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Abstract

In this paper an initial-boundary value problem for a nonlinear string (or wave) equation
with non-classical boundary conditions is considered. One end of the string is assumed
to be fixed and the other end of the string is attached to a dashpot system, where the
(positive) damping is generated. Existence, uniqueness, and regularity of solutions to
this problem are investigated.
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1 Introduction.

It is the purpose of this paper to show the global existence and regularity of solutions to the
initial-boundary value problem (P)

utt − uxx = cut − σ(ut), 0 < x < π, t > 0, (1)

u(0, t) = 0, t ≥ 0, (2)

ux(π, t) = −αut(π, t), t ≥ 0, (3)

u(x, 0) = u0(x), 0 ≤ x ≤ π, (4)

ut(x, 0) = u1(x), 0 ≤ x ≤ π, (5)

where c, and α are positive constants, where σ is a monotonic increasing and continuous
function with σ(0) = 0, and where u0 and u1 satisfy certain regularity conditions, which will
be given later. In this initial-boundary value problem the function u describes the vertical
displacement of a nonlinear string which is fixed at x = 0 and which is attached at x = π
to a dashpot system which generates positive damping. These problems can be applied to
galloping oscillations of overhead transmission lines, see for instance [6]. For the case of
Dirichlet boundary condition at both boundaries the well-posedness of the weak solution can
be found in [3], even for higher dimensions. For the case σ(ut) = εu3

t with Dirichlet boundary
conditions, the problem has been studied in [1] and [6]. In [7] the initial-boundary value
problem (P)(1)-(5) has also been studied numerically for σ(ut) = Cu3

t , C a constant.
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Our goal is to establish the global existence of solutions to (P)(1)- (5) which are C2([0, π]×
[0,∞)). One verifies that the functions u0 and u1 also satisfy the following compatibility
conditions

u0(0) = 0, u′′
0(0) = 0, u1(0) = 0, (6)

u′
0(π) + αu1(π) = 0, u′

1(π) + α(u′′
0 (π) + cu1(π) − σ(u1(π))) = 0. (7)

Before stating our main result we make some comments about uniqueness and ”continuous
dependence” upon the data. Suppose u and ũ are two solutions of the initial-boundary value
problem (P)(1)-(5). Let w(x, t) = u(x, t) − ũ(x, t) for (x, t) ∈ [0, π] × [0, T ]. By subtracting
the PDE’s for u and ū from each other, then by multiplying with wt, and then by integrating
with respect to t from 0 to t and with respect to x from 0 to π, and by making use of the fact
that σ is increasing, we obtain the following energy estimate

Ek(t) + Ep(t) + α

∫ t

0

w2
t (π, s)ds ≤ Ek(0) + Ep(0) + 2c

∫ t

0

Ek(s)ds, (8)

where Ek(t) = 1
2

∫ π

0
w2

t (x, t)dx and Ep(t) = 1
2

∫ π

0
w2

x(x, t)dx. Using Gronwall’s inequality it
follows from (8) that

Ek(t) + Ep(t) ≤ (Ek(0) + Ep(0))e2ct. (9)

Now given u(x, 0) = ũ(x, 0) and ut(x, 0) = ũt(x, 0) for 0 ≤ x ≤ π it can readily be seen from
(9) that if a solution exists then it is unique (w(x, t) = 0 =⇒ u1(x, t) = u2(x, t)). It also
follows from (9) that if the solution exists it ”depends continuously” on the initial values.
Now we are in the position to state our main result. It is formulated in the following theorem.

Theorem 1.1. Suppose σ ∈ C2(R), σ′ ≥ 0, and σ satisfies σ(0) = 0. Let α, c be positive
constants. Suppose u0 ∈ C3[0, π] and u1 ∈ C2[0, π] satisfy the conditions (2)-(3), (6)-(7).
Then problem (P)(1)-(5) has a unique twice continuously differentiable solution for (x, t) ∈
[0, π] × [0, T ], where T is an arbitrary positive constant.

Remark 1.1. It will follow from our proof that the conditions on u0 and u1 can be weakened
to u0 ∈ H3(0, π) and u1 ∈ H2(0, π).

This paper is organized as follows. In section 2 we show that problem (P) (1)-(5) can be
rewritten as a differential equation in an appropriate Hilbert space H,

dz

dt
(t) = Az(t) + Bz(t), z(0) = z0. (10)

Here A is a nonlinear m − dissipative operator in H and B is a linear bounded operator in
H. The existence of global solutions follows from a theorem of Kato [5]. This approach only
requires σ to be continuous and provides a unique solution

u ∈ W 2,∞((0, T ); L2(0, π)) ∩ W 1,∞((0, T ); H1(0, π)) ∩ L∞((0, T ); H2(0, π)). (11)

Assuming σ ∈ C1(R) we show by using a regularity result for linear equations in H that the
solution

u ∈ C2([0, T ]; L2(0, π)) ∩ C1([0, T ]; H1(0, π)) ∩ C([0, T ]; H2(0, π)). (12)

In section 3 we establish C2 regularity by writing an integral equation for ut. This allows
us to establish the required regularity under the assumptions of theorem 1.1.
Notations: In this paper we will use the following notations. L2, H1, and H2 stand for
L2(0, π), H1(0, π), and H2(0, π) respectively. Similarly, C, C1, and C2 stand for C[0, π],
C1[0, π], and C2[0, π] respectively. And also we will use the somewhat not common notation
H1

0 for {u ∈ H1; u(0) = 0}.
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2 Global strong solutions

It will be shown that the initial-boundary value problem (P)(1) - (5) possesses a unique
”strong” global solution. To show the well-posedness of the problem we rewrite problem
(P)(1) - (5) as a system in an appropriate Hilbert space. Setting v(t) = u(., t), w(t) = ut(., t),
and z(t) := (v(t), w(t))T . We obtain an equation of the form

dz

dt
(t) = Az(t) + Bz(t), t ≥ 0, z(0) = z0, (13)

where

Az(t) := A

(

v(t)
w(t)

)

=

(

w(t)
v(t)xx − σ(w(t))

)

, (14)

and

Bz(t) := B

(

v(t)
w(t)

)

=

(

0
cw(t)

)

, (15)

and where z(0) = (u0, u1)
T . This motivates the following definitions. Let H := {z = (v, w) ∈

H1
0 × L2} be equipped with the inner product

< z, z̃ > =

∫ π

0

(vxṽx + ww̃) dx (16)

= < v, ṽ >1 + < w, w̃ >2 . (17)

Then H is a Hilbert space. Let

D(A) := {z = (v, w) ∈ H2 ∩ H1
0 × H1

0 ; vx(π) + αw(π) = 0}, (18)

and A as in (14). It should be observed that the operator B defined in (15) is linear and
bounded in H. To show the global solvability of (13) we apply the following theorem.

Theorem 2.1. Let A be a (single valued) m − dissipative operator in the Hilbert space H
and let B be a Lipschitz operator in H. For every z0 ∈ D(A) and every T > 0 there is a
unique absolutely continuous z : [0, T ] → H such that z(0) = z0 and (13) holds at a.e t > 0.
Also z is Lipschitz continuous and right-differentiable with z(t) ∈ D(A) for all t > 0 and
d+z
dt

= Az(t) + Bz(t), for all t ≥ 0.

This theorem is a slight modification of a theorem of Kato (see [5]). Let ω ≥ 0 be the
Lipschitz constant of the operator B. It is easy to see that B − ωI , where I is an identity
operator, is dissipative and Lipschitz continuous and therefore it is m−dissipative. From the
m-dissipativity of A and B −ωI it follows that A +B −ωI is m-dissipative. To complete the
proof we now can apply the theorem of Kato which can be found for instance in [5, page 180].
Moreover, if z : [0, T ] −→ E is the solution of (13) then the solution z is Lipschitz continuous
and right-differentiable with z ∈ D(A).

To show the solvability of the abstract Cauchy problem (13) according to theorem 2.1 we
only need the following lemma.

Lemma 2.1. Let the function σ be monotonically increasing and continuous with σ(0) = 0,
and let α > 0. Then the nonlinear operator A defined in (14) is m-dissipative on H, and
D(A) is dense in H.

Proof. First we show that D(A) is dense in H. Let us introduce the subspaces E := {v ∈
H2; v(0) = vx(π) = 0} and F := {w ∈ H1; w(0) = w(π) = 0}. It is standard that E is dense
in H1

0 and F is dense in L2. Moreover E × F ⊂ D(A). Hence D(A) is dense in H.
To complete the proof of this lemma we have to show that A is dissipative, and that the

range of λI −A is equal to H for a λ > 0. Now we show that A is a dissipative operator. Let
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z, z̃ ∈ D(A). A straightforward computation shows that (using the fact that σ is monotonic
increasing)

< Az − Az̃, z − z̃ > =

∫ π

0

[(w − w̃)x (v − ṽ)x + ((v − ṽ)xx + σ(w̃) − σ(w)) (w − w̃)] dx

= −α(w(π) − w̃(π))2 −

∫ π

0

(σ(w) − σ(w̃))(w − w̃)dx ≤ 0. (19)

So we have shown that the nonlinear operator A is a dissipative operator. Secondly for any
z0 ∈ H with z0 = (g, h) we will show that there exists a z ∈ D(A) such that

(I − A)z = z0, (20)

or equivalently

v = w + g, (21)

w = vxx − σ(w) + h, (22)

v(0) = 0, vx(π) + αw(π) = 0. (23)

Let us assume that g ∈ H2 ∩ H1
0 . Then it follows that

y = yxx − σ(y) + f, (24)

y(0) = 0, yx(π) + αy(π) = −gx(π), (25)

where f = h + gxx ∈ L2 and where y = v− g. To show that the boundary-value problem (24)
- (25) is solvable we will apply a variational method by introducing the functionals <, >, ϕ
and J from H1

0 into R which are defined by

< y, y > =

∫ π

0

(

(y′)2 + y2
)

dx, ϕ(y) =

∫ π

0

fydx, (26)

J(y) =

∫ π

0

j(y)dx +
α

2

(

y(π) +
1

α
gx(π)

)2

, (27)

where j(s) =
∫ s

0
σ(ξ)dξ with s ∈ R. For y ∈ H1

0 we define the functional I(.) by

I(y) =
1

2
< y, y > −ϕ(y) + J(y). (28)

It is clear that the functional I is continuous. From the monotonic increasingness of σ it
follows that the functional I is coercive. Next to see that I is convex it enough to show that
the functional j is convex. Let a, b ∈ R with a ≤ b. For any λ ∈ (0, 1) it is easy to see that
a < (1 − λ)a + λb < b. By using the mean value theorem and the fact that σ is monotonic
increasing it follows that j((1 − λ)a + λb) ≤ (1 − λ)j(a) + λj(b). From convexity, coercivity,
and continuity of I it follows that there exists a unique ȳ ∈ H1

0 such that I(ȳ) ≤ I(y) for all
y ∈ H1

0 . Now for arbitrary y ∈ H1
0 we define φ : R −→ R by

φ(t) := I(ȳ + ty). (29)

Since φ is continuously differentiable and φ(0) is minimal it follows that ȳ ∈ H2 and satisfies

∫ π

0

(ȳ − ȳ′′ + σ(ȳ) − f) ydx + (ȳ′(π) + αȳ + gx(π)) y(π) = 0. (30)

We have to notice that the equation (30) holds for every y ∈ H1
0 . So ȳ is the solution of the

boundary value problem (24)-(25) in the sense of distributions.
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Now let us assume that g ∈ H1
0 . Then there exists a sequence gn in H2 ∩ H1

0 such that
gn −→ g in H1. For all n ∈ N

+ there is a unique zn = (vn, wn) ∈ D(A) such that

vn = wn + gn, (31)

wn = vnxx
− σ(wn) + h, (32)

vn(0) = 0, vnx
(π) + αwn(π) = 0. (33)

Since A is a dissipative operator on H an a-priori estimate can be obtained, that is,

‖ zn − zm ‖H≤‖ fn − fm ‖H, (34)

where fn = (gn, h)T ∈ H. From (34) it follows that {vn} and {wn} are Cauchy sequences in
H1 and L2 respectively. Moreover, (H1, <, >1) and (L2, <, >2) are complete implying that
there are v̄ ∈ H1 and w̄ ∈ L2 such that vn −→ v̄ and wn −→ w̄. Furthermore, {vn} is
also a Cauchy sequence in C0 with maximum norm. Therefore we obtain v̄ ∈ H1

0 . From the
continuity of σ it follows from (31) and (32) for n −→ ∞ that

wn = vn − gn −→ v̄ − g = w̄ ∈ H1
0 , (35)

and
vnxx

= wn + σ(wn) − h −→ w̄ + σ(w̄) − h ∈ L2. (36)

Next we will show that v̄ ∈ H2 ∩ H1
0 and that vnxx

converges to v̄xx. Since vn is in H2 it
follows that there are positive constants c1 and c2 such that

‖ (vn − vm)′ ‖L2≤ c1 ‖ vn − vm ‖L2 +c2 ‖ (vn − vm)′′ ‖L2 . (37)

It can readily be seen from (37) that v′
n −→ v̄′ in L2. For n −→ ∞ it follows from

∫ π

0
v′nϕ′dx =

−
∫ π

0 v′′nϕdx (for arbitrary ϕ ∈ H2 where ϕ vanishes for x = 0 and π) that
∫ π

0 v̄′ϕ′dx =

−
∫ π

0 (w̄ + σ(w̄) − h)ϕdx. So, v̄ ∈ H2, and v̄′′ = w̄ + σ(w̄) − h in L2 with v̄(0) = 0. It
also follows from (36) that vnxx

−→ v̄′′ in L2. Finally we have to show that v̄, w̄ satisfy the
boundary conditions (23). To show this we integrate (32) once, yielding

vnx
(x) = −

∫ π

x

(wn + σ(wn) − h)dx − αwn(π). (38)

It can also be shown that wn −→ w̄ uniformly in C with the maximum norm. Again by using
the continuity of σ and the Lebesgue Monotone Convergence Theorem it follows from (38)
that

v̄x(x) = −

∫ π

x

(w̄ + σ(w̄) − h)dx − αw̄(π). (39)

We deduce from (35) and (39) that for any z0 ∈ H there is z ∈ D(A) such that the equations
(21)-(23) hold. This completes the proof of the lemma.

Let z0 =

(

u0

u1

)

∈ D(A), and let z : [0,∞) → H be the corresponding solution to

problem (13) given by the Theorem 2.1. Set

z(t) =

(

v(t)
w(t)

)

.t ≥ 0 (40)

Then we have for every T > 0,

v ∈ W 1,∞((0, T ); H1
0 ) (41)

w ∈ W 1,∞((0, T ); L2) (42)
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v(t) ∈ H2 ∩ H1
0 , for every t ≥ 0 (43)

w(t) ∈ H1
0 , for every t ≥ 0 (44)

d+v

dt
(t) = w(t) in H1 for every t ∈ [0, T ] (45)

d+w

dt
(t) = (v(t))xx + cw(t) − σ(w(t)) in L2 for every t ∈ [0, T ]. (46)

Notice that since w(t) ∈ H1
0 (w(t) ∈ C) hence σ(w(t))(x) := σ(w(x, t)) is well-defined for

x ∈ [0, π], and σ(w(t)) ∈ C. Next we want to establish that the function z satisfies the
following integral equation in H

z(t) = z0 + A0

∫ t

0

z(s)ds +

∫ t

0

f(s)ds, t ≥ 0, (47)

where the operator A0 is defined as the operator A but with σ(s) = cs, s ∈ R, and where

f(t) :=

(

0
cw(s) − σw(s)

)

, t ≥ 0. (48)

Notice that the operator A0 is linear m-dissipative and densely defined. If we can show
that the function f ∈ W 1,1((0, T );H) then it will follow from Theorem 8.1 in [2] that z ∈
C1([0, T ];H)∩C([0, T ]; D(A0)) for every T > 0. From this we shall obtain v ∈ C2([0, T ]; L2)∩
C1([0, T ]; H1

0) ∩ C([0, T ]; H2). In order to prove (47) we use the fact that

w ∈ C([0, T ]; C) for every T > 0. (49)

Indeed it follows from (42) that w ∈ W 1,∞((0, T ); L2) and from (41) and (45) that w ∈
L∞((0, T ); H1

0 ). Then (49) follows from lemma A1 from the appendix. Since v ∈ W 1,∞((0, T ); H1
0 ),

w ∈ L∞((0, T ); H1
0 ) and dv

dt
= w a.e in H1

0 we have

v(t) = u0 +

∫ t

0

w(s)ds, t ≥ 0, (50)

in H1
0 . From (49) we also have t → σ(w(t)) ∈ C([0, T ]; C), hence cw − σ(w) ∈ C([0, T ]; L2),

and the function f defined in (48) belongs to C([0, T ];H). From (43) and (46) we deduce
that t → (v(t))xx belongs to L∞((0, T ); L2), hence by integrating in L2 we get

w(t) = u1 +

∫ t

0

(v(s))xxds +

∫ t

0

(cw(s) − σ(w(s)))ds, ∀t ≥ 0, in L2. (51)

From (42) and (45) we have z(t) ∈ D(A0) = D(A) and A0z(t) =

(

0
w(t) − (v(t)xx

)

for every

t ≥ 0. Since A0 is linear m − dissipative, densely defined f ∈ C([0, T ];H), it follows from

theorem 6.2 and 72 of [2] that there exists a function z̃ ∈ C([0, T ];H) satisfying
∫ t

0
z̃(s)ds ∈

D(A0) for every t ∈ [0, T ] and

z̃(t) = z0 + A0

∫ t

0

z̃(s)ds +

∫ t

0

f(s)ds, 0 ≤ t ≤ T. (52)

Consequently the function z − z̃ ∈ C([0, T ];H) satisfies

z(t) − z̃(t) =

∫ t

0

A0z(s)ds − A0

∫ t

0

z̃(s)ds

=

∫ t

0

(A0 − I)z(s)ds − (A0 − I)

∫ t

0

z̃(s)ds +

∫ t

0

(z(s) − z̃(s))ds. (53)
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Note that 0 ∈ ρ(A0 − I) in H, hence

(A0 − I)−1(z(t) − z̃(t)) =

∫ t

0

z(s)ds −

∫ t

0

z̃(s)ds + (A0 − I)−1

∫ t

0

(z(s) − z̃(s))ds. (54)

This shows that
∫ t

0
(z(s) − z̃(s))ds ∈ D(A0) and

(z − z̃)(t) = (A0 − I)

∫ t

0

(z(s) − z̃(s))ds +

∫ t

0

(z(s) − z̃(s))ds = A0

∫ t

0

(z(s) − z̃(s))ds. (55)

Since z − z̃ ∈ C([0, T ];H) and
∫ t

0
(z(s) − z̃(s))ds ∈ D(A0) it is an integral solution and by

uniqueness (Theorem 6.1 of [2]), z − z̃ = 0, hence z = z̃, which establish (47). Next we
apply theorem 8.1 of [2] to show that z ∈ C1([0, T ];H)∩C([0, T ]; D(A0)). Since z0 ∈ D(A0),
it suffices to establish f ∈ W 1,1((0, T );H), i.e. cw − σ(w) ∈ W 1,1((0, T ); L2). Note that
w ∈ W 1,∞((0, T ); L2) by (42). Since L2 is a Hilbert space it is sufficient to prove σ(w) ∈
Lip((0, T ); L2). From (49) we can define w̃(x, t) = w(t)(x), (x, t) ∈ QT := [0, π]× [0, T ]. Then
w̃ ∈ C(QT ). Set C1 := maxQT

|w̃| and C2 := max|ξ|≤C1
|σ′(ξ)|, where we assume from now

on that σ ∈ C1(R). Then for 0 ≤ t1 ≤ t2 ≤ T, x ∈ [0, π];

|σ(w(t1))(x) − σ(w(t2))(x)| = |σ(w̃(x, t1)) − σ(w̃(x, t2))|

≤ C2|w̃(x, t1) − w̃(x, t2)| = C2|w(t1)(x) − w(t2)(x)|. (56)

Hence ‖ σ(w(t1))−σ(w(t2)) ‖
2
L2≤ C2

2 |t1 − t2|
2. It follows from (42) that there is C3 > 0 such

that
‖ w(t1) − w(t2) ‖

2
L2≤ C2

3 |t1 − t2|
2. (57)

As a consequence σ(w) ∈ Lip((0, T ); L2) and we are done. Finally from z ∈ C1([0, T ];H) ∩
C([0, T ]; D(A0)) and using (45), (46) it follows that v ∈ C2([0, T ]; L2) ∩ C1([0, T ]; H1) ∩
C([0, T ]; H2). Summarizing we obtain

Proposition 2.1. Under the assumptions of theorem 1.1 with σ ∈ C1(R) (instead of C2(R)),
the functions (v, w) defined in (40) have the following regularity

v ∈ C2([0, T ]; L2) ∩ C1([0, T ]; H1
0 ) ∩ C([0, T ]; H2 ∩ H1

0 ), (58)

w ∈ C1([0, T ]; L2) ∩ C([0, T ]; H1
0 ). (59)

3 Classical solutions.

Let T > 0 and let z ∈ C1([0, T ];H) ∩ C([0, T ]; D(A0)) be the solution of (47) obtained in
Proposition 2.1. In this section we shall prove that under the assumptions of Theorem 1.1.
the following holds

ż ∈ C1([0, T ];H) ∩ C([0, T ]; D(A0)). (60)

As a consequence z ∈ C2([0, T ];H)∩C1([0, T ]; D(A0)). Then v ∈ C2([0, T ]; H1
0 )∩C1([0, T ]; H2∩

H1
0 ) and w ∈ C2([0, T ]; L2) ∩ C1([0, T ]; H1

0 ). Set QT := [0, π] × [0, T ] and

u(x, t) := v(t)(x), for (x, t) ∈ QT . (61)

From v ∈ C2([0, T ]; H1
0 ) we have v ∈ C2([0, T ]; C) and v(t)(0) = 0, t ∈ [0, T ]. Moreover

v̇, v̈ ∈ C([0, T ]; C) hence

u, ut, utt ∈ C(QT ) and u(0, t) = 0, t ∈ [0, T ]. (62)

From v ∈ C1([0, t]; H2 ∩ H1
0 ) we obtain v̄ ∈ C([0, T ]; C1), hence

ux, uxt, uxx ∈ C(QT ). (63)



8

It follows from (62) and (63) that u ∈ C2(QT ) and uxt = utx on QT . Finally from

dw

dt
(t) = (v(t))xx + cw(t) − σ(w(t)), t ∈ [0, T ] in L2 (64)

and ẇ ∈ C([0, T ]; C), w ∈ C([0, T ]; C), t → σ(w(t)) ∈ C([0, T ]; C), we obtain t → (v(t))xx ∈
C([0, T ]; C), hence by integrating in x we get

t → v(t) ∈ C([0, T ]; C2). (65)

It follows that
uxx ∈ C(Q(T )), (66)

hence u ∈ C2(Q(T )). Consequently since w ∈ C([0, T ]; C) and w(t)(x) = v̇(t)(x), we have
w(t)(x) = ut(x, t). And from (64) we obtain

utt(x, t) = uxx(x, t) + cut(x, t) − σ(ut(x, t)), in QT . (67)

since z(0) =

(

u0

u1

)

and w(0) = (̇v)(0), we have u(x, 0) = u0(x) and ut(x, 0) = u1(x), x ∈

[0, π]. Finally from z ∈ C([0, T ]; D(A0)) we have (v(t))x(π) + αw(t)(π) = 0, t ∈ [0, T ], and
Theorem 1.1. is proved. It remains to establish (60). From (47) and Proposition 2.1 we have

ż(t) = A0z(t) + f(t), t ∈ [0, T ] in H,

z(0) = z0 ∈ D(A0). (68)

Set q = ż then q ∈ C([0, T ];H) and
∫ t

0
q(s)ds = z(t) − z(0) ∈ D(A0), t ∈ [0, T ], and

q(t) = A0z0 + A0

∫ t

0

q(s)ds + f(t), t ∈ [0, T ] in H, (69)

where f(t) is given by (48). f(t) − f(0) =

(

0
(cw(t) − σ(w(t))) − (cw(0) − σ(w(0)))

)

. In

view of lemmata A2 and A4, (cw(t) − σ(w(t))) − (cw(0) − σ(w(0))) =
∫ t

0 R(s)ẇ(s)ds in L2

where R(s) is the multiplication operator in L2 associated with ρ(y) = cy−σ′(y), ρ ∈ C1(R).

Setting D(t) =

(

ξ
η

)

=

(

0
R(t)η

)

, t ∈ [0, T ],

(

ξ
η

)

∈ H, we have a consequence of

the same lemmata that the family {D(t)}t∈[0,T ] of bounded operators in L(H) satisfies all
assumptions of Lemma A5. Moreover q satisfies

q(t) = q0 + A0

∫ t

0

q(s)ds +

∫ t

0

D(s)q(s)ds, , t ∈ [0, T ] in H, (70)

where q0 = A0z0 + f(0), that is

q0 = A0

(

u0

u1

)

+

(

0
cu1 − σ(u1)

)

=

(

u1

(u0)xx + cu1 − σ(u1)

)

. (71)

We claim that under the assumptions of Theorem 1.1 q0 ∈ D(A0). Indeed u1 ∈ H2 ∩H1
0 and

u1 ∈ C1. Then cu1 − σ(u1) ∈ C1 and cu1(0) − σ(u1(0)) = 0 since u1(0) = 0 and σ(0) = 0,
so cu1 − σ(u1) ∈ H1

0 . Moreover (u0)xx ∈ H1 since u0 ∈ H3 and (u0)xx(0) = 0 from (6).
Then (u0)xx + cu1 −σ(u1) ∈ H1

0 . It remains to show that α((u))xx(π)+ cu1(π)−σ(u1(π)))+
(u1)x(π) = 0. But this is (7). Therefore q0 ∈ D(A0). From Lemma A5, it follows that q is the

only solution r in C([0, T ];H) with
∫ t

0 r(s)ds ∈ D(A0), t ∈ [0, T ]. Moreover since q0 ∈ D(A0),
q ∈ C1([0, T ];H), r ∈ C([0, T ]; D(A0)), which completes the proof of Theorem 1.1.
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Appendix.

Lemma A1. Let T > 0, then W 1,∞((0, T ); L2) ∩ L∞((0, T ); H1) ⊂ C([0, T ]; C).

Proof. First we observe that W 1,∞((0, T ); L2) ∩ L∞((0, T ); H1) ⊂ B([0, T ]; H1). Now let
u ∈ W 1,∞((0, T ); L2) ∩L∞((0, T ); H1) then there exists M > 0 and N ⊂ [0, T ] with measure
zero such that for t ∈ [0, T ]\N , u(t) ∈ H1, and ‖ u ‖H1≤ M . Let t̄ ∈ N since [0, T ]\N is dense
in [0, T ] hence there exists a sequence {tn} ∈ [0, T ]/N such that tn → t̄. Then u(tn) → u(t̄)
in L2. Since H1 is a Hilbert space there is a subsequence {tnk

}∞k=0 and z ∈ H1 such that
u(tnk

) ⇀ z in H1. Since H1 is continuously imbedded in L2 then u(tnk
) ⇀ z in L2, hence

z = u(t̄) ∈ H1. Moreover ‖ u(t̄) ‖H1≤ limk→∞ ‖ u(tnk
) ‖H1≤ M . Hence u ∈ B([0, T ]; H1).

Finally we prove u ∈ C([0, T ]; C). Let t̄, tn ∈ [0, T ], n ∈ Z
+ be such that tn → t̄ as n → ∞.

Then u(tn) → u(t̄) in L2, and as before since ‖ u(tn) ‖H1≤ M, n ≥ 1, for some M ≥ 0,
there exists a subsequence {u(tnk

)} such that u(tnk
) ⇀ u(t̄) in H1. Since H1 is compactly

imbedded in L2 we have u(tnk
) → u(t̄) in C. Moreover for any subsequence of {tn}n≥0 we

can extract a subsequence u(tnk
) → u(t̄) in C. So the whole sequence converges to u(t̄) in C,

and u ∈ C([0, T ]; C).

Lemma A2. Let 0 ≤ T1 ≤ t1 < t2 ≤ T1 ≤ T, r ∈ C1([T1, T2]; L
2) ∩ C([T1, T2]; H

1) ⊆
C([T1, T2]; C). Let ρ ∈ C(R) and let M(t) ∈ L(L2), t ∈ [T1, T2] be the multiplication operator
defined by

(M(t)η)(x) = ρ(r(t)(x))η(x), for a.e x ∈ [0, π] and every t ∈ [T1, T2]. (72)

Then the following holds;

1. ‖ M(t) ‖L(L2)= maxx∈[0,π] |ρ(r(t))(x)| ≤ C1 where

C1 := max
t∈[T1,T2]

max
x∈[0,π]

|ρ(r(t)(x)|. (73)

2. For every r̄ ∈ C1([T1, T2]; L
2)∩C([T1, T2]; H

1), [T1, T2] 3 t → M(t)r̄(t) ∈ C([T1, T2]; L
2)

and ‖ M(t)r̄(t) ‖L2≤ C1 maxs∈[T1,T2] ‖ r̄(s) ‖L2 . Moreover let rn ∈ C1([T1, T2]; L
2) ∩

C([T1, T2]; H
1), n = 1, 2, · · · be such that lim ‖ rn − r ‖C([T1,T2];C)= 0. Let {Mn(t)}∞n=1

be the corresponding multiplication operators, then

lim
n→∞

sup
t∈[T1,T2]

‖ Mn(t) − M(t) ‖L(L2)= 0. (74)

Lemma A3. Given r ∈ C1([T1, T2]; L
2) ∩ C([T1, T2]; H

1) there exists a sequence rn ∈
C1([T1, T2]; C

1), n = 1, 2, · · · such that

‖ ṙn − ṙ ‖C([T1,T2];L2) + ‖ rn − r ‖C([T1,T2];H1)→ 0, n → ∞. (75)

Lemma A4. Under the assumptions of Lemma A2, let ρ, r, r̄, M(t) be as in Lemma A2 with
the additional assumption ρ ∈ C1(R). Let {P (t)}t∈[T1,T2] be the corresponding multiplication
operators in L2 associated with ρ′ (i.e. P (t)η = ρ′(r(t)η)). Then

[T1, T2] 3 t → ρ(r(t)) ∈ Lip((T1, T2); L
2), (76)

ρ(r(t2)) − ρ(r(t1)) =

∫ t2

t1

P (s)ṙ(s)ds, T1 ≤ t1 < t2 ≤ T2, in L2, (77)



11

and
‖ ρ(r(t2)) − ρ(r(t1)) ‖L2≤ |t2 − t1| max

s∈[T1,T2]
‖ P (s) ‖‖ ṙ ‖C([T1,T2];L2) . (78)

Moreover [T1, T2] 3 t → M(t)r̄(t) ∈ Lip((T1, T2); L
2) and there exists C2 independent of

T1, T2, r̄ such that

‖ M(t2)r̄(t2) − M(t1)r̄(t1) ‖L2≤ C2(‖ ˙̄r ‖C([T1,T2];L2) + ‖ r̄ ‖C([T1,T2];H1) . (79)

Proof. For the proof of Lemma A4, one approximates r and r̄ by sequence rn and r̄n as in
A3. The estimates and formulas can be easily established for rn and r̄n. The result follows
by letting n tend to ∞.

lemma A5. Let (H, <, >, ‖ . ‖) be a Hilbert space and let L : D(L) ⊂ H → H be a linear
m− dissipative operator in H . (Then D(L) is automatically dense inH). Let r0 ∈ H and let
T > 0. Suppose that {D(t)}t∈[0,T ] is a family of bounded linear operators in H such that for
every 0 ≤ T1 < T2 ≤ T and every r ∈ C([T1, T2]; H);

[T1, T2] 3 t → D(t)r(t) ∈ C([T1, T2]; H) (80)

and maxt∈[T1,T2] ‖ D(t)r(t) ‖≤ M maxt∈[T1,T2] ‖ r(t) ‖ for some M independent of T1, T2 ∈
[0, T ]. Then

1. there exists a unique r̄ ∈ C([0, T ]; H) such that for every t ≥ 0,
∫ t

0 r̄(s)ds ∈ D(L) and

r̄(t) = r0 + L

∫ t

0

r̄(s)ds +

∫ t

0

D(s)r̄(s)ds. (81)

2. Assume moreover r0 ∈ D(L), and for every 0 ≤ T1 < T2 ≤ T , and for every
r ∈ C1([T1, T2]; H) ∩ C([T1, T2]; D(L)), [T1, T2] 3 t → D(t)r(t) ∈ Lip((T1, T2); H) and
∃M ′ > 0 independent of T1, T2 such that

‖ D(t1)r(t1) − D(t2)r(t2) ‖≤ M ′|t1 − t2| ‖ r ‖[T1,T2] (82)

for every 0 ≤ T1 ≤ t1 < t2 ≤ T2 ≤ T , where ‖ r ‖[T1,T2]:= maxt∈[T1,T2] ‖ ṙ(t) ‖
+ maxt∈[T1,T2] ‖ (L − I)r(t) ‖. Then the function r̄ defined in (81) satisfies r̄ ∈
C1([0, T ]; H) ∩ C([0, T ]; D(L)) and

dr̄

dt
(t) = Lr̄(t) + D(t)r̄(t), for every t ∈ [0, T ], (83)

r̄(0) = r0. (84)

Proof. Lemma A5 follows from a standard application of the contraction principle in the
space C([0, T ]; H) and C1([T1, T2]; H) ∩ C([T1, T2]; D(L)) and from Theorems 6.1, 8.1, and
Corollary 7.3 of [2].


