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Abstract— Atrial Fibrillation (AF) is a type of irregular 

heart beating problem which could lead to complications such 

as heart abnormalities events, including mortality and sudden 

cardiac death. The presence of AF can be diagnosed by 

electrocardiogram (ECG), including no clear P-wave and 

irregular pattern of RR-interval. Typically, the characteristics 

have been determined from the magnitude or duration of 

ECG. Unfortunately, it remains a difficult task due to its 

episodic nature. An automatic classification for AF from ECG 

signals is valuable for healthcare. This paper proposes a deep 

learning (DL) approach using a combination of convolutional 

neural network (CNN) as feature extraction and recurrent 

network as a classifier based on ECG short rhythm. Also, grid-

search-based hyperparameter optimization is used to obtain 

optimal hyperparameters of the model. CNN learns to extract 

features used in the classification task, and a recurrent 

network is suitable for sequential prediction to model the flow 

of time directly. Among 60 models of hyperparameter tuning, 

the experimental results and analysis indicate that CNN-

bidirectional long short-term memory (BiLSTM) 

outperformed the general model of recurrent neural network 

(RNN) and gated recurrent unit (GRU) with 96.49% accuracy. 

The proposed model by employing ECG short rhythm shows 

promising results and an important approach that can be 

applied to classify sequential data for AF signal classification.  

Keywords—atrial fibrillation, normal sinus rhythm, 

convolutional neural network, recurrent neural network, 

electrocardiogram signal 

I. INTRODUCTION 

Atrial Fibrillation (AF) is associated with hypertension 
and valvular heart disease, which requires both an initiating 
event and a permissive atrial substrate [1]. The wave of atrial 
depolarization is represented by P-wave on 
electrocardiogram (ECG). The P-wave indices are 
quantitative measurements of atrial electrical activity 
obtained from the ECG surface. The P-wave is accepted as 
the most reliable non-invasive marker of the atrial 
conduction time [2]. More recently, the prolonged duration 
of the P-wave was shown to be a marker of the AF incident 
in two independent cohort studies [3][4]. Both short and long 
P-wave durations, also an irregular RR-interval with no 
pattern to the irregularity are significantly associated with an 
increased risk of AF [5][6]. However, analyzing ECG signal 
to AF risk presence based on P-wave and irregular RR-
interval is time consuming and requires an extensive years of 

study to acquire specialized expertise [7]. Also, human errors 
can be caused by fatigue and affect precision AF signal 
classification.   

An automated ECG interpretation by computer-based is 
expanded to increase the performance of AF signal 
classification. The computer-based analysis interpretation 
can be done quicker and more cost-effective when compared 
to human interpretation [7][8]. Nowadays, the automated 
ECG interpretation is utilizing deep learning (DL) 
perspective as a part of artificial intelligence (AI) based on 
human knowledge. DL may not require extensive human 
interaction and knowledge for feature design [11]. Previous 
literatures have proposed various DL algorithms for AF 
signal classification [7–11]. Yuan et al. [8] proposed the 
stack sparse autoencoder neural network. Xia et al. [9] have 
explored deep convolutional neural networks (CNN). They 
used the short-term Fourier transform (STFT) and stationary 
wavelet transform (SWT) to analyze ECG segments to obtain 
two-dimensional (2-D) matrix input, which is suitable for 
CNN. Andersen et al. [10] combined an end-to-end model 
using CNN and recurrent neural network (RNN) for 
automatic detection of AF. Sun et al. [11] developed an RNN 
composed of stacked long short-term memory (LSTM) for 
AF prediction. All performance results of mentioned 
literatures obtained the accuracy or sensitivity of the 
proposed algorithm above 90%. Under such conditions, it 
can be concluded that the DL approach is of great 
significance in the monitoring of AF.  

Due to the superiority of DL algorithms in AF detection, 
DL approach for AF and normal sinus rhythm (NSR) signal 
classification is proposed. Among the mentioned DL 
algorithms, this study developed the DL model using the 
combination of CNN as feature extraction and recurrent 
network architecture as the classifier. The convolutional 
layer, as a part of CNN architecture, can automatically 
produce local features of the ECG signal series to recognize 
regional patterns in the convolution window [13]. The 
process can extract deep features from ECG signal data 
points [14]. A recurrent network, or RNN, is a neural 
network with a recurrent connection that employs a recursive 
approach. It is applied for ECG classification tasks with time 
correlations [15]. RNN can be implemented for sequential 
prediction to model the flow of time directly. RNN and its 
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Fig. 1. The process of forward and backward of recurrent network 

variants (LSTM and gated recurrent unit (GRU)) can be 
implemented for AF signal classification.  

Lui et al. [15] found that the addition of a recurrent layer 
of RNN improved the ECG signal classification sensitivity 
by 28% compared to the CNN alone. Hence, it is imperative 
to investigate the convolutional layer of CNN and the 
recurrent network model improvement to increase the AF 
signal classification result. To achieve an optimal model, this 
study also proposes a set of optimal hyperparameter 
optimization (tuning) by using grid search for a learning 
algorithm. Its aim is to discover a tuple of hyperparameters 
that yields in an optimum model that minimizes a predefined 
loss function on independent data. Grid search-based 
hyperparameter tuning is simply an exhaustive search across 
a manually selected subset of the learning algorithm's 
hyperparameter space [16][17]. In this study, we give the 
contributions as follows: 

• Stacking the CNN as feature extraction and recurrent
network model as the classifier for AF and NSR signal
classification;

• Experimenting with recurrent network architectures
(RNN, LSTM, and GRU) based on ECG short rhythm
segmentation to simplify the process with a highly
accurate result;

• Implementing a grid search-based hyperparameter
optimization to get optimized average values after several
trial-and-error processes

The rest of this paper is organized as follows: Section II
describes the material and method which consisted of ECG 
raw data, pre-processing, and the proposed CNN and 
recurrent network architecture. Section III presents the 
theory and background of the proposed method. Section IV 
analyzes results and discussion. Finally, the conclusion is 
presented in Section IV. 

II. CONVOLUTIONAL-RECURRENT NETWORK CLASSIFIER

A. Convolution and pooling layer 

Convolutional and pooling layers are the most common 
layers of CNN. A convolutional layer is made up of a 
number of filters, each of which has its own set of 
parameters that must be learned. The height and weight of 
filters are less than that of the input volume. Each filter is 
convolved with the input volume to produce a neuron-based 
activation map. The convolutional layers extract features 
from the input, which can be expressed as follows: 

1
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where 
m
ija  is the activation of the jth neuron of the i th filter

for the m th convolutional layer, M is the kernel size, ϕ is 

the neural activation function, 
ib is the shared bias of the i th

filter, 1 2[ ... ]Ti i i iMw w w w= are the shared weights of the 
i th filter, and 1 1[ ... ]Tj j j j Mx x x x+ + −= are the

corresponding M inputs. 
A pooling layer is composed of two convolutional layers. 

By down-sampling the representation, it reduces the number 
of parameters and processing. 

B. Recurrent network classifier 

RNN is commonly applied for ECG classification tasks 
with time correlations, which input 

1 2 3( , , ,...., )Tx x x x x= represents a sequence of length T , and 

th represents memory of RNN at time step t . RNN, is also 

known as vanilla RNN, has similar forward and backward 
pass processes as another common neural network (refer to 
Fig. 1) [15][22]. However, the process of RNN in the 
backward pass often happens gradient problems; i.e., 
vanishing or exploding gradient. The gradient problems 
caused by an iterative nature, which the gradient is 
essentially equal to the recurrent weight matrix raised to high 
power. The iterated matrix powers cause the gradient to grow 
or to shrink at a rate that is exponential in the number of 
timesteps [23].  

LSTM tends to overcome this problem by multiplicative 
gates that enforce constant error flow through the internal 

states of memory cells ( )tc . LSTM learns long term 

correlations in a sequence and obviate the need for a pre-
specified time window [24][25]. In LSTM architecture, there 

are three gates; input ( )ti , output ( )to , and forget gates

( )tf [7][15]. The LSTM equations in the forward and 

backward passes are given below [31]: 
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1
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where 0h  is initialized as a zero vector, b is the bias of 

network. 
A recent variation on the LSTM architecture is the GRU, 

which introduces a single update gate in place of input and 
forget gates [26]. GRU has a simpler structure because only 

consist of two gates (reset ( )tr ), and update gates ( )tz )[27]. 

GRU contains a forward GRU
uuuuur

which reads the signal from 
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Fig. 2. The workflow of AF and normal sinus classification process based on CNN and recurrent network architecture 

1iw to iTiw , and a backward GRU
suuuuu

 from iTiw  to 1iw , which 

can be seen below; 

' ( ), [1, ]it it iw GRU w t T= ∈
uuuuurr

(4) 

'
,( ), [ 1]it it iw GRU w t T= ∈

suuuuus
 (5) 

where w is the additional parameter. 

III. MATERIAL AND METHODS

In this study, we developed the combination of CNN and 
recurrent network model for AF and NSR classification by 
using ECG short rhythm. We initially compared recurrent 
network architecture which consisted of RNN, LSTM and 
GRU. The workflow of AF and NSR classification can be 
presented in Fig. 2, which is consisted of; (i) ECG signals are 
enhanced by eliminating various kinds of noise and artifacts 
using discrete wavelet transforms (DWT); (ii) the 
segmentation by rhythm to 2700 nodes; and (iii) the CNN 
and recurrent network learns the characteristic of rhythm for 
AF and NSR classification.  

As detailed in Fig. 2, it consisted of the following four 
main steps as follow;  

• ECG raw data information is available from the 2017

PhysioNet/CinC Challenge database. It is comprised of a

single short ECG lead recording that shows NSR, AF,

noisy signal, and other rhythms (from 9 to 61 seconds)

[18].  A total of 5,925 ECGs were only used in this study;

5,154 for NSR and 771 for AF records. ECG recordings

were generously donated by the AliveCor device, which

sampled as 300 Hz, 16-bit files with a bandwidth of 0.5–

40 Hz and a ± 5 mV dynamic range.

• The changes of ECG waveforms indicate an illness of the

cardiac that may occur for any reason. In the first step of

preprocessing, ECG signals are enhanced by eliminating

various kinds of noise and artifacts. This study proposed

discrete wavelet transform (DWT), which is a frequently

used denoising technique that offers a useful option for 

denoising ECG signals [19][20]. Some wavelet families 

for ECG signal, such as symlets (sym), daubechies (db), 

and bior are implemented to analyze which type of 

wavelet will obtain the best signal denoising result. 

Among them, based on the highest SNR results (refer to 

Table 1), daubechies wavelet, or db2, was the best 

wavelet function and chosen for ECG signal denoising. 

The SNR value obtained 11.205 decibel (dB). 

• After denoising, ECG signals have segmented to short

rhythm. i.e., 2700 nodes for each episode. The proposed

nodes of AF signal segmentation have been published in

detail in our previous works [12][21]. As in previous

works, if the total nodes are less than 2700, a zero-

padding technique is added, which consists of extending

a signal with zero value (0). ECG segmentation divides a

signal into numerous segments or episodes with similar

statistical characteristics like amplitude, nodes, and

frequency.

• First, a total of 21,382 NSR and 3178 AF episodes after

being segmented by 2700 nodes were trained and

validated using the recurrent network classifiers (RNN,

LSTM, and GRU) alone. Second, the best model of

recurrent networks is combined with CNN.  In this stage,

we analyze the impact of performance results between

the recurrent network model alone, and with

convolutional and pooling layers of CNN. To feature

extraction, we generalized the CNN architecture that was

published in our previous work [21]. The architecture

consisted of 13 convolutional and five pooling layers.

Rectified Linear Unit (ReLU) activation function has

been adopted with 64, 128, 256, and 512 filter sizes. The

ReLU removes redundancy by setting the negative value

of the neuron to zero to increase the training speed.
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TABLE I. SNR VALUES OF VARYING MOTHER WAVELET 

Mother Wavelet SNR Value (dB) 

sym5 11.139 

sym6 10.747 

sym7 10.838 

sym8 10.704 

db2 11.205 

db4 10.768 

db5 11.012 

db6 10.852 

db7 10.637 

bior6.8 10.644 

IV. RESULTS AND DISCUSSION

The recurrent network classifiers have been trained and 
validated by the general hyperparameters, 90% for the 
training and the rest for the validation set. All structure 
models have one hidden gate, 512 input nodes, Adam 
optimizer, and binary cross-entropy as loss function. Grid 
search-based hyperparameter optimization is deployed to 
select the best recurrent network structure in terms of its 
learning and structure parameter in the training data. Batch 
size (8, 16, 32, 64), learning rate (from 10-1 to 10-5) and 
number of epoch (100, 200, 300) are hyperparameters-tuned 
that proposed in this study.  

First, we conducted the RNN architecture to generate the 
initial model. From the proposed hyperparameters 
combination, 60 models of RNN architecture were obtained 
(refer to Fig. 3). Fig. 3 shows the accuracy results of training 
(ACC_train) and validation (ACC_val) performance to 
determine the generalization model, neither underfit nor 
overfit. In a good model, as the algorithm learns, the error on 
the training data goes downs and so does the error on the 
validation set. As seen in Fig. 3, almost the model can 
generalize well (good fitting). There is no significant gap 
between the accuracy of the training and the validation set 
(around 87% on average).  

Among 60 recurrent network models, the best model of 
RNN has trained also in unidirectional-bidirectional LSTM 
and GRU. The performance results of recurrent network 
classifiers can be presented in Table 2. As listed in Table 2, 
overall, the bidirectional LSTM (Bi-LSTM) achieved good 
performance results. A sequence of bidirectional use both 
past and future (forward and backward phase) inputs for 
prediction with two separate LSTM hidden layers. The 
model is trained not only from input to output but also from 
output to input. A BiLSTM model feeds input data to an 
LSTM model, or feedback layer, first, and then repeats the 
training via another LSTM model, but in the reverse order of 
the input data sequence. The bidirectional phase of LSTM 
has been proved and provided much better performance in 
some cases. Although the performance of BiLSTM obtained 
a good performance, the accuracy is still achieved at around 
87%. 

Second, we have combined the recurrent network model 
with the convolutional layers of CNN as feature extraction to 
increase the performance. In our previous work [28], we 
proposed and successfully generated the combination of 
convolutional layers and the BiLSTM (ConvBiLSTM) 
model for the ECG delineation process. The convolutional 

layer of CNN aids in the extraction and learning of low-level 
hierarchical and invariant features from raw data through 
weight-sharing. 

a. Models 1 – 20 

b. Models 21 – 40 

c.  Models 41 – 60 

Fig. 3.   The training and validation accuracy performance in 60 recurrent 
network models 
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TABLE II. THE PERFORMANCE RESULTS OF RECURRENT NETWORK 

CLASSIFIERS COMPARISON 

Recurrent 

Network  

Classifiers 

Performance Results (%) 

ACC SEN SPE PRE F1 

RNN 87.62 99.90 33 87.69 93.39 

LSTM 87.66 99.90 66 87.72 93.42 

BiLSTM 87.54 99.72 99 87.74 93.34 

GRU 87.74 100 66 87.73 93.46 

BiGRU 87.54 99.76 66 87.70 93.35 

a.
 ACC = Accuracy; SEN = Sensitivity; SPE = Specificity, PRE = Precision; F1 = F1-score  

TABLE III. THE PERFORMANCE RESULTS OF COMBINATION

CONVOLUTIONAL LAYERS OF CNN WITH RECURRENT NETWORK 

CLASSIFIER 

Recurrent 

Network  

Classifiers 

Performance Results (%) 

ACC SEN SPE PRE F1 

BiLSTM 87.54 99.72 99 87.74 93.34 

CNN-BiLSTM 96.49 99.07 78.21 96.99 98.02 

a.
 ACC = Accuracy; SEN = Sensitivity; SPE = Specificity, PRE = Precision; F1 = F1-score  

As the result, the accuracy significantly increased from 
87.54% to 96.49% (refer to Table 3). Overall, the other 
performances increased to above 96%, though the specificity 
only achieved 78.21%. In this case of study, the AF class 
belongs to the negative class. Specificity measures how the 
model got predicted as the negative of true negative. The 
imbalanced ratio between NSR and AF episodes with 6.72 
imbalanced ratios can affect the AF performance, as a 
minority class. The AF distribution can vary from a slight 
bias. 

V. CONCLUSION 

AF is a public health issue of epidemic proportion, which 
is associated with a wide range of heart abnormalities events. 
ECG signals provide data to clinicians and individuals at 
home using a range of devices that collect information with 
different degrees of accuracy. Nowadays, an automated 
algorithm that analyzes ECG signal data is a popular research 
topic using DL. A convolutional layer of CNN succeeds at 
extracting features from ECG data points. Also, recurrent 
networks, including LSTM and GRU are designed to 
classify, process, and predict data points, which are listed in 
the temporal order. The networks are known to be powerful, 
clinical, and medical time series data classifiers. Hence, this 
study experimented with and combined both powerful DL 
architectures for AF signal classification. In addition, the 
comparison of the recurrent network classifiers to determine 
which one of the classifiers can be proposed. In this 
experimental study, among the recurrent network classifier, 
the CNN-BiLSTM combination has outperformed RNN, 
LSTM, and GRU alone with 96.49% accuracy. By offering a 
more objective and faster interpretation of ECG data, the 
proposed model may be implemented into practice and serve 
as diagnostic assistance for clinicians in the future. 

ACKNOWLEDGMENT  

This research was funded by Universitas Sriwijaya 
Indonesia under a competitive grant. We thank the Intelligent 
System Research Group (ISysRG), Faculty of Computer 
Science, Universitas Sriwijaya, Indonesia. 

REFERENCES 

[1] T. Weimar and K.-N. Doll, “Surgical Therapy of Atrial Fibrillation,” 
in Cardiac Surgery, Springer, 2017, pp. 947–963. 

[2] P. G. Platonov, “Atrial conduction and atrial fibrillation: What can we 
learn from surface ECG?,” Cardiol. J., vol. 15, no. 5, pp. 402–407, 
2008. 

[3] E. Z. Soliman, R. J. Prineas, L. D. Case, Z. Zhang, and D. C. Goff Jr, 
“Ethnic distribution of ECG predictors of atrial fibrillation and its 
impact on understanding the ethnic distribution of ischemic stroke in 
the Atherosclerosis Risk in Communities (ARIC) study,” Stroke, vol. 
40, no. 4, pp. 1204–1211, 2009. 

[4] J. W. Magnani et al., “P wave duration and risk of longitudinal atrial 
fibrillation in persons≥ 60 years old (from the Framingham Heart 
Study),” Am. J. Cardiol., vol. 107, no. 6, pp. 917–921, 2011. 

[5] J. B. Nielsen et al., “P-wave duration and the risk of atrial fibrillation: 
Results from the Copenhagen ECG Study,” Hear. Rhythm, vol. 12, 
no. 9, pp. 1887–1895, 2015. 

[6] H. S. Friedman, “Heart rate variability in atrial fibrillation related to 
left atrial size,” Am. J. Cardiol., vol. 93, no. 6, pp. 705–709, 2004. 

[7] O. Faust, A. Shenfield, M. Kareem, T. R. San, H. Fujita, and U. R. 
Acharya, “Automated detection of atrial fibrillation using long short-
term memory network with RR interval signals,” Comput. Biol. Med., 
vol. 102, pp. 327–335, 2018. 

[8] C. Yuan, Y. Yan, L. Zhou, J. Bai, and L. Wang, “Automated atrial 
fibrillation detection based on deep learning network,” in 2016 IEEE 
International Conference on Information and Automation (ICIA), 
2016, pp. 1159–1164. 

[9] Y. Xia, N. Wulan, K. Wang, and H. Zhang, “Detecting atrial 
fibrillation by deep convolutional neural networks,” Comput. Biol. 
Med., vol. 93, pp. 84–92, 2018. 

[10] R. S. Andersen, A. Peimankar, and S. Puthusserypady, “A deep 
learning approach for real-time detection of atrial fibrillation,” Expert 
Syst. Appl., vol. 115, pp. 465–473, 2019. 

[11] L. Sun, Y. Wang, J. He, H. Li, D. Peng, and Y. Wang, “A stacked 
LSTM for atrial fibrillation prediction based on multivariate ECGs,” 
Heal. Inf. Sci. Syst., vol. 8, no. 1, pp. 1–7, 2020. 

[12] B. Tutuko et al., “AFibNet: An Implementation of Atrial Fibrillation 
Detection With Convolutional Neural Network,” 2021. 

[13] S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, and D. J. 
Inman, “1D convolutional neural networks and applications: A 
survey,” Mech. Syst. Signal Process., vol. 151, pp. 1–21, 2021. 

[14] A. N. Londhe and M. Atulkar, “Semantic segmentation of ECG 
waves using hybrid channel-mix convolutional and bidirectional 
LSTM,” Biomed. Signal Process. Control, vol. 63, p. 102162, 2021. 

[15] A. Darmawahyuni, S. Nurmaini, W. Caesarendra, V. Bhayyu, M. N. 
Rachmatullah, and others, “Deep Learning with a Recurrent Network 
Structure in the Sequence Modeling of Imbalanced Data for ECG-
Rhythm Classifier,” Algorithms, vol. 12, no. 6, p. 118, 2019, doi: 
10.3390/a12060118. 

[16] B. A. Teplitzky, M. McRoberts, and H. Ghanbari, “Deep learning for 
comprehensive ECG annotation,” Hear. Rhythm, vol. 17, no. 5, pp. 
881–888, 2020. 

[17] C.-H. Hsieh, Y.-S. Li, B.-J. Hwang, and C.-H. Hsiao, “Detection of 
atrial fibrillation using 1D convolutional neural network,” Sensors, 
vol. 20, no. 7, p. 2136, 2020. 

[18] G. D. Clifford et al., “AF Classification from a short single lead ECG 
recording: the PhysioNet/Computing in Cardiology Challenge 2017,” 
in 2017 Computing in Cardiology (CinC), 2017, pp. 1–4. 

[19] H.-Y. Lin, S.-Y. Liang, Y.-L. Ho, Y.-H. Lin, and H.-P. Ma, “Discrete-
wavelet-transform-based noise removal and feature extraction for 
ECG signals,” Irbm, vol. 35, no. 6, pp. 351–361, 2014, doi: 
10.1016/j.irbm.2014.10.004. 

[20] M. Aqil, A. Jbari, and A. Bourouhou, “ECG Signal Denoising by 
Discrete Wavelet Transform.,” Int. J. Online Eng., vol. 13, no. 9, 
2017, doi: 10.3991/ijoe.v13i09.7159. 

[21] S. Nurmaini et al., “Robust detection of atrial fibrillation from short-
term electrocardiogram using convolutional neural networks,” Futur. 
Gener. Comput. Syst., vol. 113, pp. 304–317, 2020, doi: 
10.1016/j.future.2020.07.021. 

[22] A. Darmawahyuni, S. Nurmaini, M. Yuwandini, M. N. Rachmatullah, 
F. Firdaus, and B. Tutuko, “Congestive Heart Failure Waveform 

5

Authorized licensed use limited to: Mississippi State University Libraries. Downloaded on March 03,2023 at 13:33:36 UTC from IEEE Xplore.  Restrictions apply. 



Classification Based on Short Time-Step Analysis with Recurrent 
Network,” Informatics Med. Unlocked, p. 100441, 2020. 

[23] R. Jozefowicz, W. Zaremba, and I. Sutskever, “An empirical 
exploration of recurrent network architectures,” in International 
Conference on Machine Learning, 2015, pp. 2342–2350. 

[24] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” 
Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997, doi: 
10.1162/neco.1997.9.8.1735. 

[25] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, “Long short term 
memory networks for anomaly detection in time series,” in 
Proceedings, 2015, p. 89. 

[26] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, “On the 
properties of neural machine translation: Encoder-decoder 
approaches,” arXiv Prepr. arXiv1409.1259, 2014. 

[27] S. Singh, S. K. Pandey, U. Pawar, and R. R. Janghel, “Classification 
of ECG Arrhythmia using Recurrent Neural Networks,” Procedia 
Comput. Sci., vol. 132, pp. 1290–1297, 2018, doi: 
10.1016/j.procs.2018.05.045. 

[28] S. Nurmaini et al., “Beat-to-Beat Electrocardiogram Waveform 
Classification Based on a Stacked Convolutional and Bidirectional 
Long Short-Term Memory,” IEEE Access, vol. 9, pp. 92600–92613, 
2021, doi: 10.1109/ACCESS.2021.3092631. 

6

Authorized licensed use limited to: Mississippi State University Libraries. Downloaded on March 03,2023 at 13:33:36 UTC from IEEE Xplore.  Restrictions apply. 


