigned as orig-
inal annotations to the data from the QTDB. However, records of sudden 
death are excluded because the signal morphology is too varied. Only a 
complete waveform of ECG signals in P-waves, QRS complexes, and 
T-waves is utilized. Furthermore, this study only uses one-channel 
Holter-ECG recordings from QTDB. 

3.2. Noise cancellation 

Unfortunately, the vital signs drawn from signal morphologies 
monitored by ECG can become corrupted during acquisition by different 
types of artifacts or power line interference [43]. By removing different 
kinds of noise and artifacts, the ECG signals are improved. It is apparent 
that the removal of the noise from the signal facilitates the processing. 
The different frequency bands of the ECG signal make it a suitable 

candidate for multi-resolution decomposition using WT. The WT creates 
the possibility of selective noise filtering as a multi-resolution signal 
analysis tool, which contributes effectively to morphological observa-
tion. DWTs have been proposed with good results [5,13,28,44]. The 
DWT was applied to the process through a reconstruction of an ECG 
signal from a noisy signal. In the wavelet decomposition, a wavelet 
function was chosen and decomposed up to level l. The first step of the 
denoising procedure using the wavelet transform was selection by 
compression, stretching, or translation of the mother wavelet, which 
forms a collection of functions (or family of wavelets). In this study, 
Bior6.8 was selected because this wavelet function was thoroughly 
explored in previous research [44]. It produced high SNR compared to 
other wavelet functions used for denoising ECG signals [44] and pro-
vided a good result for ECG signal noise cancellation in our previous 
research [8]. 

The next step was the degree of decomposition. The coefficient 
generated for a signal could have been altered previously, and the 

Fig. 2. Automatic delineation of ECG waveform signal morphology workflow.  
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Fig. 3. Raw data from QT database.  
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reconstruction of the signal was meant to remove undesirable signal 
components. A wavelet function with N level was chosen, and wavelet 
decomposition of the signal at level N was calculated. The ECG signals 
were decomposed up to eight levels. Before the DWT model was utilized, 
seven experiments using 3, 4, 5, 6, 7, 9, and 10 levels of decomposition 
were performed. To achieve good performance, the wavelet decompo-
sition process was repeated eight times within the symmetric structure. 
The result of the decomposition was filtered again by using the soft 
thresholding method (Equation (1)) with the universal threshold 
(Equation (2)). The first-level decomposition results were used to 
calculate the threshold value, and all levels of the 2D DWT component 
can be seen in Fig. 4. DWT only extracted clinically relevant markers 
from the data, which reduced data fed into the recurrent network al-
gorithm by an order of magnitude while significantly increasing classi-
fication accuracy and execution time. 

3.3. Cardiac waves duration classification 

The cardiac wave series of P-waves, QRS complexes, and T-waves 
represents the duration of the ECG signal morphology. It is used to 
identify patients at risk for several symptoms. Features such as intervals, 
segment measurements, heart rates, and the frequency of R peaks have 
significant benefits for clinicians attempting to identify heart diseases. 
The algorithms designed must be applied to a delineated heartbeat that 
highlights several essential measurements of the electrical cardiac cycle. 

Any noticeable changes occurring in the P-QRS-T lines indicate an ir-
regularity in heartbeats. The physiology and morphology of ECG 
waveforms have frequently been used in clinical trials [4,45]. However, 
it is difficult to produce an algorithm that automatically produces a 
morphologic description for measuring the start and endpoint of the 
duration [3,14,15]. As a result, the automated delineation of ECG signal 
morphology is challenging. 

In this paper, RNNs with bidirectional LSTM was proposed. By 
integrating input variables extracted from raw ECG data taken from the 
QTDB, this method was used to automatically identify the positions and 
magnitudes of the following durations, such as those of P-waves, QRS 
complexes, and T-waves. The QTDB provided the input to the WFDB 
ecgpuwave function, which provided us with the exact location of all the 
P, R, and T peaks in the signal [46]. The ecgpuwave output was written as 
a standard WFDB-format annotation file related to the specified anno-
tator. It was utilized as a “ground truth” or label for the proposed ECG 
classification process. The cardiac wave classification was conducted 
with P-waves, QRS complexes, T-waves, and isoelectric lines. A fixed 
window size of 370 nodes for each sequence was utilized. The window 
size was sufficiently large to capture one heartbeat (from the start of 
P-wave 1 to the start of P-wave 2). After signal segmentation, we 
generated an index spanning from the start to the end of the P-wave, 
QRS complex, and T-wave positions based on the ground truth from 
ecgpuwave. The nodes’ start-to-end index of the P-waves, QRS com-
plexes, T-waves, and isoelectric lines had to be adjusted in units of 

Fig. 4. ECG-wavelet for noise reduction in record sel100.dat (blue color: ECG raw data; green color: decomposition before and after thresholding). (For interpre-
tation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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seconds. All these duration points were sampled with a sampling fre-
quency of about 250 Hz, and the duration in seconds (sec) could be 
calculated by utilizing the following equation [44], 

Duration(sec ond)=
pointsamples

samplingfrequency(Hz)
(24) 

After the preprocessing steps, a model for RNNs with bidirectional 
LSTM architecture was generated. The LSTM model was evaluated with 
both unidirectional and bidirectional passes to identify the best model. 
The bidirectional LSTM architecture with the hyperparameters pre-
sented in Table 1 was selected. The composition of the layer was 1 (one), 
in which each hidden activation function was either a Tanh-Sigmoid or 
an Adam optimizer. The output activation function was Softmax, which 
had a learning rate of 0.0001. Categorical cross-entropy was selected as 
a loss function. 

The duration resulting from the proposed method was compared 
with the QTDB as annotated by ecgpuwave and manually annotated by an 
expert. In this study, not all records from the QTDB were manually an-
notated by an expert, as only 30 beats were contained in each record. 
Therefore, the QTDB records annotated by ecgpuwave became ground 
truth values, and the classification duration from the LSTM became a 
predicted value. Fig. 5 describes this process and presents the gap in the 
P-QRS-T wave between annotation (by ecgpuwave and experts) and 
prediction (from the proposed LSTM architecture). 

4. Results and discussion 

Data containing ten records from the QTDB of normal sinus rhythms 
became the baseline for P-wave, QRS complex, T-wave, and isoelectric 
line classification in the classification process. Using shuffle sampling, 
the classification process was divided into 90% in the training phase and 
10% in the test phase. The total number of samples in the training set 
was 7.714, while the testing set used 858 samples. The testing set, as a 
validation set, was used to tune the hyper-parameters and determine the 
optimal number of models designed. To achieve an accurate result, we 
utilized a workstation with NVIDIA GeForce RTX 2080 and 
CuDNNLSTM. This GPU-accelerated deep neural network library sup-
ports training LSTM to classify the durations of all classes (P-waves, QRS 
complexes, T-waves, and isoelectric lines). As we stated above, the 
heartbeat segmentation contained one R-peak—from the start of one P- 
wave to the start of the next P-wave. In all signal recordings of normal 
sinus rhythms from the QTDB, the maximum length from the start of one 
P-wave to the start of the next P-wave was 370 nodes. If the length from 
the start of one P-wave to the start of the next P-wave did not achieve the 
maximum length, we set a condition requiring us to adjust that length; 
no padding was used. The results of LSTM performance for the QTDB are 
displayed in Table 2. The five performance metrics—i.e., accuracy, 
sensitivity, specificity, precision, and F1 score—were used for 
measuring the results [20,25]. These five metrics are commonly used for 
classification tasks in ECG signal processing [44,47,48]. The results were 
compared to P-wave, QRS complex, T-wave, and isoelectric line data 
annotated by ecgpuwave in the QTDB. For experiments, we also 
compared standard LSTM to bidirectional LSTM. The results showed 
that bidirectional LSTM had better performance. The standard (unidi-
rectional) LSTM preserved information from the past and ran the inputs 
only in forward passes. The bidirectional phase ran inputs in forward 
and backward passes and preserved the information from both past and 
future. Table 2 displays the results of unidirectional and bidirectional 

LSTM. As shown in Table 2, the average performance of bidirectional 
LSTM on the selected metrics was better than that of unidirectional 
LSTM. The average sensitivity increased from 97.96% to 98.74% using 
bidirectional LSTM. The other metrics also increased. Therefore, we 
selected the bidirectional LSTM model for P-wave, QRS complex, 
T-wave, and isoelectric line classification. 

We have validated the proposed model through expert annotations 
on the bidirectional LSTM for the normal sinus rhythm database (.q1c) 
(refer to Table 3). Table 3 shows the results of the bidirectional LSTM 
model with expert annotations in QTDB (.q1c), which contained 30 non- 
sequential manually annotated beats in each record. There are 300 total 
manually annotated beats in the records from the normal sinus rhythm 
database. As we can see in Table 3, the average of all performance 
metrics decreased when compared to Table 2. For example, sensitivity 
went from 98.74% to 89.89%. This was possible because not all records 
with an expert annotation are manually annotated. Manual annotations 
by an expert are sometimes misplaced, and annotations are often 
missing along with the signal waveforms. The decision to seek expert 
annotation was made about the time location of the fiducial point. Un-
fortunately, in ecgpuwave, annotation is detected using the differentiated 
threshold method, not the fiducial point. This can affect the exact lo-
cations of all the P, R, and T peaks from the bidirectional LSTM learning 
model. For P-waves, the accuracy and precision were 99.24% and 
99.27%, respectively. The sensitivity only reached 89.93%. The sensi-
tivity of the QRS complex achieved 92.55%; however, the precision 
decreased, at only 88.81%. The worst validation results were for the T- 
waves, with a sensitivity of 79.44% and an F1-score of 87.79%. 

The proposed bidirectional LSTM architecture was also trained in an 
abnormal QT database. For example, it was trained on MIT-BIH 
Arrhythmia, MIT-BIH ST Change, MIT-BIH Supraventricular 
Arrhythmia, European ST-T, and MIT-BIH Long-Term ECG (refer to 
Table 4). For MIT-BIH Arrhythmia, the average accuracy, sensitivity, 
specificity, precision, and F1-score values were 99.31%, 97.43%, 
99.56%, 97.50%, and 97.47%, respectively. Commonly, for arrhythmia 
cases, the position of P-waves is an essential factor; for example, atrial 
fibrillation (AF) is one of the cardiac arrhythmias most frequent in the 
elderly population. The absence of a P-wave is one of the significant and 
clinically useful features for AF detection. This gives delineation of the 
P-wave considerable importance in clinical practice. It was also applied 
to MIT-BIH Supraventricular Arrhythmia, where we also achieved good 
performance, with an average accuracy of 99.26% for all waveforms. 
The average sensitivity, specificity, precision, and F1-score values were 
97.31%, 99.51%, 97.60%, and 97.45%, respectively. 

On the other hand, for the ST segment in particular, the position of 
the terminal QRS (J-point) and starting T-wave was crucial since the ST 
segment exhibited transient ST depression or elevation and was 
excerpted from long-term ECG recordings. For MIT-BIH ST Change and 
European ST-T, the average accuracy values were 99.31% and 99.35%, 
respectively. Unfortunately, in long-term ECG recordings, we obtained 
poor results on the average sensitivity, precision, and F1-score values, at 
93.91%, 94.93%, and 94.38%, respectively. A signal recording that is 
too long could cause a normal T-wave to overlap with other T-wave 
classes—e.g., inverted, only upwards, only downwards, biphasic 
negative-positive, or biphasic positive-negative. Having multiple ECG 
signals of cardiac complexes could help the model find the cardiac wave 
relationship. In all cases, the proposed model could classify all cate-
gories of the ECG waveform component. The highest average accuracy 
in signal delineation was about 99.48% in MIT-BIH ST Change, and the 

Table 1 
The proposed architecture of bidirectional LSTM.  

Method Input 
Layer 

Output 
Layer 

Hidden Layer 
Neuron 

Activation Function 
Hidden 

Activation Function 
Output 

Learning 
Rate 

Loss Function Batch 
Size 

Epoch 

Bidirectional 
LSTM 

(370, 1) 5 512 Tanh-Sigmoid Softmax 0.0001 Categorical Cross- 
Entropy 

8 300  
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lowest accuracy in the MIT-BIH Long-Term ECG was 97.88%. Due to the 
raw data condition, in which the two signals were different, the Long- 
Term signal had more noise compared to ST Change. The overall re-
sults of the abnormal QTDB trials indicated that the proposed delinea-
tion algorithm exhibited a performance above 93% in identifying the 
ECG signal morphology. The results for the P-waves, QRS complexes, 
and T-waves in abnormal conditions can be seen in Fig. 6. 

Fig. 5. The sample of classification process for P-wave, QRS-complex, T-wave, and Isoelectric-line.  

Table 2 
LSTM performance of all classes based ecgpuwave notation in Normal Sinus Rhythm database.  

Method Metrics Performance (%) 

P-wave QRS-complex T-wave Isoelectric-line Average 

Unidirectional 
LSTM 

Accuracy 99.83 99.74 99.31 98.89 99.44 
Sensitivity 98.73 97.74 96.64 98.76 97.96 
Specificity 99.89 99.87 99.69 98.97 99.60 
Precision 98.39 98.14 97.88 98.34 98.18 
F1-score 98.56 97.94 97.26 98.55 98.07 

Bidirectional 
LSTM 

Accuracy 99.84 99.89 99.54 99.29 99.64 
Sensitivity 98.38 99.10 98.47 99.04 98.74 
Specificity 99.93 99.94 99.69 99.44 99.75 
Precision 99.00 99.24 97.92 99.10 98.81 
F1-score 98.69 99.17 98.20 99.07 98.78  

Table 3 
Bidirectional LSTM performance of all classes based expert annotation.  

Metrics Performance (%) 

P-wave QRS-complex T-wave Isoelectric-line Average 

Accuracy 99.24 98.78 96.53 94.71 97.31 
Sensitivity 89.93 92.55 79.44 97.64 89.89 
Specificity 99.95 99.20 99.71 92.56 97.85 
Precision 99.27 88.81 98.10 90.57 94.18 
F1-score 94.37 90.64 87.79 93.97 91.69  

Table 4 
Bidirectional LSTM performance of all classes in abnormal database.  

Database Average Performance (%) 

Accuracy Sensitivity Specificity Precision F1- 
score 

MIT-BIH 
Arrhythmia 

99.31 97.43 99.56 97.50 97.47 

MIT-BIH ST Change 99.48 97.83 99.68 98.08 97.95 
MIT-BIH 

Supraventricular 
Arrhythmia 

99.26 97.31 99.51 97.60 97.45 

European ST-T 99.35 97.56 99.57 97.70 97.63 
MIT-BIH Long- 

Term ECG 
97.88 93.91 98.57 94.93 94.38  
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Furthermore, for evaluating the proposed model in normal and 
abnormal rhythms, we used a learning curve. The learning curve con-
sisted of accuracy and loss curves that showed model learning perfor-
mance over time (in epochs). After each update, during training, plots of 
the assessed results can be generated to display learning curves. The 
model can be evaluated on the training data set and on a holdout testing 
dataset. Reviewing the model’s learning curves during training may help 

to identify learning issues, such as an underfit or overfit model, and 
assess if the training and testing datasets are acceptable to represent. 
Accuracy and loss curves were generated in each database to represent 
the comparison between bidirectional LSTM and annotated QTDB re-
cords. There were accuracy and loss curves associated with the QTDB 
databases (Fig. 7 (a) to (l)). 

It has previously been shown that the proposed RNNs with 

Fig. 6. The performances of P-wave, QRS-complex, T-wave, and Isoelectric-line in abnormal QTDB.  
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bidirectional LSTM performed more accurately on all classes of ECG 
durations. Previous research explored ECG delineation for P-wave, QRS 
complex, and T-wave classification. The majority of the other studies 
focused on finding cardiac complexes with fiducial points rather than 
segmenting every ECG data point independently. The proposed method 
provides competitive accuracy in this field as well. Table 5 shows the 
accuracy of identifying cardiac waves using bidirectional LSTM 
regardless of segmentation. Hughes et al. [11] and Johannesen et al. 
[49] used the Hidden Markov Model (HMM) to solve ECG segmentation; 
they used wavelet-encoded and Markov models for automated ECG in-
terval analysis. Lin et al. [6] proposed a conventional machine learning 
model that used a Bayesian approach for segmenting both P- and 
T-waves. Aside from this, Abrishami et al. [50] used DL in ECG seg-
mentation. The method employed RNNs with bidirectional LSTM for 
segmenting P-waves, QRS complexes, and T-waves only. However, 
compared to studies [11,49], our proposed method outperformed that 
approach. With QRS complex classification in particular, our proposed 
algorithm can achieve an accuracy of 99.89% compared with the 

previous studies (see Table 5). Table 5 shows the average accuracy for 
each of the models discussed. On the important task of accurately 
determining the P-wave, QRS complex, and T-wave values of QTDB 
signal morphologies, the RNNs with bidirectional LSTM significantly 
outperformed other methods and produced duration and QRS complex 
classifications for every signal morphology with excellent results. Alto-
gether, using ECG signals from the QTDB, we achieved average accuracy 
values of 99.84%, 99.89%, 99.54%, and 99.29% for P-waves, QRS 
complexes, T-waves, and isoelectric lines, respectively. 

Due to various normal and abnormal ECG signal spatial patterns, the 
traditional feature extraction methods, such as derivative-based 
methods, amplitude-based methods, etc., failed to extract various car-
diac wave spatial formations. In contrast, RNNs with LSTM architecture 
using multilayer feature filters could extract more complex features from 
ECG signals automatically. These features could identify various ECG 
wave formations (P-waves, QRS complexes, and T-waves), delineate 
these waveform components, and detect key ECG waves. These results 
open up the possibility of making an impact on future research in 

Fig. 7. Accuracy and loss curve based on all waveform classes, MIT-BIH Normal Sinus Rhythm, MIT-BIH Arrhythmia, MIT-BIH ST Change, MIT-BIH Supraventricular 
Arrhythmia, European ST-T, and MIT-BIH Long-Term ECG. 

Table 5 
ECG classification accuracy comparison.  

Authors Methods Dataset Accuracy (%) 

P-wave QRS -complex T-wave Isoelectric-line 

Hughes et al. [11] Hidden Markov Model 100 ECG waveforms 05.50 79.00 83.60 – 
Johannesen et al. [49] Wavelet QTDB 85.60 89.70 92.80 – 
Lin et al. [6] Bayesian QTDB 98.93 – 99.54 – 
Abrishami et al. [50] Bidirectional LSTM QTDB 92.00 94.00 90.00 – 
Proposed Bidirectional LSTM QTDB 99.84 99.89 99.54 99.29  
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cardiology. 
Although the results look promising, there are some limitations of 

our study: 

• We used QTDB ground truths annotated by the ecgpuwave (by ma-
chine) due to the limited ECG delineations manually annotated by 
experts (cardiologists).  

• We only classified T-waves as normal and ignored the other T-wave 
classes—namely, inverted, only upwards, only downwards, biphasic 
negative-positive, or biphasic positive-negative.  

• We did not validate the proposed model in other ECG delineation 
databases. The research was limited to the ECG waveform in QTDB; 
more datasets could achieve greater generalization. 

5. Conclusion 

ECG waveform delineation is a process for determining amplitudes 
and time intervals. That is a challenging task due to several factors, such 
as the low amplitude of P-waves, biphasic P, and T-waves. The previous 
beat of a P-wave can be missing or partially overlap with the T-wave; 
some waves are arrhythmic, with abnormal beats; and measurements of 
the end of T-waves are inherently subjective. Therefore, it can greatly 
benefit the medical community to provide an accurate, automated ECG 
delineation device that can provide reliability, consistency, and security 
in each measurement. In this study, the RNNs with bidirectional LSTM 
archictecture was proposed to overcome such a problem through the 
automated delineation of ECG waveforms. The main process was 
divided into noise cancelation, duration segmentation, wave form-based 
duration time classification, and model evaluation—a complete set of 
experimental classifications using a well-known QTDB dataset with 
normal and abnormal conditions. The proposed model accomplished the 
automatic delineation of ECG signals based on annotated data from 
QTDB, ecgpuwave, and experts, with satisfactory results. The proposed 
model produces 99.64% accuracy throughout the whole experiment, 
98.74% sensitivity, 99.75% specificity, 98.81% precision, and a 98.78% 
F1-score. As these tools were further developed with data annotated by 
experts, RNNs with bidirectional LSTM architecture could aid in the 
early detection and diagnosis of patients with several morphological 
abnormalities. In the future, the potential of this delineation should be 
employed in potential applications for automated P-wave, QRS complex, 
and T-wave detection. By using the proposed method for universal 
screening, we can further investigate abnormal morphologies. 
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