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A B S T R A C T   

Congestive heart failure (CHF) is characterized by the heart’s inability to pump blood adequately throughout the 
body without increased intracardiac pressure. Diverse approaches are used to treat CHF. These approaches, 
which include physical examination, echocardiography, and laboratory testing, require a high degree of 
competence to interpret findings and make diagnoses. Moreover, existing methods do not account for the re-
lationships between variables and thus provide limited performance. Electrocardiogram (ECG), as a non-invasive 
test, may be used for CHF early diagnosis, which would require further examination to be referred. A previous 
study revealed a significant correlation between heart failure (HF) and ECG features. However, the method was 
only performed on small, balanced data; then, the features must be derived from trial and error. The current 
paper proposes deep-learning techniques—recurrent neural networks (RNNs) with long short-term memory 
(LSTM) architectures—to create a diagnostic algorithm that achieves high accuracy with limited information and 
automated feature extraction. The ECG signals used in this study were obtained from the public PhysioNet da-
tabases. We fine-tuned the hyperparameters of 24 LSTM models to obtain the best model. Moreover, ECG signal 
segmentation was compared among the first five and fifteen minutes as features. Out of the 24 LSTM models, the 
model with the first fifteen minutes of ECG signals (model 1) obtained the highest accuracy, sensitivity, speci-
ficity, precision, and F1-score (99.86%, 99.85%, 99.85%, 99.87%, and 99.86%, respectively). The first fifteen 
minutes of ECG signals performed well because the LSTM model learned an increasing number of features. In 
conclusion, the proposed LSTM model could give a clinician a preliminary CHF diagnosis for further medical 
attention. Deep learning can be a useful predictive method for increasing the number of identified CHF patients.   

1. Introduction 

Congestive heart failure (CHF) is a chronic disease in which the heart 
fails to maintain the blood circulation adequately. CHF is a global 
pandemic affecting about 26 million people [1]. CHF is also a significant 
health concern in Asia, where its prevalence (6.7%) is much higher than 
that in Western countries [2]. The diagnosis of CHF is a challenging task 
because it is affected by reduced ejection fraction (HFrEF), preserved 
ejection fraction (HFpEF), and mid-range ejection fraction (HFmrEF). In 
the normal heart, there is good stroke volume (blood flow volume 
ejected per heartbeat), and oxygen-rich blood from the left ventricle is 
pumped into the body. In CHF, the volume of the stroke decreases, and 
the heart cannot effectively pump oxygen-rich blood to the rest of the 

body [3]. The New York Heart Association (NYHA) classifies CHF into 
four categories. There are significant symptoms only in patients in 
classes 3 and 4, namely, patients with insufficient physical activity 
experience signs of heart failure or while resting, respectively [4]. 

Several methods are used to diagnose CHF patients, such as chest X- 
ray, nuclear imaging, magnetic resonance imaging (MRI), invasive 
angiography, and echocardiography [5]. Echocardiography is the most 
commonly used test; it uses ultrasound to measure the volume of the 
stroke, the end of the diastolic volume, and the ratio of these quantities 
(ejection fraction) [6]. However, it can be time-consuming and costly [5, 
7], and it is highly operator dependent [5]. Another method for 
detecting CHF is the use of an electrocardiogram (ECG) [5]. ECG is 
inexpensive, widely accessible, and can be the most useful instrument in 

* Corresponding author. Intelligent System Research Group, Faculty of Computer Science, Universitas Sriwijaya, Palembang, 30139, Indonesia. 
E-mail addresses: riset.annisadarmawahyuni@gmail.com (A. Darmawahyuni), siti_nurmaini@unsri.ac.id, sitinurmaini@gmail.com (S. Nurmaini), meiryka17@ 

gmail.com (M. Yuwandini), naufalrachmatullah@gmail.com (Muhammad Naufal Rachmatullah), virdauz@gmail.com (F. Firdaus), bambangtutuko60@gmail.com 
(B. Tutuko).  

Contents lists available at ScienceDirect 

Informatics in Medicine Unlocked 

journal homepage: http://www.elsevier.com/locate/imu 

https://doi.org/10.1016/j.imu.2020.100441 
Received 27 July 2020; Received in revised form 29 September 2020; Accepted 30 September 2020   

mailto:riset.annisadarmawahyuni@gmail.com
mailto:siti_nurmaini@unsri.ac.id
mailto:sitinurmaini@gmail.com
mailto:meiryka17@gmail.com
mailto:meiryka17@gmail.com
mailto:naufalrachmatullah@gmail.com
mailto:virdauz@gmail.com
mailto:bambangtutuko60@gmail.com
www.sciencedirect.com/science/journal/23529148
https://http://www.elsevier.com/locate/imu
https://doi.org/10.1016/j.imu.2020.100441
https://doi.org/10.1016/j.imu.2020.100441
https://doi.org/10.1016/j.imu.2020.100441
http://crossmark.crossref.org/dialog/?doi=10.1016/j.imu.2020.100441&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Informatics in Medicine Unlocked 21 (2020) 100441

2

the diagnosis and prognosis of CHF patients. However, the manual ex-
amination of ECG signals by experts is complicated and subject to intra- 
and interobserver variabilities [8]. Deciphering minute shifts in ECG 
signals is difficult because their amplitude is measured in millivolts [5]. 
A well-designed computer-aided detection (CAD) system for CHF based 
on ECG signals is needed to overcome these problems. 

Previously, CAD with machine-learning (ML) algorithms used ECG 
signals for CHF diagnosisand quantitative assessment for informed 
decision-making. Melilo et al. [9] first attempted to determine CHF 
disease severity using long-term heart rate variability (HRV) measure-
ments. They developed a classification and regression tree (CART) as a 
classifier and achieved a 93.3% sensitivity and 63.6% specificity. In 
some cases, static HRV measurements might not fully quantify trend 
changes in CHF patients’ autonomic activity during different daily ac-
tivities [10]. Thus, Orhan et al. [11] presented the first application of the 
equal frequency in amplitude and equal width in time (EFiA-EWiT) 
approach to discriminate CHF and normal sinus rhythm (NSR) patterns 
in ECG signals. They extracted the best representative features using the 
primitive and fast linear regression prediction methods. The proposed 
method achieved accuracy, sensitivity, and specificity rates of 100%, 
99.36%, and 99.30%, respectively. Masetic et al. [12] proposed the C4.5 
decision tree method for creating a model that will detect and separate 
normal heart and CHF in a long-term ECG time series. The proposed 
method obtained 100% for both sensitivity and specificity and 99.20% 
for accuracy. Kamath et al. [13] performed the detrended fluctuation 
analysis (DFA) approach to calculate normal heart and CHF short-term 
(20 s) ECG segments. The approach obtained average sensitivity and 
specificity rates of 98.4% and 98%, respectively. Vidya et al. [14] pro-
posed dual-tree complex transform wavelets (DTCWT) for the auto-
mated detection of CHF from standard ECG signals. They performed 
DTCWT on two seconds ECG segments up to six levels to obtain co-
efficients. Using 45 features of the ECG signal, the proposed method 
achieved accuracy, sensitivity, and specificity rates of 99.86%, 99.78%, 
and 99.94%, respectively. Isler et al. [15] classified CHF using 
short-term HRV analysis based on three-stage classifiers, namely, 
k-nearest neighbors (KNN), linear discriminant analysis (LDA), multi-
layer perceptron (MLP), SVM, and radial basis function artificial 
neuronal network (RBF ANN). They conducted their analysis using 
short-term (five minutes) and long-term (24 hours) HRV data. The five 
minutes HRV data obtained accuracy, sensitivity, and specificity rates of 
98.8%, 100%, and 98.1%, respectively. Therefore, short waveform 
classification can be performed instead of examining long-term trends 
for CHF. 

According to these previous studies, short waveforms of CHF can be 
classified instead of looking at long waves. The proposed methods, such 
as SVM, obtained promising CHF classification results. With its versa-
tility, SVM performed well with small data pools (where there is no 
overfitting), and it captured nonlinearity well in features with its kernel 
function. However, only small and balanced data perform well in ML 
techniques. In reality, there is more to the existence of normal data that 
contribute to data imbalance. Furthermore, ML requires hand-crafted 
features; that is, these features must be derived from trial and error to 
achieve optimal classification accuracy. For useful and accurate classi-
fication, it is necessary to determine which visual features best represent 
the ECG signal for extraction. Therefore, ECG signal classification by 
automated feature extraction should be examined further. 

Deep-learning (DL) algorithms have been explored to overcome the 
abovementioned issues. DL is an ML approach where a network auto-
matically learns and picks up distinct features based on ECG input sig-
nals [16,17]. Recurrent neural networks (RNNs) are a form of DL that 
has been widely employed in speech recognition [18] and DNA 
sequencing [19], and it is receiving plenty of attention in the medical 
field [20]. Recently, researchers used RNNs models to develop CAD 
systems for the diagnosis of various medical conditions [21–24]. RNNs 
are a neural network where the output from the previous step is fed to 
the current step as the input. An RNN architecture consists of long 

short-term memory (LSTM) and a gated recurrent unit (GRU). However, 
in some cases, LSTM performs better than GRU [23]. A single LSTM unit 
consists of a cell, an input gate, an output gate, and a forget gate, 
enabling the cell to hold values for unspecified periods. These gates 
track information flow into and out of the LSTM cell [23,24]. Certain DL 
algorithms have been studied for CHF classification, such as convolu-
tional neural networks (CNNs) [3] and sparse autoencoders (SAEs) [25]. 
However, when applied to ECG, a CNN sometimes cuts the window size 
of a fixed length, thereby reducing classification performance [26]. Still, 
with such an SAE, intervals have potential in CHF detection but cannot 
entirely reflect dynamic changes in 24 hours [25]. RNNs can address this 
shortcoming for sequential prediction to model the flow of time directly. 
Hence, the accurate automatic classification of short-term ECG signals 
using RNNs with LSTM architectures is desirable. 

This paper proposes an RNNs with LSTM architecture for CHF and 
NSR classification. The well-known PhysioNet database is used for 
classification based on short waveforms, namely, the first five and 
fifteen minutes of ECG signals. Both times are compared and employed 
as a feature for the classifier without considering static or dynamic HRV. 
Furthermore, 24 LSTM models are fine-tuned to obtain the best model 
performance, as indicated by accuracy, sensitivity, specificity, precision, 
and F1-score. Hence, the design and development of an automated al-
gorithm for CHF and NSR classification via DL need to be investigated in 
detail. The contributions and novelties of this paper are as follows.  

• We generate a DL model with a short ECG waveform for automated 
long-term CHF.  

• We propose an RNN with LSTM architecture and specific time 
features.  

• We evaluate the proposed model using one-to four seconds to 
determine the window size with optimal efficiency for CHF 
classification. 

2. Materials and methods 

This paper proposes an ECG signal processing method that defines 
and learns feature representations directly from the Beth Israel 
Deaconess Medical Center Congestive Heart Failure (BIDMC CHF) and 
MIT-BIH Normal Sinus Rhythm (MIT-BIH NSR) databases. The ECG 
signal processing consists of data preparation and preprocessing; (i) ECG 
noise removal using discrete wavelet transform (DWT); (ii) ECG signal 
segmentation based on the first five and fifteen minutes of the signal; 
(iii) ECG signal normalization, and classification based on the RNN with 
an LSTM architecture. Finally, model performance was evaluated using 
accuracy, sensitivity, specificity, precision, and F1-score (Fig. 1). 

2.1. ECG signal dataset 

ECG signal raw data were obtained from the BIDMC CHF and MIT- 
BIH NSR databases. The BIDMC CHF (NYHA classes 3–4) database 
consists of long-term ECG recordings in two ECG signals are each about 
20 hours in duration from 15 subjects. The NSR database includes 10 
ECG recordings that were referred to the Arrhythmia Laboratory and 
found to have had no significant arrhythmias. Both databases have a 
frequency sampling of 250 Hz. The ECG sample records of CHF and NSR 
are presented in Fig. 2. 

2.2. Noise removal 

During acquisition, ECG signals become contaminated due to 
different forms of objects and interferences, such as muscle contraction, 
baseline drift, electrode touch noise, and power line interference 
[27–29]. In initial processing, ECG signals must be improved by elimi-
nating various kinds of noise and artifacts. ECG preprocessing is a sig-
nificant task performed to remove noise so that abnormalities in heart 
condition can be easily interpreted. DWT is widely used to analyze 

A. Darmawahyuni et al.                                                                                                                                                                                                                       



Informatics in Medicine Unlocked 21 (2020) 100441

3

nonstationary signals, that is, ECG signal denoising [30,31]. DWT is 
realized by passing the signal, wherex(n) is the discrete input signal with 
length n, through a series of low-pass (g[n]) and high-pass filters (h[n]). 
DWT is applied to analyze the signals at different resolution levels; the 
number of decomposition levels is decided wavelet coefficients to do a 
series of signal processing [32]. Denoising performance is evaluated 
using the signal-to-noise ratio (SNR or S/N). SNR gives information 
about the quality of a signal. The input SNR (SNRi)is defined as, 

SNRi = 10log 10

[∑
nx2(n)

∑
nr2(n)

]

(1)  

The output SNR (SNRo)is given by the following equation: 

SNRo = 10log 10

[ ∑
nx2

d

(
n
)

∑
nxdn) − x(n))2

]

(2)  

wherex(n)is the original signal, r(n)is the added noise signal, and xd(n) is 
the denoised signal. 

A wavelet denoising algorithm mainly contains three steps: wavelet 
decomposition, coefficient processing, and wavelet reconstruction [33]. 
Common wavelet families, such as Daubechies, biorthogonals, coiflets, 

and symlets, can be used for ECG signal denoising [34]. This study ap-
plies the symlet wavelet sym5 because it is good at denoting noisy ECG 
signals (Fig. 3 (a)). Fig. 3 presents the wavelet denoising algorithm, 
which assumes that the “clear” signal is correlated with some of the 
decomposed coefficients. The other signals are related to the mean noise 
value. Thus, with the unimportant noise-related coefficient removed, 
the signal can be restored without loss of data (Fig. 3 (b)). 

In this study, we obtain the SNR value of each record for the BIDMC 
HF and NSR databases (Table 1). Table 1 presents the SNR values of 
sym5 for the BIDMC and NSR databases. As we can see in the table, the 
average SNR values of BIDMC and NSR are − 0.001663 and − 0.000271 
decibel (dB), respectively. A ratio greater than 0 dB or higher than 1:1 
indicates that there is more signal than noise. For the BIDMC HF and 
NSR databases, there are nine and seven records, respectively, that have 
SNR values greater than 0. Therefore, sym5 can deal with ECG signal 
noise well. 

2.3. ECG signal segmentation 

For the ECG signal in this study, the first five- and fifteen minutes 
recordings of BIDMC CHF are used as features because the dataset has a 

Fig. 1. The workflow of CHF classification process in ECG signal processing.  

Fig. 2. ECG sample records of BIDMC CHF and MIT-BIH NSR databases.  
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long record. The ECG signals are segmented rhythm by rhythm from one 
to four seconds (Fig. 4). For the NSR, because the data are not the same 
length as that of the BIDMC CHF database, a zero-padding process is 
performed. Its functions are used to increase the signal length, which is 
lacking by considering the maximum signal length as a reference with 
zero value (0). 

After ECG signal segmentation, normalization is used to scale the 
data of an attribute in a smaller range with a normalizing bound. This is 
required when dealing with characteristics on different scales. Thus, the 
ECG signal is normalized to bring all the attributes on the same scale. 
The normalizing bound changes the values of the lower limit (lb) and 
upper limit (ub) on the amplitude of a signal to the desired range without 
changing the pattern or shape of the signal itself. In this study, the data 
are acquired in the preprocessing with a lower limit of 0 and an upper 
limit of 1, respectively. The mathematical function of the normalization 
with the normalizing bound is as follows: 

f (x)= x*coef − (xmid * coef ) + mid (3)  

where 

coef =
(

ub − lb
xmax − xmin

)

(4)  

xmidis the midpoint of the input signal: 

xmid = xmax −
xmax − xmin

2
(5)  

xmax is the peak point of the input signal, xmin is the lower point of the 
input signal, and mid is the midpoint of the specified limit: 

mid = ub −
ub − lb

2
(6)  

2.4. Recurrent neural networks 

RNNs are a type of artificial neural network commonly designed to 
recognize the characteristics of sequential data [23,24]. RNNs as a part 
of DL architecture due to the automatic process of calculating features 
without determining some appropriate features. RNNs use patterns to 
predict the next likely scenario; its layers use for loop to iterate over the 
timesteps of a sequence [35]. RNNs encounter a problem caused by its 
iterative nature; its gradient is substantially equal to the recurrent 
weight matrix raised to a high power [23,24]. The architecture of RNNs 
consist of LSTM and GRU, which are implemented to solve the problem 
of the gradient with the gating mechanism, which controls how internal 
states are retained or discarded. Among them, LSTM architecture has 
been proposed, due to it achieved excellent performance in our previous 
study [23,24]. 

LSTM was introduced by Hochreiter and Schmidhuber [36]. In our 
previous work [23], LSTM captured an extended context with input or 
forget gates by passing gradients and showed outstanding results. Each 
node in LSTM is a cell that comprises input, forget, and output gates. 
Common problems of standard RNNs are caused by iterative behavior; 
their gradient is significantly equal to the recurrent weight matrix 
elevated to high power. The gradients increase or decrease at rates that 
are exponential in terms of the number of timesteps. With the gating 
mechanism, which controls how internal states are retained or dis-
carded, LSTM overcomes the gradient problem [23]. Mathematically, 
LSTM can be written as follows: 

ct = σ
(
Wf It

)
ct− 1 + σ(WiIt)tanh(WinIt) (7)  

ht = σ(WoIt)tanh(ct) (8)  

where σis a sigmoid function, ct ∈ RNis a column vector, and It ∈ R(M+N)

is a concatenation of the current input, Xt ∈ RM, and the previous output, 
ht− 1 ∈ RN. Under the assumption co = 0, the hidden state vector of LSTM 
can be derived by: 

ct=
∑t

k=1

[
∏t

j=k+1
σ
(
Wf Ij

)
]

σ(WiIk)tanh(WinIk) (9) 

The comparison of output RNNs and the gating mechanism in LSTM 
is given by: 

ht = tanh
(∑

t
k=1 Wt− k

c WinXk

)
(10)  

ht = σ
(

WoIt

)

tanh

(
∑t

k=1

[
∏t

j=k+1
σ
(
Wf Ij

)
]

σ
(

WiIk

)

tanh

(

WinIk

))

(11) 

Fig. 3. The sample of ECG noise removal processing for CHF classification in BIDMC CHF databases.  

Table 1 
The SNR value of BIDMC HF and NSR databases.  

Records SNR (sym5) 

BIDMC NSR 

1 − 0.040526 − 0.003116 
2 0.001411 0.000835 
3 − 0.006769 0.002295 
4 0.001104 0.000486 
5 − 0.002702 0.001657 
6 − 0.000363 − 0.001300 
7 0.000191 − 0.006883 
8 0.000303 0.001965 
9 − 0.001464 0.000338 
10 0.001843 0.001015 
11 0.016934  
12 0.001490  
13 − 0.002656  
14 0.000256  
15 0.005998  

Average ¡0.001663 ¡0.000271  
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where Wi,Wf ,Wo,Winare weight matrices for the input gate, forget gate, 
output gate, and input, respectively. The total parameters in LSTM are 
equal to 4× (n2 + nm + n), where n-dimensions are assumed as the cell 
state andm-dimensions are the input signal. 

3. Results and discussion 

The data are grouped and resampled for training and testing sets, 
namely, 80% for the training set and the rest for the testing set. In the 

proposed model, the LSTM input layer must have three dimensions, 
namely, samples, timesteps, and features. Here, we use the first five and 
fifteen minutesof BIDMC CHF; for the NSR database, we add zero 
padding. With a frequency sampling of 250 Hz, 1 second equals 250 
nodes. Therefore, the first five and fifteen minutes are equal to 75,000 
and 225,000 nodes, respectively. From both nodes, we use the seg-
mentation of one to 4 seconds as a feature with timesteps of 1 second. 
The hyperparameters of 24 models are fine-tuned to generate the LSTM 
model (Table 2). Table 2 shows all the hyperparameters of the 24 LSTM 

Fig. 4. The ECG signal segmentation samples from 1 to 4 seconds.  

Table 2 
The hyper-parameters tuning of 24 LSTM models.  

Model Data Segmentation Total Hidden Layer Nodes Input Layer Nodes Hidden Layer Timesteps Epochs 

1 15 minutes 1 second 1 250 100 1 139 
2 5 minutes 1 250 100 1 172 
3 15 minutes 2 seconds 1 500 100 1 110 
4 5 minutes 1 500 100 1 120 
5 15 minutes 3 seconds 1 750 100 1 150 
6 5 minutes 1 750 100 1 311 
7 15 minutes 4 seconds 1 1000 100 1 174 
8 5 minutes 1 1000 100 1 166 
9 15 minutes 1 second 2 250 50 1 91 
10 5 minutes 2 250 50 1 139 
11 15 minutes 2 seconds 2 500 50 1 138 
12 5 minutes 2 500 50 1 72 
13 15 minutes 3 seconds 2 750 50 1 123 
14 5 minutes 2 750 50 1 89 
15 15 minutes 4 seconds 2 1000 50 1 151 
16 5 minutes 2 1000 50 1 77 
17 15 minutes 1 second 3 250 25 1 85 
18 5 minutes 3 250 25 1 99 
19 15 minutes 2 seconds 3 500 25 1 80 
20 5 minutes 3 500 25 1 106 
21 15 minutes 3 seconds 3 750 25 1 91 
22 5 minutes 3 750 25 1 90 
23 15 minutes 4 seconds 3 1000 25 1 89 
24 5 minutes 3 1000 25 1 88  

A. Darmawahyuni et al.                                                                                                                                                                                                                       



Informatics in Medicine Unlocked 21 (2020) 100441

6

models, namely, eight as the batch size, Adam as the optimizer (learning 
rate = 0.001), and binary cross-entropy as the loss function. Moreover, 
all the models are fine-tuned with different hidden layers and nodes. For 
epochs, we use early stopping to obtain the best iteration results. Table 2 
presents the variant epochs, where the minimum and maximum epochs 
are 72 (model 12) and 311 (model 6), respectively. 

Table 2 also presents the 24 LSTM models in the first five and fifteen 
minutes of the ECG signal. For all hidden layers of the LSTM, 250, 500, 
750, and 1000 nodes of the input layer are used. We decrease the total 
nodes of the hidden layer from one to three, 100, 50, and 25, respec-
tively. The results of the 24 LSTM models are listed in Table 3. The table 
shows that the higher the segmented signal, the lower the accuracy of 
the results obtained for one hidden layer of the LSTM (models 1–8). For 
instance, for both the first five and fifteen minutes, the accuracy in 1 
second was 99.86% and 99.66%, respectively. In 2 and 3 seconds, the 
accuracy was 99.68% and 99.06%, and 99.66% and 98.20%, respec-
tively. However, in 4 seconds, the accuracy decreases—only 99.28% and 
96.26%—for the first fifteen and five minutes of ECG signal. For two 
hidden layers, the accuracy of the first fifteen minutes in 1 second de-
creases from 99.86% to 99.84%. Then, an additional decrease is 
observed in three hidden layers, where the accuracy is only 99.80%. It 
also applies to the other metric measurements, namely, sensitivity, 
specificity, precision, and F1-score. Therefore, the addition of hidden 
layers does not improve the result. Then, we compare the first five and 
fifteen minutes of the ECG signal; the accuracy, sensitivity, specificity, 
precision, and F1-score for the first fifteen minutes are higher than those 
for the first five minutes. This is because the LSTM model learns addi-
tional features. Among the 24 LSTM models, model 1, which covers the 
first fifteen minutes, yields the best performance; it has the highest ac-
curacy, sensitivity, specificity, precision, and F1-score of 99.86%, 
99.85%, 99.85%, 99.87%, and 99.86%, respectively. Therefore, we 
propose model 1 as the best model for CHF and normal heart ECG signal 
classification. 

From the results in Table 3, the accuracy, sensitivity, specificity, 
precision, and F1-score values of models 1, 3, 5, 9, and 17 are above 
99.60%. In this study, the accuracy and loss curves are presented to 
validate five of the best LSTM models (Fig. 5). Fig. 5 (a)–(j) show that the 
error is decreased and the accuracy increased from the training (red line) 
and testing data (blue line) with the increase in epochs. All curves are 
presented as a well-fit model. The plot of the testing accuracy and loss 

toward a point of stability shows a small gap between the training ac-
curacy and loss. All five of the best LSTM models show promising results 
for CHF classification in fifteen minutes of the ECG signal. However, 
model 1 performs better than do other models. As seen in Fig. 5 (a), the 
accuracy in the initial epoch is above 93%, and it then increases to 
perfect performance. Moreover, the error decreases, becoming almost 
close to zero (0). 

Precision-recall (PR) curves are shown in Fig. 6 (a) to present 
detailed information about model 1, which is the proposed model for 
CHF and NSR classification. PR curves are typically generated from a 
confusion matrix to evaluate model performance on a given dataset 
[37]. Such curves, with precision plotted on the y-axis and recall on the 
x-axis, could expose differences between algorithms. They also sum-
marize the trade-off between the positive predictive value (PPV, preci-
sion) and the true-positive rate (TPR, recall/sensitivity) of a predictive 
model. A curve that lies above another curve has a better performance 
level. This study also plots the TPR (sensitivity) versus the false-positive 
rate (1-specificity) across varying cutoffs. A curve is generated in the 
unit square, and it is called the receiver operating characteristic (ROC) 
curve. ROC evaluation is a standard approach for analyzing the reli-
ability of medical diagnostic systems. The plot of the ROC curve for CHF 
and NSR classification is presented in Fig. 6 (b). Both curves obtain 
excellent visualization because their values are close to 1. 

Some previous studies explored CHF classification using DL tech-
niques, such as autoencoders, CNNs, and LSTM (refer to Table 4). Chen 
et al. [25] constructed a CHF detection model based onan SAE-based DL 
algorithm. SAE was applied to learn features from raw unsupervised RR 
data intervals automatically. An SAE was then trained to build a model 
that would discriminate against CHF. The DL algorithm first extracts 
unsupervised features from raw RR intervals using an SAE and then 
constructs a deep neural network model with various combinations of 
hidden nodes. Results showed that the model reached an accuracy of 
72.41%. Therefore, RR intervals have potential in CHF detection but 
cannot completely represent dynamic changes in 24 hours. Acharya 
et al. [3] presented an 11-layer deep CNN model for CHF diagnosis. This 
proposed CNN model requires minimal preprocessing of ECG signals, 
and it does not need engineered features or classification. They gener-
ated the structure of the CNN model for four sets (A–D). Among the four 
sets, set B (using the BIDMC CHF database and the Fantasia database 
[FD]) achieved the maximum accuracy, specificity, and sensitivity of 
98.97%, 99.01%, and 98.87%, respectively. However, there are limita-
tions in the use of CNNs; when applied to ECG, a CNN cuts the window 
size of a fixed length, thereby eventually reducing classification per-
formance. Wang et al. [6] combined LSTM and an inception module 
from GoogLeNet for CHF detection. Three RR segment-length forms (N 
= 500, 1000, and 2000) were used for comparison with other studies. 
They divided their database into two, namely, databases 1 and 2. The 
results showed that database 1 outperformed database 2. Using database 
1 (BIDMC CHF, NSR, and FD), the proposed method can detect CHF 
through a short-term assessment of the heartbeat; the method achieved 
99.22%, 98.85%, and 98.92% accuracy in a blindfold validation. LSTM 
performs well; however, in this case, excellent results were obtained 
without considering HRV analysis for CHF classification. 

Although our results look promising, our study has certain limita-
tions, such as the following.  

• We did not classify the CHF patients based on classes 1–4 and ignored 
the influence of HFrEF, HFpEF, and HFmrEF.  

• We used a limited dataset to generate the model and did not validate 
the proposed model against hospital patient data. 

4. Conclusions 

CHF is a complex clinical disease characterized by reduced heart 
pumping and blood-filling capacities. The use of ECG classification for 
CHF detection is challenging because ECG waveforms require long- or 

Table 3 
The results of 24 LSTM models hyper-parameters tuning.  

Model Performance Evaluation (%) 
Accuracy Sensitivity Specificity Precision F1-Score 

1 99.86 99.85 99.85 99.87 99.86 
2 99.66 99.50 99.50 99.64 99.57 
3 99.68 99.62 99.62 99.72 99.67 
4 99.06 98.81 98.81 99.21 99.03 
5 99.66 99.60 99.60 99.69 99.65 
6 98.20 98.14 98.14 98.19 98.17 
7 99.28 99.20 99.20 99.33 99.26 
8 96.26 96.21 96.21 96.21 96.21 
9 99.84 99.81 99.81 99.86 99.83 
10 99.46 99.31 99.31 99.54 99.42 
11 99.60 99.52 99.52 99.64 99.58 
12 98.53 98.54 98.54 98.35 98.45 
13 98.60 98.39 98.39 98.66 98.52 
14 95.80 95.65 95.65 95.71 95.68 
15 98.66 98.56 98.56 98.70 98.63 
16 96.26 96.27 96.27 96.13 96.20 
17 99.80 99.75 99.75 99.82 99.79 
18 99.46 99.34 99.34 99.55 99.44 
19 99.64 99.55 99.55 99.70 99.62 
20 98.66 98.66 98.66 98.55 98.60 
21 99.13 98.98 98.98 99.19 99.08 
22 95.20 95.16 95.16 94.86 95.00 
23 98.57 98.40 98.40 98.66 98.53 
24 94.40 94.53 94.53 93.80 94.13  

A. Darmawahyuni et al.                                                                                                                                                                                                                       



Informatics in Medicine Unlocked 21 (2020) 100441

7

short-term RR interval data. In summary, this paper proposes a DL 
technique—RNN with LSTM architecture—to distinguish normal heart 
and CHF ECG signals. Using the first five and fifteen minutes of BIDMC 
CHF and NSR data as features, this paper compares the segmentation of 
ECG signals from one to four seconds for the learning process. The ex-
periments show that the first fifteen minutes of both ECG signals yield 

better performance than the first five minutes, and one second ECG 
signal segmentation shows better performance than the other time 
segmentations. Moreover, we fine-tune the parameters of the hidden 
layers. The addition of more layers of LSTM does not produce better 
performance. We generate 24 LSTM models to achieve the best perfor-
mance, and model 1 is the best of all models. The proposed LSTM 

Fig. 5. The accuracy and loss curve of the five best LSTM models.  
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Fig. 5. (continued). 

Fig. 6. The precision-recall and ROC curve in model 1 LSTM as the proposed model.  
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architecture in model 1 consists of one hidden layer, a 250-node input 
layer, a 100-node hidden layer, one timestep, eight batch size, and 139 
epochs (using early stopping). The proposed method exhibits good 
classification performance, yielding accuracy, sensitivity, specificity, 
precision, and F1-score values of 99.86%, 99.85%, 99.85%, 99.87%, and 
99.86%, respectively. In future work, we will generalize the proposed 
LSTM model to classify other heart abnormalities using several data-
bases. Our proposed model gives preliminary diagnoses for clinicians for 
further medical treatment. We conclude that the DL technique can be a 
useful predictive method for increasing the identification rate of CHF 
patients in ECG short-term recordings. 
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