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Abstract

In this paper an initial-boundary value problem for a weakly nonlinear string (or wave)
equation with non-classical boundary conditions is considered. One end of the string is
assumed to be fixed and the other end of the string is attached to a dashpot system,
where the damping generated by the dashpot is assumed to be small. This problem can be
regarded as a simple model describing oscillations of flexible structures such as overhead
transmission lines in a windfield. An asymptotic theory for a class of initial-boundary
value problems for nonlinear wave equations is presented. It will be shown that the
problems considered are well-posed for all time t. A multiple time-scales perturbation
method in combination with the method of characteristics will be used to construct
asymptotic approximations of the solution. It will also be shown that all solutions tend
to zero for a sufficiently large value of the damping parameter. For smaller values of
the damping parameter it will be shown how the string-system eventually will oscillate.
Some numerical results are also presented in this paper.

Key words: Wave equation, galloping, boundary damping, asymptotics, two-timescales per-
turbation method.
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1 Introduction.

There are a number of examples of flexible structures (such as suspension bridges, overhead
transmission lines, dynamically loaded helical springs) that are subjected to oscillations due
to different causes. Simple models which describe these oscillations can be expressed in
initial-boundary value problems for wave equations like in [1, 2, 3, 4, 5, 6, 11, 19] or for
beam equations like in [7, 8, 9, 10, 18]. Simple models which describe these oscillations
can involve linear or nonlinear second and fourth order partial differential equations with
classical or non-classical boundary conditions. Some of these problems have been studied in
[1, 2, 3, 4, 5, 6, 7, 8] using a two-timescales perturbation method or a Galerkin-averaging
method to construct approximations.

In some flexible structures (such as an overhead transmission line or a cable of a suspen-
sion bridge) various types of wind-induced mechanical vibrations can occur. Vortex shedding
for instance causes usually high frequency oscillations with small amplitudes, whereas low
frequency vibrations with large amplitudes can be caused by flow-induced oscillations (gal-
loping) of cables on which ice or snow has accreted. These vibrations can give rise to for
instance material fatigue. To suppress these oscillations various types of dampers have been
applied in practice (see [18, 19]).

In most cases simple, classical boundary conditions are applied ( such as in [1, 4, 5, 6,
7, 8, 9]) to construct approximations of the oscillations. More complicated, non-classical
boundary conditions ( see for instance [2, 3, 10, 11, 12, 13, 14]) have been considered only for
linear partial differential equations. For nonlinear wave equations with boundary damping
the approximations have been obtained only numerically(see for instance [19]). In [19] it has
been shown that for large values of the damping parameter the solutions tend to zero. It
is, however, not clear how and for what values of the damping parameter the solutions will
tend to zero (or not). In this paper we will study an initial-boundary value problem for a
weakly nonlinear partial differential equation for which one of the boundary conditions is of
non-classical type. It will also be shown in this paper that the use of boundary damping
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F igure 1. A simple model of an aero-elastic oscillator.

can be used effectively to suppress the oscillation-amplitudes. Asymptotic approximations of
the solution will be constructed. In fact we will consider the nonlinear vibrations of a string
which is fixed at x = 0 and is attached to a dashpot system at x = π (see also Figure 1).
This problem can be considered as a simple model to describe wind-induced vibrations of an
overhead transmission line or a bridge (see [6, 7]). To our knowledge the use of boundary
damping and the explicit construction of approximations of oscillations (which are described
by a nonlinear PDE) have not yet been investigated deeply. The aim of this paper is also
to give a contribution to the foundations of the asymptotic methods for weakly nonlinear
hyperbolic partial differential equations with boundary damping. The outline of this paper is
as follows. In section 2 of this paper a simple model of the galloping oscillations of overhead
transmission lines will be discussed briefly. The following initial - boundary value problem
for the function u(x, t) will be obtained:

utt − uxx = ε

(

ut −
1

3
u3

t

)

, 0 < x < π, t > 0, (1)

u(0, t) = 0, t ≥ 0, (2)

ux(π, t) = −εαut(π, t), t ≥ 0, (3)

u(x, 0) = φ(x), 0 < x < π, (4)

ut(x, 0) = ψ(x), 0 < x < π, (5)

where ε is a small parameter, and where α is a non-negative constant. For Dirichlet boundary
conditions a similar problem has been considered in [4, 6], and in a suitable Banach space it
has been shown in [4, 6] that a unique solution exists on a time-scale of order 1

ε . In section
3 of this paper it will be shown for the initial-boundary value problem (1) - (5) (and for
more general problems) that global existence of the solution (that is, the solution exists for
all time) can be obtained in a suitable Hilbert space. In section 4 of this paper a two-time-
scales perturbation method in combination with the method of characteristic coordinates
will be used to construct formal approximations of the solution of the initial-boundary value
problem (1) - (5). It will also be shown in section 4 that for α ≥ π

2 all solutions tend to zero
(up to O(ε)), and that for 0 < α < π

2 the solutions (depending on the initial values) tend to
bounded functions. In section 5 the asymptotic validity of the constructed approximations
is proved. It will turn out in section 4 that only for rather simple initial values (for instance
for monochromatic initial values) approximations can be constructed explicitly, and that for
more complicated initial values numerical calculation have to be performed. For that reason
some numerical results are presented in section 6. Finally in section 7 of this paper some
remarks will be made and some conclusions will be drawn.
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2 A simple model of the galloping oscillations of over-

head transmission lines

In this section we will briefly derive a model which describes the galloping oscillations of an
overhead conductor line in a windfield. For complete details the reader is referred to [6]. As is
well-known galloping is a large amplitude, low frequency, almost purely vertical oscillation of
a single conductor line on which ice or snow has accreted. Depending on how the ice or snow
has accreted the cable can become aerodynamically unstable. Since the frequency is low a
quasi-steady aerodynamic approach can be used. It will be assumed that the conductor line
(string) is inextensible and of length l.
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F igure 2. A simple model of an aero-elastic oscillator.

A typical cross-section is depicted in Figure 2. It is assumed that ρ ( the mass-density
of the string per unit length), T (the tension in the string), α̃(the damping coefficient of the
dashpot) are all positive constants. Moreover, we only consider the vertical displacement
ũ(x, t) of the string in z-direction, where x is the place along the string, and t is time. We
neglect internal damping and bending stiffness of the string and consider the weight W of
the string per unit length to be constant (W = ρg , g is the gravitational acceleration). We
consider a uniform windflow, which causes nonlinear drag and lift forces (FD, FL) to act on
the structure per unit length. Here the drag force DeD has the direction of the virtual wind
velocity vs = v∞ − ũtez, where v∞ is the windflow velocity in y direction, and the lift force
LeL has a direction perpendicular to the virtual wind velocity vs. The angle α is given by

α = αs + φ = αs + arctan(− ũt

v∞
), (6)

where αs is the static angle of attack which is assumed to be constant and identical for all
cross-sections, and where φ ≤ π. The influence of the geometrical nonlinearities of the string
are assumed to be small (compared to the windforces) and will be neglected in this paper (see
[6]). The equation describing the vertical displacement of the string is:

ρũtt − T ũxx = −ρg + FD + FL, (7)

with boundary conditions

ũ(0, t) = 0 and T ũx(l, t) + α̃ũt(l, t) = 0, t ≥ 0. (8)

In [6] it has been shown that FD + FL can be approximated by

ρadv
2
∞

2

(

a0 +
a1

v∞
ũt +

a2

v2
∞

ũ2
t +

a3

v3
∞

ũ3
t

)

, (9)
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where ρa is the density of the air, d is the diameter of the cross-section of the string, v∞ is
the uniform windflow velocity, and the coefficients a0, a1, a2, a3 are given explicitly in [6] and
depend on certain drag and lift coefficients. To simplify the initial-boundary value problem
for ũ(x, t) we introduce the following transformation

ũ(x, t) = ū(x, t) + g
ρ

T
us(x), (10)

where us(x) = 1
2x

2 − lx is the stationary (that is, time-independent) solution (due to gravity)
of the initial-boundary value problem, and satisfies

u′′s (x) − 1 = 0 0 < x < l, (11)

us(0) = u′s(l) = 0. (12)

Then, we also introduce the following dimensionless variables x̄ = π
l x, t̄ = ct, v(x̄, t̄) =

c
v∞
ū(x, t), with c = (π/l)

√

T
ρ . In this way equation (7) becomes

vt̄t̄ − vx̄x̄ =
ρad

2ρ

v∞
c

(

a0 + a1vt̄ + a2v
2
t̄ + a3v

3
t̄

)

. (13)

Now we assume that the windvelocity v∞ is small with respect to the wave speed c, that is,
ε̃ = v∞

c is a small parameter. Following the analysis as given in [6] it can be shown that the

right-hand side of equation (13) up to order ε̃ is equal to ρad
2ρ ε̃(avt̄ − bv3

t̄ ), where a and b are
positive constants which depend on the drag and lift coefficients and which are also given

explicitly in [6]. Using the transformation u(x̄, t̄) =
√

3b
a v(x̄, t̄), putting ε = ρad

2ρ aε̃ it follows

that (13) becomes the so-called Rayleigh wave equation ut̄t̄ − ux̄x̄ = ε
(

ut̄ − 1
3u

3
t̄

)

, where ε
is a small dimensionless parameter. Finally it is assumed that the damping coefficient α̃
is small, that is, we assume that α̃ = εα

√

ρ/T . In this paper we will study the following
initial-boundary value problem for u(x, t) (for convenience we will drop all the bars):

utt − uxx = ε

(

ut −
1

3
u3

t

)

, 0 < x < π, t > 0, (14)

u(0, t) = 0, t ≥ 0, (15)

ux(π, t) = −εαut(π, t), t ≥ 0, (16)

u(x, 0) = φ(x), 0 < x < π, (17)

ut(x, 0) = ψ(x), 0 < x < π, (18)

where φ and ψ are the initial displacement and the initial velocity of the string respectively,
and where α is a positive constant, and where 0 < ε � 1. In the next section the well-
posedness of the initial-boundary value problem (14) - (18) will be investigated.

3 The wellposedness of the problem

In this section we will consider the following initial-boundary value problem

utt − uxx = cut − σ(ut), 0 < x < π, t > 0, (19)

u(0, t) = 0, t ≥ 0, (20)

ux(π, t) = −αut(π, t), t ≥ 0, (21)

u(x, 0) = u0(x), 0 < x < π, (22)

ut(x, 0) = u1(x), 0 < x < π, (23)
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where c, and α are positive constants, where σ is a monotonic increasing and continuous
function with σ(0) = 0, and where u0 and u1 have to satisfy certain regularity conditions,
which will be given later. It will be shown that the initial-boundary value problem (19) -
(23) is well-posed for all times t > 0. To show the well-posedness of the problem a semigroup
approach will be used. The following theorem will be used.

Theorem 3.1. Let (E,<,>) be a real Hilbert space, B : E −→ E be Lipschitz, and A :
D(A) ⊆ E −→ E. The abstract Cauchy problem

dz

dt
(t) = Az +Bz, z(0) = z0 ∈ D(A) (24)

has a unique solution z ∈ D(A) for all t > 0 with z(0) = z0, if A is a dissipative operator and

if there exists a positive constant λ such that the range R(λI −A) = E.

This theorem is a slight modification of the theorem of Kato (see [24]). Let c > 0 be a
Lipschitz constant. It is easy to see that B−c.I , where I is an identity operator, is dissipative
and Lipschitz and therefore it is m− dissipative. From the m-dissipativity of A and B − c.I
it follows that A + B − c.I is m-dissipative. To complete the proof we now can apply the
theorem of Kato which can be found for instance in [4, page 180]. Moreover, if z : [0, T ] −→ E
is the solution of (24) then the solution z is Lipschitz continuous and right-differentiable with
z ∈ D(A).

To prove global existence of the problem (19)-(23) we will make use of theorem 3.2.
For that reason the initial-boundary value problem (19)-(23) will be put into an abstract
Cauchy problem by introducing some new variables and spaces. Let us define v = u(., t), w =
ut(., t), H

1
0 = {v ∈ H1; v(0) = 0} and H := {z = (v, w) ∈ H1

0 ([0, π]) × L2([0, π])} with the
innerproduct

< z, z̃ > =

∫ π

0

(vxṽx + ww̃) dx (25)

= < v, ṽ >1 + < w, w̃ >2 . (26)

It can be readily be seen that the vector space H together with the inner-product (25) forms
a real Hilbert space. Next, we define a subspace D(A) of H, a linear operator B on H, and a
nonlinear operator A on D(A) as follows;

D(A) := {z = (v, w) ∈ H2 ∩H1
0 ([0, π]) ×H1

0 ([0, π]); vx(π) + αw(π) = 0}, (27)

Bz = (0, cw)T , Az = (w, vxx − σ(w))T . It should be observed that the boundary conditions
in (20) and (21) are included in the space D(A). Now we differentiate z with respect to t
according to the following rule dz

dt = (vt, wt). It follows from the definition of A and B that

dz

dt
(t) = Az +Bz, z(0) = z0 ∈ D(A), (28)

where z0 = (u0, u1). It should be observed that the operator B is linear, and so it satisfies
the Lipschitz condition automatically (with a Lipschitz constant c). To show the solvability
of the abstract Cauchy problem (28) according to theorem 3.4 we only need the following
lemma.

Lemma 3.1. Let the functional σ be monotonic increasing and continuous with σ(0) = 0,
and let (u0, u1) ∈ H2([0, π]) ∩ H1

0 ([0, π]) × H1
0 ([0, π]) with u′0(π) + αu1(π) = 0. Then the

nonlinear operator A is m-dissipative on H, and D(A) is dense in H.

Proof. To prove this lemma we have to show that A is dissipative, and that the range of
λI − A is equal to H for a λ > 0. Firstly we show that A is a dissipative operator. Let
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z, z̃ ∈ D(A). A straightforward computation shows that (using the fact that σ is monotonic
increasing)

< Az −Az̃, z − z̃ > =

∫ π

0

[(w − w̃)x (v − ṽ)x + ((v − ṽ)xx + σ(w̃) − σ(w)) (w − w̃)] dx

= −α(w(π) − w̃(π))2 −
∫ π

0

(σ(w) − σ(w̃))(w − w̃)dx ≤ 0. (29)

So we have shown that the nonlinear operator A is a dissipative operator. Secondly for any
z0 ∈ H with z0 = (g, h) we will show that there exists a z ∈ D(A) such that

(I −A)z = z0, (30)

or equivalently

v = w + g, (31)

w = vxx − σ(w) + h, (32)

v(0) = 0, vx(π) + αw(π) = 0. (33)

Let us assume that g ∈ H2 ∩H1
0 . Then it follows that

y = yxx − σ(y) + f, (34)

y(0) = 0, yx(π) + αy(π) = −gx(π), (35)

where f = h+ gxx ∈ L2 and where y = v− g. To show that the boundary-value problem (34)
- (35) is solvable we will apply a variational method by introducing the functionals <,>, ϕ
and J from H1

0 ([0, π]) into R which are defined by

< y, y > =

∫ π

0

(

(y′)2 + y2
)

dx, ϕ(y) =

∫ π

0

fydx, (36)

J(y) =

∫ π

0

j(y)dx+
α

2

(

y(π) +
1

α
gx(π)

)2

, (37)

where j(s) =
∫ s

0
σ(ξ)dξ with s ∈ R. For y ∈ H1

0 we define the functional I(.) by

I(y) =
1

2
< y, y > −ϕ(y) + J(y). (38)

It is clear that the functional I is continuous. From the monotonic increasing σ it folows
that the functional I is coercive. Next to see that I is convex it enough to show that the
functional j is convex. Let a, b ∈ R with a ≤ b. For any λ ∈ (0, 1) it is easy to see that
a < (1 − λ)a + λb < b. By using the mean value theorem and the fact that σ is monotonic
increasing it follows that j((1 − λ)a + λb) ≤ (1 − λ)j(a) + λj(b). From convexity, coercivity,
and continuity of I it follows that there exists a unique ȳ ∈ H1

0 such that I(ȳ) ≤ I(y) for all
y ∈ H1

0 . Now for arbitrary y ∈ H1
0 we define φ : R −→ R by

φ(t) := I(ȳ + ty). (39)

Since φ is continuously differentiable and φ(0) is minimal it follows that ȳ ∈ H2 and satisfies

∫ π

0

(ȳ − ȳ′′ + σ(ȳ) − f) ydx+ (ȳ′(π) + αȳ + gx(π)) y(π) = 0. (40)

We have to notice that the equation (40) holds for every y ∈ H1
0 . So ȳ is the solution of the

boundary value problem (34)-(35) in the sense of distributions.
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Now let us assume that g ∈ H1
0 . Then there exists a sequence gn in H2 ∩ H1

0 such that
gn −→ g in H1. For all n ∈ N

+ there is a unique zn = (vn, wn) ∈ D(A) such that

vn = wn + gn, (41)

wn = vnxx
− σ(wn) + h, (42)

vn(0) = 0, vnx
(π) + αwn(π) = 0. (43)

Since A is a dissipative operator on H an a-priori estimate can be obtained, that is,

‖ zn − zm ‖H≤‖ fn − fm ‖H, (44)

where fn = (gn, h)
T ∈ H. From (44) it follows that {vn} and {wn} are Cauchy sequences in

H1 and L2 respectively. Moreover, (H1, <,>1) and (L2, <,>2) are complete implying that
there are v̄ ∈ H1 and w̄ ∈ L2 such that vn −→ v̄ and wn −→ w̄. Furthermore, {vn} is
also a Cauchy sequence in C0 with maximum norm. Therefore we obtain v̄ ∈ H1

0 . From the
continuity of σ it follows from (41) and (42) for n −→ ∞ that

wn = vn − gn −→ v̄ − g = w̄ ∈ H1
0 , (45)

and
vnxx

= wn + σ(wn) − h −→ w̄ + σ(w̄) − h ∈ L2. (46)

Next we will show that v̄ ∈ H2 ∩H1
0 and that vnxx

converges to v̄xx. Since vn is in H2 it
follows that there are positive constants c1 and c2 such that

‖ (vn − vm)′ ‖L2≤ c1 ‖ vn − vm ‖L2 +c2 ‖ (vn − vm)′′ ‖L2 . (47)

It can readily be seen from (47) that v′n −→ v̄′ in L2. For n −→ ∞ it follows from
∫ π

0
v′nϕ

′dx =

−
∫ π

0 v′′nϕdx (for arbitrary ϕ ∈ H2 where ϕ vanishes for x = 0 and π) that
∫ π

0 v̄′ϕ′dx =

−
∫ π

0 (w̄ + σ(w̄) − h)ϕdx. So, v̄ ∈ H2, and v̄′′ = w̄ + σ(w̄) − h in L2 with v̄(0) = 0. It
also follows from (46) that vnxx

−→ v̄′′ in L2. Finally we have to show that v̄, w̄ satisfy the
boundary conditions (33). To show this we integrate (42) once, yielding

vnx
(x) = −

∫ π

x

(wn + σ(wn) − h)dx − αwn(π). (48)

It can also be shown that wn −→ w̄ uniformly in C0([0, π]) with the maximum norm. Again
by using the continuity of σ and the Lebesgue Monotone Convergence Theorem it follows
from (48) that

v̄x(x) = −
∫ π

x

(w̄ + σ(w̄) − h)dx− αw̄(π). (49)

We deduce from (45) and (49) that for any z0 ∈ H there is z ∈ D(A) such that the equations
(31)-(33) hold. This completes the proof of the lemma.

Remark 3.1. From the theorem of Kato it follows that the unique solution z : [0, T ] −→
H is absolutely continuous. Moreover, the solution z is Lipschitz continuous and right-
differentiable, and when the initial values u0 and u1 satisfy the conditions as given in Lemma
3.1 it also follows (observing that v(t) = u(·, t), w(t) = ut(·, t)) that

u ∈ L∞
(

[0, T ];H2([0, π])
)

∩W 1,∞
(

[0, T ];H1([0, π])
)

∩W 2,∞
(

[0, T ];L2([0, π])
)

. (50)

From (50) it also follows that

utt, uxx, uxt ∈ L∞
(

[0, T ];L2([0, π])
)

. (51)
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Basically the solution u is more regular in time. In fact if we consider the following ACP

dz

dt
= Az + f(t), z(0) = z0 ∈ D(A) (52)

where f(t) = (0, cut − σ(ut))
T ∈ W 1,1([0, T ];H) it can be shown (see for instance [26] and

[27] page 400) the solution of (52) is in C1([0, T ];H) ∩ C([0, T ];D(A)). It follows that

utt, uxx, uxt ∈ C
(

[0, T ];L2([0, π])
)

. (53)

Remark 3.2. Alternatively we can also study the problem by using different variables
and spaces. By defining the following variables v = ux(., t), w = ut(., t), and the space
H := {z = (v, w) ∈ L2([0, π]) × L2([0, π])} with the innerproduct

< z, z̃ >=

∫ π

0

(vṽ + ww̃) dx (54)

the initial-boundary value problem (19)-(23) can be transformed into an abstract Cauchy
problem with the operators Bz = (0, cw), Az = (wx, vx − σ(w)), and

D(A) = {z = (v, w) ∈ H1([0, π]) ×H1([0, π]);w(0) = 0, v(π) + αw(π) = 0}. (55)

With these operators the following abstract Cauchy problem

dz

dt
(t) = Az +Bz, z(0) = z0 ∈ D(A), (56)

will be obtained. Again it can be shown that the solution u of the initial-boundary value
problem is unique and satisfies for instance the regularity properties

utt, uxx, uxt ∈ C
(

[0, T ];L2([0, π])
)

. (57)

By imposing more regularity conditions on the initial values it can be shown that the initial-
boundary value problem (19)-(23) has a unique, classical solution. The long proof of this
result is beyond of the scope of this paper, but will be published in a forthcoming paper.

Now we consider the following abstract Cauchy problem

dz

dt
= Az +Bz + f(t), z(0) = z0 ∈ D(A), (58)

where A and B satisfy the conditions as stated in theorem 3.2 and where f is continuous. By
making use of the dissipativity of A + B − cI (with c a Lipschitz constant) and by putting
Ã = A+B − cI , and then by using (58) it follows that

dz

dt
= Ãz + cz + f(t), z(0) = z0 ∈ D(Ã). (59)

As property of the pseudo-scalar product (see for instance [25], page 185) it is standard to
show that

d

dt
(‖ u ‖2) = 2 <

dz

dt
, z > . (60)

Suppose that z1 and z2 are solutions of (28) and (58) respectively with f ∈ L1([0, T ];H) and
with the initial values z01 , z02 ∈ D(A). By making use of (28), (59), and (60) it then follows
that

d

dt
(e−2ct ‖ z2 − z1 ‖2) = 2e−2ct < f, z2 − z1 > . (61)
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By integrating (61) from 0 to t and by using Gronwall’s inequality the following estimate can
be obtained

‖ z1(t) − z2(t) ‖≤ ect ‖ z01 − z02 ‖ +

∫ t

0

ec(t−τ) ‖ f ‖ dτ, 0 ≤ t ≤ T. (62)

We refer to [24, page 182-183] for the details of the proof. It follows from (62) that the solution
of the abstract Cauchy problem (24) depends continuously on the initial values. Moreover,
the estimate as given by (62) will be used in section 5 of this paper to prove the asymptotic
validity of the approximation as constructed in section 4.

4 The construction of approximations.

In this section formal approximations of the solution of the nonlinear initial-boundary value
problem (14) - (18) will be constructed for different values of the damping parameter α. To
obtain insight we will first study in section 4.1 the linearized problem, that is, in (14) we will
first neglect the nonlinear term − ε

3u
3
t . It will turn out for the linearized problem that for

α > π
2 all solutions will tend to zero, whereas for 0 < α < π

2 the solutions of the linearized
problem will become unbounded. The nonlinear problem (14) - (18) will be studied in detail
in section 4.2. It will turn out in section 4.2 that for α ≥ π

2 all solutions tend to zero, and
that for 0 ≤ α < π

2 the solutions tend to bounded solutions.

4.1 The linearized problem

In this section we will study the linearized problem (14) - (18), that is,

utt − uxx − εut = 0, 0 < x < π, t > 0, (63)

u(0, t) = 0, t ≥ 0, (64)

ux(π, t) + εαut(π, t) = 0, t ≥ 0, (65)

u(x, 0) = φ(x), 0 < x < π, (66)

ut(x, 0) = ψ(x), 0 < x < π. (67)

To solve the problem (63) - (67) the Laplace transform method will be used. By introducing

U(x, t) =

∫ ∞

0

e−stu(x, t)dt, (68)

it follows that the initial-boundary value problem (63)-(67) becomes

d2U

dx2
− (s2 − εs)U = −ψ(x) − (s− ε)φ(x), 0 < x < π, s > 0, (69)

U(0, s) = 0, s > 0, (70)

dU

dx
(π, s) + εαsU(π, s) = εαφ(π), s > 0. (71)

In the further analysis it is convenient to put δ2 = s2 − εs in (69). The following three cases
have to be considered: δ2 > 0, δ2 < 0, and δ2 = 0. However, the case δ2 = 0 only leads to the
trivial solution. For that reason only the case δ2 > 0 and the case δ2 < 0 have to be studied.

4.1.1 The case δ2 > 0.

The solution of the boundary value problem (69)-(71) with δ2 > 0 is given by

U(x, s) = C(s) sinh(δx) − 1

δ

∫ x

0

h(z, s) sinh(δ(x− z))dz, (72)
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where h(z, s) = ψ(z) + (s− ε)φ(z) and

C(s) =

∫ π

0 h(z, s)
(

εαs
δ sinh(δ(π − z)) + cosh(δ(π − z))

)

dz

εαs sinh(δπ) + δ cosh(δπ)

+
εαφ(π)

εαs sinh(δπ) + δ cosh(δπ)
. (73)

To obtain the solution of the initial-boundary value problem (63)-(67) we have to take the
inverse Laplace transform of U , that is,

u(x, t) =
1

2πi

∫ γ+i∞

γ−i∞

eztU(x, z)dz, (74)

where γ is positive. It should be observed that z = 0 or z = ε (or δ = 0) are not poles. The
poles of (73) are given by

εαz sinh(δπ) + δ cosh(δπ) = 0 with δ2 = z2 − εz, (75)

or equivalently by

exp(2πδ) = − (δ − εαz)

(δ + εαz)
with δ2 = z2 − εz, (76)

and with δ 6= 0. It can be shown (for instance by using Hadamard‘s factorization theorem)
that (76) has infinitely many isolated roots which all have a geometric multiplicity equal to
one. It is also obvious that (76) is hard to solve exactly for ε 6= 0. However, it can be solved
exactly if ε = 0. For that reason the solutions of (76) will be approximated by expanding z
and δ in power series in ε. It will be convenient to put δ = δ0 + iδ1 and z = σ0 + iσ1 with
δ0, δ1, σ0 and σ1 ∈ R. Then by separating the real part and the imaginary part of (76) it
follows that

e2πδ0 cos(2πδ1) = − (δ0 − εασ0)(δ0 + εασ0) + (δ1 − εασ1)(δ1 + εασ1)

(δ0 + εασ0)2 + (δ1 + εασ1)2
, (77)

e2πδ0 sin(2πδ1) = − (δ0 − εασ0)(δ1 + εασ1) + (δ1 − εασ1)(δ0 + εασ0)

(δ0 + εασ0)2 + (δ1 + εασ1)2
. (78)

It is assumed that z and δ can be expanded in power series in ε, that is,

δ0 = δ00 + εδ01 + ε2δ02 + . . . , δ1 = δ10 + εδ11 + ε2δ12 + . . . , (79)

σ0 = σ00 + εσ01 + ε2σ02 + . . . , σ1 = σ10 + εσ11 + ε2σ12 + . . . . (80)

It follows from (79), (80), δ2 = z2 − εz, and by taking terms of equal powers in ε together
that

δ200 + σ2
10 − δ210 − σ2

00 = 0, (81)

2δ00δ01 − 2δ10δ11 − 2σ00σ01 + 2σ10σ11 + σ00 = 0, (82)

2δ00δ02 + σ01 − δ211 − 2δ10δ12 + δ201 + σ2
11 + 2σ10σ12 − 2σ00σ02 − σ2

01 = 0, · · · (83)

and

−2σ00σ10 + 2δ00δ10 = 0, (84)

2δ00δ11 + 2δ10δ01 − 2σ00σ11 − 2σ10σ01 + σ00 = 0, (85)

−2σ00σ12 + 2δ01δ11 + 2δ10δ02 − 2σ01σ11 − 2σ10σ02 + 2δ00δ12 + σ01 = 0, · · · . (86)
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To approximate z and δ (77) and (78) are then expanded in power series in ε. By taking
terms of equal powers in ε together in (77) and (78), and by using (81)-(86) it then can be
deduced that

σ00 = 0, σ01 =
1

2
− α

π
, σ02 = 0, (87)

σ10 = δ10, σ11 = 0, σ12 =
1

2σ10

(

α

π
− 1

4

)

, σ13 = 0, (88)

δ00 = 0, δ01 = −α
π
, δ02 = 0, δ03 =

α

24π2σ2
10

(3π + 12α− 8α2πσ2
10), (89)

δ10 = n− 1

2
, δ11 = 0, δ12 =

α

2πσ10
, σ13 = 0, · · · . (90)

After approximating the roots of (75) we can approximate the solution of (74). For instance,
if we approximate the roots (poles) up to order ε it now follows from the theorem of residues
that an approximation of the solution is given by

u(x, t) ≈ − 2

π
eσ01t

∞
∑

n=1

∫ π

0

(

φ(τ)[. . .]1 +
1

σ2
01 + σ2

10

(ψ(τ) − εφ(τ)) (σ01[. . .]1 + σ10[. . .]2)

)

dτ

+
2εαφ(π)

π(1 − (εα)2)
eσ01t

∞
∑

n=1

[. . .]3[. . .]5 + [. . .]4[. . .]6

([. . .]5)
2 + ([. . .]6)

2 , (91)

where

[. . .]1 = R(x, t) cos(δ10τ) sinh(δ01τ) − T (x, t) sin(δ10τ) cosh(δ01τ), (92)

[. . .]2 = R(x, t) sin(δ10τ) cosh(δ01τ) + T (x, t) cos(δ10τ) sinh(δ01τ), (93)

[. . .]3 = cos(σ10t) cos(δ10τ) sinh(δ01τ) − sin(σ10t) sin(δ10τ) cosh(δ01τ), (94)

[. . .]4 = cos(σ10t) cos(δ10τ) sinh(δ01τ) + sin(σ10t) sin(δ10τ) cosh(δ01τ), (95)

[. . .]5 = σ01 cos(δ10π) sinh(δ01π) − σ10 sin(δ10π) cosh(δ01π), (96)

[. . .]6 = σ10 cos(δ10π) sinh(δ01π) + σ01 sin(δ10π) cosh(δ01π), (97)

with

R(x, t) = cos(δ10x) sinh(δ01x) cos(σ10t) − sin(δ10x) cosh(δ01x) sin(σ10t), (98)

T (x, t) = sin(δ10x) cosh(δ01x) cos(σ10t) + cos(δ10x) sinh(δ01x) sin(σ10t). (99)

It should be noted from (91) that if α > π
2 the solution u(x, t) will tend to zero (up to

O(ε)) as t tends to infinity, and that if α < π
2 the solution u(x, t) of the linearized problem

will tend to infinity as t tends to infinity.

4.1.2 The case δ2 < 0.

By putting δ = iρ, it follows that the solution of the boundary value problem (69)- (71) is
given by

U(x, s) = C(s) sin(ρx) − 1

ρ

∫ x

0

h(z, s) sinh(ρ(x− z))dz, (100)

where h(z, s) = ψ(z) + (ε− s)φ(z) and

C(s) =

∫ π

0 h(τ, s)
(

εαs
ρ sin(ρ(π − τ)) + cos(ρ(π − τ))

)

dτ + εαφ(π)

εαs sin(ρπ) + ρ cos(ρπ)
. (101)
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To obtain the solution of the initial-boundary value problem (63)-(67) we again take the
inverse Laplace transform of U , that is,

u(x, t) =
1

2πi

∫ γ+i∞

γ−i∞

estU(x, z)dz, (102)

where γ is positive. It should be observed that z = 0 or z = ε (or ρ = 0) are not poles. The
poles of (102) are given by

εαz sin(ρπ) + ρ cos(ρπ) = 0, with − ρ2 = z2 − εz. (103)

By putting ρ = ρ0 + iρ1 and z = σ0 + iσ1 with ρ0, ρ1, σ0, and σ1 ∈ R, and by using the
following relations

sin(z) = sin(σ0) cosh(σ1) + i cos(σ0) sinh(σ1), (104)

cos(z) = cos(σ0) cosh(σ1) − i sin(σ0) sinh(σ1) (105)

it can be shown (by separating the real part and the imaginary part) that (103) is equivalent
to the following equations

e2πρ1 cos(2πρ0) = − (ρ0 − εασ1)(ρ0 + εασ1) + (ρ1 − εασ0)(ρ1 − εασ0)

(ρ0 − εασ1)2 + (ρ1 + εασ0)2
, (106)

e2πσ sin(2πρ0) = − (ρ1 + εασ0)(ρ0 + εασ1) − (ρ0 − εασ1)(ρ1 − εασ0)

(ρ0 − εασ1)2 + (ρ1 + εασ0)2
, (107)

where ρ0, ρ1, σ0 and σ1 are related by

σ2
1 − σ0(σ0 − ε) = ρ2

0 − ρ2
1 and σ1(ε− 2σ0) = 2ρ0ρ1. (108)

We should observe ( noticing that δ = iρ) that the equations (103) -(107) and (75)-(78) are
equivalent. In fact it can be shown that the approximate solutions for δ2 > 0 and for δ2 < 0
are coinciding.

4.2 The nonlinear problem

Now we consider the nonlinear initial-boundary value problem (14) - (18). A straightforward
perturbation expansion u0(x, t) + εu1(x, t) + . . . will cause secular terms. For that reason a
two-timescales perturbation method (see [15, 16, 17]) will be used in this section to construct
formal asymptotic approximations for the solution of the initial-boundary value problem (14) -
(18). We will encounter some computational difficulties whenever we assume an infinite series
representation for the solution of the nonlinear initial-boundary value problem (14) - (18).
To avoid these difficulties we will use additionally the method of characteristic coordinates
to approximate the solution. By using a two-timescales perturbation method the function
u(x, t) is supposed to be a function of x, t, and τ , where τ = εt. We put

u(x, t) = v(x, t, τ ; ε). (109)

By substituting (109) into the initial-boundary value problem (14) - (18) we obtain

vtt − vxx = −2εvtτ + ε

(

vt + εvτ − 1

3
(vt + εvτ )3

)

− ε2vττ , 0 < x < π, t > 0, (110)

v(0, t, τ ; ε) = 0, t ≥ 0, (111)

vx(π, t, τ ; ε) = −εα (vt(π, t, τ) + εvτ (π, t)) , t ≥ 0, (112)

v(x, 0, 0; ε) = φ(x), 0 < x < π, (113)

vt(x, 0, 0; ε) = −εvτ (x, 0, 0; ε) + ψ(x), 0 < x < π. (114)
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Then v is expanded into a power series with respect to ε around ε = 0, that is,

v(x, t, τ ; ε) = vo(x, t, τ) + εv1(x, t, τ) + · · · . (115)

As usual it is assumed that v, v0, v1, · · · are of order one on a time-scale of order ε−1. By
substituting (115) into (110)-(114), and by equating the coefficients of like powers in ε, it
follows from the power 0 and 1 of ε respectively, that v0 should satisfy

vott
− voxx

= 0, 0 < x < π, t > 0, (116)

vo(0, t, τ) = 0, vox
(π, t, τ) = 0, t ≥ 0, (117)

vo(x, 0, 0) = φ(x), 0 < x < π, (118)

vot
(x, 0, 0) = ψ(x), 0 < x < π, (119)

and that v1 should satisfy

v1tt
− v1xx

= vot
− 2votτ

− 1

3
v3

ot
, 0 < x < π, t > 0, (120)

v1(0, t, τ) = 0, v1x
(π, t, τ) = −αvot

(π, t, τ) t ≥ 0, (121)

v1(x, 0, 0) = 0, 0 < x < π, (122)

v1t
(x, 0, 0) = −voτ

(x, 0, 0), 0 < x < π. (123)

We will solve the initial-boundary value problem (116) - (119) by using the characteristic
coordinates δ = x−t and ξ = x+t. The initial-boundary value problem (116) - (119) then has
to be replaced by an initial value problem. This can be accomplished by extending all functions
in 4π- periodic function in x which are odd and even around at x = 0 and at x = π respectively.
It then follows that the solution of the initial-boundary value problem (116) - (119) is given by
v0(x, t, τ) = f0(σ, τ)+g0(ξ, τ), where σ = x− t, and ξ = x+ t. Applying the initial conditions
(118) - (119) it also follows that f0 and g0 have to satisfy f0(σ, 0) + g0(σ, 0) = φ(σ) and
−f ′

0(σ, 0) + g′0(σ, 0) = ψ(σ), where the prime denotes differentiation with respect to the first
argument. It also follows from the odd/even, and 4π-periodic extension in x of the dependent
variable v0 that f0 and g0 have to satisfy f0(σ, τ) = −g0(−σ, τ) and f0(σ, τ) = f0(σ + 4π, τ)
for −∞ < σ <∞ and τ ≥ 0. The behaviour of f0 and g0 with respect to τ will be determined
completely by demanding that v1 does not contain secular terms. To solve the initial-boundary
value problem (120) - (123) for v1 it is convenient to make the boundary condition (121) at
x = π homogeneous by introducing the following transformation

v1(x, t, τ) = w(x, t, τ) − αH(x)v0t
(π, t, τ), (124)

where H(x) = x for 0 ≤ x ≤ π, odd around x = 0, even around x = π, and 4π-periodic. The
initial-boundary value problem (120) - (123) then becomes

wtt − wxx = v0t
− 2v0tτ

− 1

3
v3
0t

+ αH(x)v0ttt
(π, t, τ), 0 < x < π, t > 0, (125)

w(0, t, τ) = 0, t ≥ 0, (126)

wx(π, t, τ) = 0, t ≥ 0, (127)

w(x, 0, 0) = αH(x)v0t
(π, 0, 0), 0 < x < π, (128)

wt(x, 0, 0) = −v0τ
(x, 0, 0) + αH(x)v0tt

(π, 0, 0), 0 < x < π. (129)

To solve the initial-boundary value problem (125)-(129) it will turn out (in order to avoid
computational difficulties with infinite sums (Fourier-series)) that it is convenient to use again
characteristic coordinates. So, all functions should again be extended in 4π-periodic functions
in x, which are odd around x = 0 and even around x = π. However, to recognize the terms in
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the right-hand side of (125) that give rise to secular terms in w it will turn out that a Fourier
series representation for f0, v0, and H(x) is helpful. For that reason we write f0, v0, and
H(x) as

f0(σ, τ) =
A0(τ)

2
+

∞
∑

n=1

(

An(τ)

2
cos((n− 1/2)σ) +

Bn(τ)

2
sin((n− 1/2)σ)

)

. (130)

v0(x, t, τ) =
∞
∑

n=1

(An(τ) sin((n− 1/2)t) +Bn(τ) cos((n− 1/2)t)) sin((n− 1/2)x). (131)

and

H(x) =

∞
∑

n=1

2

π

(−1)n+1

(n− 1
2 )2

sin((n− 1/2)x), (132)

respectively. Now it should be observed that the terms H(x)v0ttt
(π, t, τ) in the right-hand

side of (125) can be written as

H(x)v0ttt
(π, t, τ) = − 2

π

∞
∑

n=1

(

n− 1

2

)[

An(τ) cos

(

(n− 1

2
)t

)

−Bn(τ) sin

(

(n− 1

2
)t

)]

(133)

× sin

(

(n− 1

2
)x

)

+G(x, t, τ),

= − 2

π
v0t

(x, t, τ) +G(x, t, τ),

where

G(x, t, τ) = − 2

π

∞
∑

n=1

∞
∑

k=1
k 6=n

(k − 1
2 )3

(n− 1
2 )2

(−1)k+n+2

(

Ak(τ) cos((k − 1

2
)t) −Bk(τ) sin((k − 1

2
)t)

)

× sin((n− 1

2
)x). (134)

It should be noted that the function G as given by (134) does not contain terms giving rise
to secular terms in w. By introducing the characteristic coordinates σ = x− t and ξ = x+ t
and by putting w(x, t, τ) = w̃(σ, ξ, τ) equation (125) then becomes

−4w̃σξ(σ, ξ, τ) =

(

2f0στ
(σ, τ) +

((

2α

π
− 1

)

+ f2
0ξ

(−ξ, τ)
)

f0σ
(σ, τ) +

1

3
f3
0σ

(σ, τ)

)

−
(

2f0ξτ
(−ξ, τ) +

((

2α

π
− 1

)

+ f2
0σ

(σ, τ)

)

f0ξ
(−ξ, τ) +

1

3
f3
0ξ

(−ξ, τ)
)

+αG̃(σ, ξ, τ), (135)

where

G̃(σ, ξ, τ) =
1

π

∞
∑

n=1

∞
∑

k=1
k 6=n

(k − 1
2 )3

(n− 1
2 )2

(−1)k+n+2Tnk(σ, ξ, τ) (136)

with

Tnk(σ, ξ, τ) = Ak(τ)

(

cos

[

k − n

2
ξ +

1 − k − n

2
σ

]

− cos

[

k − n

2
σ +

1 − k − n

2
ξ

])

+

Bk(τ)

(

sin

[

k − n

2
ξ +

1 − k − n

2
σ

]

+ sin

[

k − n

2
σ +

1 − k − n

2
ξ

])

.(137)
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From (135) w̃σ and w̃ξ can be obtained. For instance by integrating (135) with respect to ξ
it follows that

4w̃σ(σ, ξ, τ) = 4w̃σ(σ, σ, τ) − (ξ − σ)

(

2f0στ
(σ, τ) +

(

2α

π
− 1

)

f0σ
(σ, τ) +

1

3
f3
0σ

(σ, τ)

)

+

∫ ξ

σ

(

2f0ξτ
(−ξ, τ) +

((

2α

π
− 1

)

+ f2
0σ

(σ, τ)

)

f0ξ
(−ξ, τ) +

1

3
f3
0ξ

(−ξ, τ)
)

dξ

−f0σ
(σ, τ)

∫ ξ

σ

f2
0ξ

(−ξ, τ)dξ + α

∫ ξ

σ

G̃(σ, ξ, τ)dξ + h(σ, τ), (138)

where h(σ, τ) will be determined later on. Now it should be observed in (138) that the integrals
which involve the (4π-periodic) functions f 2

0ξ
(−ξ, τ) and f3

0ξ
(−ξ, τ) can become unbounded if

the integrals over a period of 4π are nonzero. It turns out these integrals can be rewritten in
a part which is O(1) for all values of σ and ξ and in a part which is linear in 2t = ξ− σ, that
is, for n = 2, 3 we have

∫ ξ

σ

fn
0ξ

(−ξ, τ)dξ =

∫ ξ

σ

(

fn
0ξ

(−ξ, τ) − 1

4π

∫ 4π

0

fn
0θ

(−θ, τ)dθ
)

dξ +
ξ − σ

4π

∫ 4π

0

fn
0θ

(−θ, τ)dθ.
(139)

Noticing that ξ − σ = 2t it follows that ξ − σ is of order ε−1 on a time-scale of order ε−1. So
w̃σ will be of order ε−1. In a similar way it can also be shown that w̃ξ will contain secular
terms. To avoid these secular terms it follows that f0 and g0 have to satisfy

2f0στ
+

(

2α

π
− 1

)

f0σ
+

1

3
f3
0σ

+ f0σ
I2(τ) −

1

3
I3(τ) = 0, (140)

2g0ξτ
+

(

2α

π
− 1

)

g0ξ
+

1

3
g3
0ξ

+ g0ξ
Y2(τ) −

1

3
Y3(τ) = 0, (141)

where

In(τ) =
1

4π

∫ 4π

0

fn
0θ

(−θ, τ)dθ for n=1,2,3, · · · , (142)

Yn(τ) =
1

4π

∫ 4π

0

gn
0θ

(θ, τ)dθ for n=1,2,3, · · · . (143)

From the relation g0(θ, τ) = −f0(−θ, τ) it follows that the equations (140) and (141) are
equivalent. It then follows that w̃σ and w̃ξ will be of order one on a time-scale of order ε−1

if f0 satisfies

2f0στ
+

(

2α

π
− 1

)

f0σ
+

1

3
f3
0σ

+ f0σ
I2(τ) −

1

3
I3(τ) = 0. (144)

The equation (144) for f0 is usually hard to solve. For a Rayleigh wave equation with
Dirichlet boundary conditions (see [6, 21, 22, 23]) only limited results are known when I3(τ) ≡
0, and it is still an open problem when I3(τ) 6= 0. For monochromatic initial values (that
is, for φ(x) = an sin(nx) and ψ(x) = bn sin(nx)) explicit approximations of the solution are
found (see [6, 21]). The behaviour of the solutions have been determined for t → ∞ if the
initial values are symmetric around the midpoint x = π

2 (see [22]), or if there is no initial
displacement (see [23]). It turns out that I3(τ) is identically equal to zero for these three cases
(monochromatic initial values, symmetry around the midpoint, and no initial displacement).
For the Rayleigh wave equation with boundary damping we will now show for what type of
initial values the integral I3(τ) is equal to zero. For that reason we study In (given by (142))
by making use of (144). The analysis as presented in [20] will now be followed partly. We
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start by letting I0 = 1. Then for n ≥ 1 we have

dIn
dτ

=
d

dτ

(

1

4π

∫ 4π

0

fn
0θ

(−θ, τ)dθ
)

=
1

4π

∫ 4π

0

nfn−1
0θ

(−θ, τ)fn
0θτ

(−θ, τ)dθ

=
n

4π

∫ 4π

0

fn−1
0θ

(−θ, τ)f0θτ
(−θ, τ)dθ

=
n

4π

∫ 4π

0

fn−1
0θ

(−θ, τ) · 1

2
·
(

f0θ

[

1 − 2α

π
− I2

]

− 1

3
f3
0θ

+
1

3
I3

)

dθ

=
n

2

(

In

[

1 − 2α

π
− I2

]

− 1

3
In+2 +

1

3
In−1I3

)

. (145)

From this system of infinitely many ordinary differential equations for In it can readily be
deduced that the integral I3(τ) is identically equal to zero if and only if I2n+1(0) = 0 for all
n ∈ N

+, or equivalently (by noticing that f0σ
(σ, 0) = φ′(σ) − ψ(σ))

∫ 4π

0

(φ′(σ) − ψ(σ))2n+1dσ = 0 for all n ∈ N
+. (146)

So, if (146) is satisfied then f0 has to satisfy 2f0στ
+( 2α

π −1+ I2)f0σ
+ 1

3f
3
0σ

= 0 else f0 has to
satisfy (144). It can be verified that (146) is satisfied for instance for monochromatic initial
values, that is, for φ(x) = an sin((n− 1

2 )x) and ψ(x) = bn sin((n− 1
2 )x). In this paper we will

study (140) for monochromatic initial values in detail. Now to solve (140) we use a procedure
originally developed in [21]. First it is assumed in [21] that I2(τ) is constant, and then (144)
is solved. In the so-obtained solution all constants of integration are replaced by arbitrary
functions in τ . In this way the solution of (144) take the form

f0σ
(σ, τ) =

r(τ)(φ′(σ) − ψ(σ))
√

1 + s(τ)(φ′(σ) − ψ(σ))2
, (147)

where r and s will be determined later on. By substituting (147) into (140) we obtain

2r′(τ) +

(

2

π
α− 1 + C(τ)

)

r(τ) = 0, τ > 0, (148)

s′(τ) − 1

3
r2(τ) = 0, τ > 0, (149)

where r(0) = 1
2 , s(0) = 0, and where

C(τ) =
r2(τ)

s(τ)

(

1 − 1

4π

∫ 4π

0

1

1 + s(τ)h2(−ξ)dξ
)

(150)

with h(σ) = φ′(σ) − ψ(σ). From (149) and (150) it follows for τ > 0 that s(τ) > 0 and
C(τ) > 0. It then follows from (148) for α ≥ π

2 that r(τ) decays exponentially. And so,
for α ≥ π

2 f0 (see (147)) and v0 decay to zero for t −→ ∞. In the further analysis it
will now be assumed that φ(x) = an sin((n − 1

2 )x) and ψ(x) = bn sin((n − 1
2 )x), and so,

h(σ) = an(n − 1
2 ) cos((n − 1

2 )σ) − bn sin((n − 1
2 )σ). For these initial values the integral in

(150) can be calculated explicitly, and so also C(τ). The equation (148) then becomes

−2
r′(τ)

r(τ)
+ 1 − 2

π
α = 3

s′(τ)

s(τ)

(

√

1 + 2s(τ)A2
n − 1

√

1 + 2s(τ)A2
n

)

, (151)

where An =
(

(an(n− 1
2 ))2+b2n
2

)1/2

. The function f0 can now be calculated from (147)-(151)

yielding

f0(σ, τ) =

√
3

n− 1
2

√

s′(τ)

s(τ)
arcsin

(
√

2s(τ)A2
n

1 + 2s(τ)A2
n

sin

(

β +

(

n− 1

2

)

σ

)

)

+ k(τ), (152)
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and so v0(x, t, τ) = f0(σ, τ) − f0(−ξ, τ) is given by

v0(x, t, τ) =

√
3

n− 1
2

√

s′(τ)

s(τ)

[

arcsin

(
√

2s(τ)A2
n

1 + 2s(τ)A2
n

sin

(

β +

(

n− 1

2

)

(x− t)

)

)

− arcsin

(
√

2s(τ)A2
n

1 + 2s(τ)A2
n

sin

(

β −
(

n− 1

2

)

(x+ t)

)

)]

, (153)

where k is an arbitrary function in τ and satisfies k(0) = 0, where β is defined by

cos(β) =
an(n− 1

2 )
√

(an(n− 1
2 ))2 + b2n

, sin(β) =
bn

√

(an(n− 1
2 ))2 + b2n

, (154)

and where s(τ) will be determined in the next subsections for the cases: (i) 0 < α < π
2 , and

(ii) α ≥ π
2 .

4.2.1 The case 0 < α < π
2 .

By integrating both sides of (151) with respect to τ and by making use of (149) it follows
that

s′(τ) =
24

3

(

√

1 + 2s(τ)A2
n + 1

)−6

e(1−2α/π)τ . (155)

By putting m(τ) =
√

1 + 2s(τ)A2
n + 1 the solution of (155) is given by
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4
.

s(τ) =
1

2A2
n

(

m2(τ) − 2m(τ)
)

, (156)

where m satisfies

m8(τ) − 8

7
m7(τ) =

27

3

A2
n

1− 2
πα

(

e(1−
2
π

α)τ − 1
)

+
3

7
28, (157)

with m(0) = 2. Next, by defining

µ(s) =
1

4π

∫ 4π

0

h2(−ξ, 0)

1 + sh2(−ξ, 0)
dξ (158)

it also follows from (148)-(150) that

s′′ +

(

2

π
α− 1 + 3s′µ(s)

)

s′ = 0. (159)
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By integrating (159) once (and using r(0) = 1
2 ) it follows that

s′(τ) =
2−2

3
e(1−

2
π

α)τe−3
R s(τ)
0 µ(y)dy ≥ 0. (160)

From s(0) = 0 it can be deduced that s is strictly positive for τ > 0. From (158) we should
note that

µ(s) ≤ 1

4π

∫ 4π

0

f2
0ξ

(−ξ, 0)dξ = R. (161)

It follows from (161) and by solving the inequality (160) that for R > 0

s(τ) ≥ 1

3R
ln

(

3R

12
(

1 − 2
πα
)

(

e(1−
2
π

α)τ − 1
)

+ 1

)

, (162)

and that for R = 0

s(τ) =
1

12(1− 2
πα)

(

e(1−
2
π

α)τ − 1
)

. (163)

Hence it follows from (162) and (163) that s(τ) → ∞ as τ → ∞, and so m(τ) → ∞ as τ → ∞.
It then follows from (156), (157), and (160) that (see also Figure 3)

lim
τ→∞

s′(τ)

s(τ)
=

1 − 2
πα

4
. (164)

So, it can be seen from (153) and (164) that v0 will tend to a standing triangular wave with
amplitude π

√

3(1− 2α/π)/(2(n− 1/2)) and period 2π/(n− 1/2) as τ → ∞.

4.2.2 The case α ≥ π
2 .

For α = π
2 it follows from (155) that
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2
.

m(τ)8 − 8

7
m(τ)7 = A2

n

27

3
τ +

3

7
28, (165)

and again using (161) and by solving inequality (160) it follows that

s(τ) ≥ 1

3R
ln

(

1 +
R

4
τ

)

. (166)
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It is easy to see from (166) and by the definition of m(τ) that

lim
τ→∞

s′(τ)

s(τ)
=

25

3

A2
n

m(τ)8 − 2m(τ)7
= 0. (167)

It follows from (153) and (167) that the string vibrations will finally come to rest up to O(ε)
as time t tends to infinity.

For α > π
2 it follows that

s′(τ)

s(τ)
=

25

3

A2
n

m(τ)7(m(τ) − 2)
e(1−

2
π

α)τ . (168)

Since s is a monotonic increasing and strictly positive function for τ > 0 it follows from (155)
that m(τ) > m(0) = 2 for all τ > 0. It then follows from (168) that

lim
τ→∞

s′(τ)

s(τ)
= 0. (169)

We can conclude from (167) and (169) that the amplitude of oscillation of the string for α > π
2

tends to zero up to order ε on a timescale of order ε−1 as time t tends to infinity. We depict
this phenomenon for α = 4π/5 in Figure 5 . So far it has been shown that the solution of

0
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F igure 5.
p

s′/s vs time (τ) for an = 0.2, bn = 0.02, n = 1, α = 4π/5.

the initial - boundary value problem will be damped to zero (up to O(ε)) if the damping
parameter satisfies α ≥ π/2. The analysis as carried out so far in this section is restricted
to monochromatic initial conditions. However, from section 3 it can be deduced for arbitrary
(but sufficiently smooth) initial values that the solutions will be bounded for 0 ≤ α < π

2 as
time t tends to infinity, and from section 4.1 and this section it can be concluded that for
α ≥ π

2 all solutions will tend to zero (up to O(ε)) as time t tends to infinity. As has been
shown in this section it is difficult (or impossible) to solve (144) for arbitrary initial values.
For that reason we will present some numerical results for arbitrary initial values in section
6.

After eliminating the terms in (135) that give rise to secular terms it follows from (135)
that w̃ is given by

w̃(σ, ξ, τ) = −1

4

∫ ξ

σ

f0σ̄
(σ̄, τ)

∫ ξ

σ̄

(

g2
0θ

(θ, τ) − 1

4π

∫ 4π

0

g0δ
(δ, τ)dδ

)

dθdσ̄

+
1

4

∫ ξ

σ

(

f2
0θ

(θ, τ) − 1

4π

∫ 4π

0

f0δ
(δ, τ)dδ

)

(g0(ξ, τ) − g0(θ, τ)) dθ

−1

4
α

∫ ξ

σ

∫ ξ

δ

G̃(θ, δ, τ)dθdδ + f1(σ, τ) + g1(ξ, τ), (170)
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where f0 is given by (154), g0(σ, τ) = −f0(−σ, τ), G̃ is given by (136), and where the functions
f1, g1 are still arbitrary. The undetermined behaviour of f1, g1 with respect to τ can be used
to avoid secular terms in v2. It is, however, our goal to construct a function ū that satisfies the
partial differential equation, the boundary conditions, and the initial values up to order ε2.
For that reason the functions f1 and g1 are taken to be equal to their initial values f1(σ, 0)
and g1(ξ, 0) respectively which can be determined from (128) and (129). So far we have
constructed a formal approximation ū = vo + εv1 for u that satisfies the partial differential
equation, the boundary conditions, and the initial values up to order ε2. The asymptotic
validity of this formal approximation on a time-scale of O( 1

ε ) will be proved in the next
section.

5 The asymptotic validity of a formal approximation.

In [4, 5, 6] asymptotic theories have been presented for wave equations having Dirichlet
boundary conditions and similar nonlinearities. In those papers the constructed formal ap-
proximations have been shown to be asymptotically valid, that is, the differences between the
approximations and the exact solutions are of order ε on timescales of order ε−1 as ε→ 0. It
will be shown in this section that the formal approximation as constructed in section 4.2 is
asymptotically valid on a timescale of order ε−1. The approximation ū satisfies

ūtt − ūxx = ε

(

ūt −
1

3
ū3

t

)

+ ε2f(x, t, ε), 0 < x < π, t > 0, (171)

ū(0, t) = 0, t ≥ 0, (172)

ūx(π, t) + εαūt(π, t) = ε2g(t, ε), t ≥ 0, (173)

ū(x, 0) = φ(x), 0 < x < π, (174)

ūt(x, 0) = ψ(x) + ε2v1τ
(x, 0, 0), 0 < x < π, (175)

where f and g are given by

f(x, t, ε) = 2v1tτ
+ v0ττ

+ εv1ττ
+ (v1t

+ v0τ
εv1τ

)(v2
0t

− ε2) + εv0t
(v1t

+ v0τ
+ εv1τ

)2

+
1

3
ε2(v1t

+ v0τ
+ εv1τ

)3 (176)

and
g(t, ε) = α(v1t

(π, t) + v0τ
(π, t) + εv1τ

(π, t)) (177)

respectively. To estimate the difference between the exact solution u and the approximation ū
the theory as presented in section 3 will be used. It is convenient to move the inhomogeneous
term g in the boundary condition at x = π to the PDE so that the boundary condition at
x = π becomes homogeneous. The boundary condition at x = 0 remains homogeneous. For
that reason the following transformation will be introduced

v̄(x, t) = ū(x, t) + ε2 sin(x)g(t; ε). (178)

Substituting (178) into the initial-boundary value problem (171)-(175) it follows that

v̄tt − v̄xx = ε

(

v̄t −
1

3
v̄3

t

)

+ ε2F (v̄t, x, t, ε), 0 < x < π, t > 0, (179)

v̄(0, t) = 0, t ≥ 0, (180)

v̄x(π, t) + εαv̄t(π, t) = 0, t ≥ 0, (181)

v̄(x, 0) = φ(x) + ε2G(x), 0 < x < π, (182)

v̄t(x, 0) = ψ(x) + ε2H(x), 0 < x < π, (183)
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where
F (v̄t, x, t, ε) = f(x, t, ε) + sin(x)(g′′ + g) − ε(sin(x)g′)(1 − [3v̄2

t − 3v̄t sin(x)g′ + (sin(x)g′)2]),
G(x) = sin(x)g(0), and H(x) = v1τ

(x, 0, 0) + sin(x)g′(0, ε). It should be observed that F,G,
and H are bounded functions in W 1,∞([0, T ];C2[0, π]). By putting the initial-boundary value
problem (179) - (183) into an abstract Cauchy problem (see also section 3) and by making
use of (58) and (62) it then easily follows that

‖ z − z̄ ‖≤ ε2eεt ‖ Θ ‖ +ε2
∫ t

0

eε(t−τ) ‖ Ω ‖ dτ, (184)

where z = (u, ut)
T , z̄ = (v̄, v̄t)

T , and where Θ = (G,H)T ,Ω = (0, F )T . Since F,G, and H are
smooth functions it follows that there are positive constants M0 and M1 such that

‖ z − z̄ ‖≤ ε2eεtM0 + ε2
∫ t

0

eε(t−τ)M1dτ. (185)

For 0 ≤ t ≤ L
ε (in which L is a positive constant independent of ε) it follows from (185) that

‖ z − z̄ ‖≤ εM2 (186)

for some positive constant M2. It should be observed that all calculations have been done in
the function space H. It also follows from (186) that

max
0≤x≤π, 0≤t≤L

ε

|u(x, t) − v̄(x, t)| < ε
√
πM2, (187)

implying that u− ū = O(ε) in C0
(

[0, L
ε ], [0, π]

)

. So far we have obtained the asymptotic valid-
ity of the formal approximations. Hence, it is easy to see that the first order approximations
v0 are also order ε approximations of the exact solutions on timescales of order ε−1.

It will now be interesting to see the behaviour of the asymptotic approximation v0 (as
given by (143)) of the solution u of the initial-boundary value problem. For some values of
the damping parameter α (that is, for α = π

4 , α = π
2 , and α = 3π

2 ) and ε = 0.1 we have plotted
v0 in Figure 6-8. These figures can be compared with the figures which will be presented in
the next section and which will be obtained by directly applying a numerical method to the
initial-boundary value problem.
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6 Numerical Results.

For various values of the damping parameter α we will present in this section numerical
approximations of the solution of the initial-boundary value problem (14)-(18). The numerical
results will confirm the analytical results as obtained in the previous sections. Moreover,
numerical approximations of the solution(s) are obtained for initial-boundary value problems
with initial values which could not be treated in section 4.2 because of the complicated
equation which had to be solved (see (144) with I3(τ) 6= 0). To solve the initial-boundary
value problem (14)- (18) numerically and in a convenient way the second order PDE (14) is
rewritten in a hyperbolic system of two first order PDEs by introducing

v(x, t) =
1

2
(ut(x, t) − ux(x, t)), 0 < x < π, t > 0, (188)

w(x, t) =
1

2
(ut(x, t) + ux(x, t)), 0 < x < π, t > 0. (189)

The initial-boundary value problem (14)-(18) then becomes

vt(x, t) + vx(x, t) =
ε

2
f(v(x, t) + w(x, t)), 0 < x < π, t > 0, (190)

wt(x, t) − wx(x, t) =
ε

2
f(v(x, t) + w(x, t)), 0 < x < π, t > 0, (191)



25

w(0, t) = −v(0, t), t ≥ 0, (192)

v(π, t) =
1 − εα

1 + εα
w(π, t), t ≥ 0, (193)

w(x, 0) =
1

2
(ψ(x) + φ′(x)), 0 < x < π, (194)

v(x, 0) =
1

2
(ψ(x) − φ′(x)), 0 < x < π, (195)

where f(v(x, t) + w(x, t)) = v(x, t) + w(x, t) − 1
3 (v(x, t) + w(x, t))3. From (188) and (189),

and from the boundary condition u(0, t) = 0 it follows that

u(x, t) =

∫ x

0

(w(y, t) − v(y, t))dy. (196)

Using an ”upwind scheme” the initial-boundary value problem (14)- (18) is solved numerically.
As long as the space discretization is larger than the time discretization this numerical method
will be stable. As usual the space discretizations for wx(j∆x, n∆t) and vx(j∆x, n∆t), and

the time discretizations for wt(j∆x, n∆t) and vt(j∆x, n∆t) are given by
wn

j+1−wn
j

∆x ,
vn

j −vn
j−1

∆x ,
wn+1

j −wn
j

∆t , and
vn+1

j −vn
j

∆t respectively. In the Figures 9-12 the energy E(t) =
∫ π

0

(

u2
t + u2

x

)

dx
is approximated, and in the Figure 13 -16 the solution is approximated for various values of
α and for various initial values. The numerical results as given in these figures confirm the
analytically obtained results as presented in the previous sections.
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F igure 16. Displacement u vs. x and t for φ(x) = x+ sin(x), ψ(x) = x(π − x), and ε = 0.1.

7 Conclusions

In this paper an initial-boundary value problem for a weakly nonlinear wave equation (a
Rayleigh equation) has been studied. The problem can be considered to be a simple model
to describe the galloping oscillations of overhead power transmission lines in a windfield. One
end of the transmission line is assumed to be fixed, whereas the other end of the line is assumed
to be attached to a dashpot system. Using a semi-group approach it has been shown that
the initial- boundary value problem is well-posed for all time t. Moreover, it has been shown
that the solution is bounded for all time t. Formal asymptotic approximations of the exact
solution have been constructed by using a two-timescales perturbation method. Also it has
been shown that the formal approximations are indeed order ε asymptotic approximations
(as ε −→ 0) of the solution(s) for 0 ≤ x ≤ π and 0 ≤ t ≤ Lε−1, in which L is an ε-
independent positive constant. For the damping parameter α larger than or equal to π

2 it has
been shown that all solutions will tend to zero as time t tends to infinity. For 0 < α < π

2
all solution will be bounded. In particular it has been shown for monochromatic initial
values and for 0 < α < π

2 that the solution will tend to a standing triangular wave with

amplitude π
√

3(1− 2α/π)/(2(n− 1/2)) and period 2π/(n− 1/2) as time t tends to infinity.
For more complicated initial values numerical approximations have been constructed by using
a numerical method (an upwind scheme). The numerical results confirm the aforementioned
analytical results.
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