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Keywords: Background: Fetal heart defect (FHD) examination by ultrasound (US) is challenging because it involves low light,
Deep learning contrast, and brightness. Inadequate US images of fetal echocardiography play an important role in the failure to
Uhm;l._:[dmm - detect FHDs manually. The automatic interpretation of fetal echocardiography was proposed in a previous study.
e However, the low quality of US images reduces the prediction rate of computer-assisted diagnosis results.

Methods To increase the FHD prediction rate, we propose low-light fetal echocardiography enhancement
stacking with a dense convolutional network classifier named “FetalNet." Our proposed FetalNet model was
developed using 460 US images to produce an image enhancement model. The results showed that all raw US
images could be improved with satisfactory performance in terms of increasing the peak signal-to-noise ratio of
30.85 dB, astructural similarity index of 0.96, and a mean squared error of 18.16. Furthermore, all reconstructed
images were used as inputs in a convolutional neural network to generate the best classifier for predicting FHD.
Results The proposed FetalNet model increased the FHD prediction rate by approximately 25% in terms of ac-
curacy, sensitivity, and specificity and produced 100% predictive negative using unseen data.

Conclusions: The proposed deep learning model has the potential to identify FHD accurately and shows potential
for practical use in identifying congenital heart diseases in the future.

1. Introduction detection of fetal heart defects (FHDs) [2,3]. Inadequate fetal heart US

images were significantly more frequent in cases of undetected FHD

Heart defect identification in utero using ultrasound (US) is still
frequently missed in prenatal screening, which can result in severe
morbidity or even death. Screening programs in most developed coun-
tries have reported a detection rate of only 30%-60%, which varies
according to the type of cardiac defect and the sonographer’s skills [1].
A high volume of standard anomaly scans performed by each sonogra-
pher contributes significantly to the prenatal detection rate. Approxi-
mately 49% of missed cases are due to a lack of adaptive human skills
when performing a standard anomaly scan [2,3]. The quality of US
images also appears to play an important role in the success of prenatal

compared with cases in which FHD was detected [ 1,3]. However, in 20%
of undetected cases, FHDs are not visible, even though US images are of
adequate quality [4,5]. Therefore, the quality of US images obtained
from fetal heart screening during the second trimester's standard
anomaly scan should be improved to potentially increase the FHD
detection rate [6].

Prenatal screening most commonly uses a US device to perform
imaging modalities, given its non-ionizing radiation, low cost, non-
invasiveness, and convenience in use [3,5]. Despite these advantages,
there are major challenges to US, such as images having different tissue
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Table 1

Fetal echocardiography data to create FetalNet.
Process ASD AVSD VsD Normal total
Training 68 112 68 119 367
Testing 22 28 14 29 93
Unseen 10 10 10 10 40

contrast quality where the contrast available is low with imaging arte-
facts [3-6]. When an image is captured under insufficient light condi-
tions, low contrast, and low brightness, the pixel values are in a low
dynamic range, thereby causing the image quality to decrease. Given
that the whole echocardiogram appears very dark, it is difficult to
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clearly identify heart defects. Low contrast and visibility in US images
cause serious effects that can lead to an incorrect diagnosis. Removing
these degradations and transforming low-light US images into
high-quality, sharp images in fetal echocardiography is helpful to
improve the diagnosis and prognosis of FHDs [7,8]. Hence, it is neces-
sary to increase the quality of low-light US images in fetal echocardi-
ography before making a diagnosis.

Low-light image enhancement (LLIE) methods can help increase the
brightness, lightness, and contrast of medical images to improve inter-
pretation and visualization [8,9]. Many LLIE methods, mostly based on
histogram equalization (HE) techniques [10] and contrast-limited
adaptive HE (CLAHE), have been proposed and have achieved great
success [11]. They involve a global adjustment process without
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Fig. 2. Proposed FetalNet architecture CNN-based low-light image enhancement with a CNN classifier (DenseNet 201).




S. Sutarno et al

Table 2

CNN-based LLIE model with parameter selection to produce the best model.
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Adam optimizer, five layers, input size 300 = 300, reconstructed image size 350 x 250

Fetal echocardiography epoch 500 epoch 1000 epoch 2000
MSE SSIM PSNR MSE SSIM PSNR MSE S5IM PSNR
us1 22.65 0.96 31.93 1416 0.97 3295 18.11 097 33.02
usz2 19.02 0.95 31.94 13.91 0.97 3251 13.74 097 3392
us3 18.03 0.97 31.73 1593 0.97 3179 15.41 097 33.21
us 4 29.60 051 26.47 2545 0.93 27.49 25.28 093 714
uss 15.01 0.97 30.31 1259 0.97 29.60 11.72 097 30.74
nﬁi 26.42 0.93 26.28 2538 0.94 2718 24.69 095 715
Adam optimizer, seven layers, input size 250 » 250, reconstructed image 300 = 200
Fetal echocardiography epoch 500 epoch 1000 epoch 2000
MSE SSIM FSNR MSE SSIM PSNR MSE S5IM PSNR
us1 25.44 0.96 30.35 24.07 0.96 30.98 2275 0.96 3l.46
usz2 19.77 0.96 30.82 17.87 0.97 3193 1693 097 33.18
us3 23.84 0.94 28.31 2339 0.95 2879 22.39 095 29.68
us 4 29.46 0.69 25.27 2B.65 091 2549 779 091 2527
uss 18.15 0.97 30.31 1693 0.97 30,09 17.25 097 30.88
use 29.32 0.92 24.99 2831 0.93 2515 733 093 25.08
Table 3
Benchmarking for three enhancement models.
CNN model Retinex-Net model Autoencoder model
MSE SSIM PSNR MSE SSIM PSNR MSE SSIM PSNR
us1 18.12 0.97 33.02 38.51 0.69 27.68 47.77 0.78 2429
usz 13.74 0.97 33.92 44,22 0.69 26.55 37.87 0.84 24.57
us3 15.42 0.97 33.21 42.02 0.69 26.62 3772 0.84 24.52
us 4 25.28 093 27.14 30.12 0.85 26.21 39.15 0.70 21.63
uss 11.72 0.98 30.75 37.23 0.88 2415 35.59 0.86 7.36
use 24.70 0.95 27.15 34.99 0.85 24.27 37.61 0.72 21.06

considering the change in brightness, which is prone to local over-
exposure, color distortion, and poor denoising. These HE methods cause
serious color cast problems, and details in darkened areas will not be
properly enhanced in many cases [8]. Various image processing
methods exist to obtain images with stronger contrast and better
brightness; however, all these models produce complex mathematical
analysis [8].

The performance of an artificial intelligence (AI)-based medical
image analysis system varies significantly with respect to the quality of
images with simple algorithms [5,9]. Deep learning (DL)-based models
have shown promising performance in various medical imaging mo-
dalities [12-18]. In the past few decades, various algorithms have been
proposed to vary LLIE performance areas. DL-based convolutional
neural networks (CNNs) have achieved great success in LLIE results,
image super resolution, and other image-processing applications
[12-14,19-21]. CNNs introduce convolutional layers into LLIE and
achieve better results in terms of peak signal-to-noise ratio (PSNR) and
structural similarity index (SSIM).

Image enhancement models have been proposed to improve natural
image quality; however, the reconstructed images obtained in these
studies were not processed further. In the current study, reconstructed
fetal heart images were further processed in a classifier model. The feed-
forward learning approach based on convolutional layers is created to
leam low-to-high-resolution mapping and evaluate it on fetal heart
images. In summary, this study makes the following contributions:

» Developed a CNN-based LLIE architecture to enhance fetal heart
image quality;

» Proposed a stacked architecture, CNN-based LLIE, and CNN-based
classifier named “FetalNet" for improving the FHD prediction rate;

o Implemented the FetalNet model to predict three classes of
FHD—atrial septal defect (ASD), ventricular septal defect (VSD), and

atrioventricular septal defect (AVSD}—and one class of normal
condition; and

s Evaluated the proposed FetalNet model on unseen data to ensure
model robustness.

2. Material and method
2.1. Data preparation

Fetal US videos were taken from General Hospital Muhammad
Hoesin, Indonesia. The videos were recorded using a GE Voluson E6
with a loop length of 2-20 s, and the file size was approximately 890 KB
to 36.9 MB. The examination was assessed by US after an approximate
gestational (menstrual) age of 18-24 weeks. The US videos were
retrieved for retrospective analysis using the digital imaging and com-
munications in medicine (DICOM) format. For videos that had been
obtained previously, the next step was to convert videos into frames or
images and then resizing them to a resolution of 256 x 256 pixels. We
used 460 images to develop the FetalNet model with three FHD con-
ditions—ASD, VSD, and AVSD—and normal conditions (Table 1). The
learning process was conducted without data augmentation to maintain
the actual clinical condition. To prove the heart defect model's robust-
ness, we used two scenarios based on intra- and inter-patient (unseen)
data.

An increased depth indicates that a lower frequency is required for
optimal imaging. Consequently, the images have a lower resolution.
Over time, US machines have become more sophisticated, some of which
use the returning second-degree harmonic of the original frequency to
produce an improved image. However, they still produce low levels of
lightness, contrast, and brightness. Good image quality is fairly subjec-
tive and is also relative to the capabilities of the US machine. Samples of
raw US images on fetal echocardiography are depicted in Fig. 1. How-
ever, wall-chamber boundaries are difficult to see, particularly on




S. Sutarno et al

Low image from  Ground truth

ultrasound

Informatics in Medicine Unlocked 35 (2022) 101136

Reconstructed image

CNNs Retinex-Net Autoencoder

Fig. 3. Sample of a reconstructed image with three architectures: CNNs, Retinex-Net, and Autoencoder.

Table 4

Performance comparison with other LLE models based on DL
Model Implementation PSNR  SSIM  MSE
Super resolution CNN [20] Brain image 37.02 097 -
Deep convolutional network Natural image - 0.92 -

[21]

Deep Autoencoder [24] Natural image 2427 061 -
Super resolution CNN [25] Remote sensing image 2819  0.83 -
Proposed CNN-based LLIE Fetal 30.87  0.96 1816

echocardiography

difficult-to-image patients with much “noise” in the image.
Accordingly, LLIE, asa pre-processing step, is of significance and also
desired before predicting heart defects. The main difficulty in modeling
LLIE on fetal echocardiography is how to collect a set of training data.
Such a process relies on low- and high-resolution image pairs to train a
network in a fully supervised manner. Unfortunately, such image pairs
are unavailable in real-world applications, or the ground truth is un-
known. Therefore, we manually adjusted the contrast and brightness of
low-light US images using software at the upper and lower threshold
values for each pixel intensity [22]. By using such technigues,
high-quality fetal echocardiography was created as the ground truth.
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2.2, FetalNet architecture

The FetalNet model is an extension of LLIE with a predicted model of
a CNN classifier architecture. Our previous studies without the LLIE
model failed to predict FHD in unseen data [17]. However, this model
successfully predicted the wall chamber and aorta only under normal
conditions. To improve the FHD prediction rate, we developed the
FetalNet model in this study. The general methodology is depicted in
Fig. 2 and summarized as follows:

e Fetal echocardiography image enhancement was developed based on
a CNN-based LLIE model. Such architecture consisted of a convolu-
tion layer as an input, a convolutional module for multiscale learning
feature maps to produce an enhanced image, and a convolution layer
as an output. The convolution input layer was used to generate
uniform input data. The reconstruction module was used to learn the
raw image with different kemels to improve the image quality in
accordance with the image target that was prepared. The output
layer was fused with the feature map to generate the reconstructed
image.

The LLIE learning process used deep inception and residual networks
adopted from a previous study [16] or https://github.com/Best]
uly/LLCNN. However, in the current study, we simplified the ar-
chitecture with one layer of input data, five layers of reconstruction
modules, and one layer of output data.

The raw image size and the reconstructed image size were approxi-
mately 256 x 256 pixels. To increase US image quality, we used SSIM
loss as the objective function of th E network. SSIM loss is
denoted by 1— SSIM(p), where SSIM(p) is the SSIM that measures
pixel p, which is explained in Ref. [16]. The learning rate was
approximately 2 x 10 with an Adam optimizer. A batch size
ranging from 8 to 32 was used with epochs ranging from 500 to 2000
with an early stopping mechanism.

To achieve outstanding performance, the high-quality US image
target should have a PSNR value close to 35 dB and an SSIM value
close to 1. We benchmarked three LLIE backbones—CNNs, Retinex-
Net [23], and deep autoencoder [24]—to ensure the enhancement of
the image quality performance.

The output of the LLIE model was a reconstructed image used as an
input into the CNN classifier to predict FHDs. Eight CNN architec-
tures (ResNet 50, ResNet 121, DenseNet 102, DenseNet 201, VGG 19,
Xception, MobileNet, and MobileNetV2) were compared to select the
best FetalNet model evaluated only in unseen data.
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. 4. FetalNet model with eight classifiers’ architecture with unseen data.

All of the networks were implemented using Python and the Pytorch
1.7.1 library and trained using a computer with the following specifi-
cations: Intel® Core™ i9-9920X CPU @ 3.50 GHz processor with
490,191 MB RAM, GeForce 2080 RTX Ti by NVIDIA Corporation GV102
(rev al), and an Ubuntu 18.04.5 LTS operating system.

3. Result and discussion

This section addresses various experiments to demonstrate the
effectiveness of our approach. Comparisons with other methods are also
presented. Three LLIE backbone architectures were created (CNNs,
Retinex-Net, and Autoencoder) to enhance fetal echocardiography
image quality. Eight CNN classifiers were developed to increase the FHD
prediction rate.

3.1. CNN-based LLIE model performance

The PSNR value approaches infinity as the mean square error ap-
proaches zero. This shows that a higher PSNR value provides a higher
enhancement. At the other end of the scale, a small PSNR value implies
high numerical differences between the images. SSIM is a well-known
quality metric used to measure the similarity between two images. It
is designed by modeling any image distortion as a combination of the
following three factors: loss of correlation, luminance distortion, and
contrast distortion. The positive values of the SSIM index are in [0,1]. A
value of 1 indicates a high correlation between the image and vice versa.
Table 2 shows that our proposed model with 2000 epochs produced
good performance with PSNR from 27 dB to 33 dB and an SSIM from
0.93 to 0.91 (close to 1). This means that the a high correlation was
reached between the target and the reconstructed images.

Two CNN-based LLIE architectures were created based on five and
seven convolutional block layers to achieve the best enhancementmodel
(Table 2). The experimental results showed that the best LLIE archi-
tectures had an input size of 300 x 300, a reconstructed size of 350 x
250, a batch size of 8, and a leamning rate of 0.0001. The model used an
Adam optimization function with five convolutional block layers and
learning processes run on epoch 2000.

To verify our selected CNN-based LLIE model's effectiveness and
robustness, we benchmarked using the Retinex-Net model [23] and the
Autoencoder model [23]. The enhancement performance was compared
in terms of the MSE, SSIM, and PSNR. The results showed that the
proposed LLIE outperformed state-of-the-art models. Such a model
produced a high PSNR from 27.14 dB to 33 dB, all S5IMs of over 93%,
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Fig. 5. Confusion matrix FHD prediction with and without LUE in unseen data.

(1]

and all MSEs performed under 25% for six fetal heart US videos. All
metrics show that our LLIE performance achieved satisfactory results
(Table 3). This indicates that the error between the ground truth and the
reconstructed image was low. Our model produced an MSE of approxi-
mately 18.16, implying that the reconstructed image had been properly
restored. Furthermore, the quality of the restored image was improved.
Using the CNN-based LLIE reaches an SSIM of a reconstructed image to a
ground-truth image close to 1, indicating that the US image was
improved.

A sample of a reconstructed image using three LLIE architectures is
depicted in Fig. 3. Low fetal echocardiogram, as raw data from an US,
had lower lightness, brightness, and contrast. Ground truth data are
unavailable in real-world settings. We used layers in Python to manually
enhance fetal echocardiography to generate artificial, corresponding
ground truth images. By using brightness and contrast adjustment [22]
techniques, we improved fetal echocardiography at the upper and lower
threshold values for each pixel intensity. We made a fair comparison
with other DL architectures: Retinex-Net and the Autoencoder model.
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The LLIE in fetal echocardiography was an important process because
low-quality images can reduce the prediction rate. With CNN-based
LLIE, the quality can be improved in these three parameters. However,
the DL-based LLIE method has limited medical applications, as found in
the previous study. We benchmarked our proposed LLIE model with
state-of-the-art models in a low-light image application [20,21,24,25]
(Table 4). The proposed CNN-based LLIE architecture achieved better
performance based on learning to map directly from low-to high-quality
images, with 30.87 dB PSNR, 0.96 SSIM, and 18.16 MSE. This means
that our model could enhance the lightness, brightness, and contrast of
fetal echocardiography.

3.2, FetalNet prediction performance

In this study, reconstructed images from the LLIE model were used to
predict FHDs. The model performance was considered successful or
unsuccessful in classifying four classes (ASD, VSD, AVSD, and normal).
To ensure that the developed model was reliable, we used eight CNN
architectures: DensetNet 121, DenseNet 201, ResNet 50, ResNet 101,
MobileNet, MobileNetV2, VGG19, and Xception. Based on the quanti-
tative analysis indicators, FetalNet with DenseNet 201 architecture
produced better improvement than other CNN architectures. As shown
in Figs. 4 and 5, the whole architecture could obtain classification tasks
from images’ enhancements. However, the results of many methods
were not sufficient or satisfactory, especially in terms of specificity.

Based on the experiments, FetalNet architectures produce satisfac-
tory performances of approximately 90% in sensitivity, specificity, and
accuracy. With a confusion matrix, FetalNet was evaluated for four
classes: ASD, VSD, AVSD, and normal condition. DenseNet 201 pro-
duced a 100% predictive negative, whereas the proposed model could
predict all normal conditions (Fig. 5). All FHD conditions were suc-
cessfully predicted with unseen data, even for AVSD, and FetalNet with
DenseNet 201 improved the prediction rate by 7%-10%.

An end-to-end FetalNet model was proposed to obtain reconstructed
fetal echocardiography images from degraded low-light images. The
model was applied to classify the four classes of FHD. The limitation of
our proposed model was the limited number of fetal echocardiography
US images, and the unseen data only included eight videos. Neverthe-
less, the amount of data was sufficient for neural networks in general.
Therefore, the results were likely not significantly affected by the
number of individual fetuses. The CNN-based LLIE shows potential for
use in improving the quality of low-resolution and low-light images of
fetal echocardiography. Furthermore, our proposed model typically re-
quires only a few seconds for LLIE, thereby supporting US device inline
reconstruction for clinical applications.

4. Conclusion

Despite advancements in US imaging, the prenatal identification of
FHDs is still low, based on population studies. The complex anatomy of
the fetal heart, along with its small size and the diverse nature of fetal
heart abnormality, adds to the examination’s complexity. In addition,
the operator’s dependency on US, along with the variable position of the
fetus within the abdomen, results in a lack of standardization, consis-
tency, and reproducibility. The fetal heart is very small, and US exam-
inations need to pass through the maternal and fetal bodies, causing
higher noise and lower contrast in the images, making the examination
and diagnosis a challenge for even the most experienced physicians.
Hence, the enhancement of image quality is an important process to
improve reproducibility and consistency in fetal heart evaluation. We
proposed FetalNet for increasing image quality and FHD prediction
automatically based on obstetric and genecology practices. Our results
show that our proposed model has the ability to improve the FHD pre-
diction rate by 70% for new patients (unseen). We believe that fetal
heart examination using the DL technique will hopefully result in the
reproducibility and consistency of fetal echocardiography.
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