

KEMENTERIAN RISET, TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS SRIWIJAYA

FAKULTAS TEKNIK

Jl Raya Prabumulih KM 32 Inderalaya (30662) Telp. 580739 - 580741 Fax.(0711) 580062 e-mail: ftunsri@plasa.com

PERBAIKAN KETIGA

KEPUTUSAN

DEKAN FAKULTAS TEKNIK UNIVERSITAS SRIWIJAYA NOMOR: 7220 /UN9.1.3/SK-DT/2016 Tentang

Revisi Dosen Pembimbing Riset Jurusan Teknik Kimia Semester Ganjil Tahun Akademik 2016/2017 Fakultas Teknik Universitas Sriwijaya

Dekan Fakultas Teknik Universitas Sriwijaya

MEMPERHATIKAN

Surat Ketua Fakultas Teknik Unsri Nomor: 1152/UN9.1.3.1/DT/2016 tanggal 16 Desember 2016 tentang Revisi Pembimbing Riset Semester Ganjil Tahun Akademik 2016/2017.

MENIMBANG

- a). Bahwa agar Proses Penyelenggaraan kegiatan Akademik diatas dapat terlaksana, dipandang perlu menunjuk serta mengangkat personilnya.
- Bahwa sehubungan dengan butir a tersebut diatas, perlu diterbitkan Surat Keputusan sebagai Pedoman dan landasan hukumnya.

MENGINGAT

- Undang undang Nomor: 32 tahun 1961; 1
- Peraturan Pemerintah Nomor: 42 tahun 1960;
- Peraturan Pemerintah Nomor: 60 tahun 1999;
- Peraturan Dirjen Perbendaharaan Nomor: 50 /PB/2007
- Keputusan Rektor Unsri No. 4294/PT11.1.1/c.2.a/1987, tanggal 14 Oktober 1987, tentang Pemberian wewenang kepada Dekan untuk penerbitan Surat
- Keputusan Rektor Universitas Sriwijaya Nomor : 2250/UN9/KP/2015 tanggal 10 Nopember 2015 tentang Pengangkatan Dekan Fakultas Teknik Universitas Sriwijaya.

MEMUTUSKAN

MENETAPKAN

Pertama

Menunjuk Dosen-dosen sebagai Pembimbing Riset Semester Ganjil Tahun Akademik 2016/2017 yang personilnya seperti tertera dalam lampiran Surat Keputusan ini.

Kedua

Membatalkan/mencabut Surat Keputusan Dekan Fakultas Teknik Universitas Sriwijaya Nomor: 607/UN9.1.3/SK-DT/2015 tanggal 14 Desember 2015 tentang Dosen Pembimbing Riset Jurusan Teknik Kimia, Semester Ganjil Tahun Akademik 2015/2016 Fakultas Teknik Universitas Sriwijaya.

Ketiga

Segala biaya yang timbul akibat dikeluarkan Surat Keputusan ini dibebankan kepada anggaran Fakultas Teknik Universitas Sriwijaya, atau anggaran yang disediakan untuk itu.

Keempat

Keputusan ini berlaku sejak tanggal ditetapkan dengan ketentuan bahwa segala sesuatu akan diubah dan diperbaiki sebagaimana mestinya apabila terdapat kekeliruan dalam Keputusan ini.

> DITETAPKAN DI PADA TANGGAL

: INDERALAYA Desember 2016

DEKAN.

Prof. Ir. Subriyer Nasir, M.S., Ph.D NIP 19600909 198703 1 004

TEMBUSAN:

- Rektor Universitas Sriwijaya
- Ketua FT. UNSRI
- Ketua Jurusan Teknik Kimia FT. UNSRI
- Yang bersangkutan
- ,Arsip

Lampiran

Nomor

Tentang

Jurusan

: Teknik Kimia

			1/2	
No.	Nama	NIM '	Dosen Pembimbing	
	Kristi Natalia	03031481417005	Ir. H. Abdullah S., MS. M.eng	
1	Reza Wadi Prayogi	03121403061	Ir. H. Abdullali S., MS. M.eng	
2	Revenia Palit	03121403001	Ir. H. Abdullah S., MS. M.eng	
	Darmawan Edi Prayoga	03121403052	11. 11. Abdultan S., WiS. W. eng	
-	Rahma Diana Yulistiah	03121403028	Ir. H. Abdullah S., MS. M.eng	
3	M. William King P.	03121403064	II. H. Abdunan S., W.S. W. eng	
	Fitri Margaretha B.	03121403002	L. Hi Dordione Medicin MT	
4	Eva Marisa	03121403062	Ir. Hj. Rosdiana Moeksin, MT	
	Ade Selpiani	03121403036	In III Deadione Mackein MT	
5	Lisa Ariyanti	03121403058	Ir. Hj. Rosdiana Moeksin, MT	
	Dewi Liely Gunawan	03121403004	D. Y. III C. II A. A. D. DEA	
6	Octavianes Chandra	03121403034	Dr. Ir. Hj. Susila Arita R., DEA	
	Apriyani Kartini	03121403011	Du In Hi Spaile Auite D. DEA	
7	Cinthtya Roito	03121403057	Dr. Ir. Hj. Susila Arita R., DEA	
	Niku Fathi Fauzan	03121403008	D. Novie CT MT	
8	M. Angligana Ciptian	03121403022	Dr. Novia, ST. MT	
	Winda Rahma Tiara	03121403018	D. N. S.	
9	Ana Barika	03121403038	Dr. Novia, ST. MT	
	Juviandy	03121403029	DO INT CUID IN MUID	
10	Christian King Halim	03121403054	Dr. Novia, ST. MT	
	M. Ruli Hidayatullah	03121403017	D. T. II. M. IV. 44. D. Lie. M. E.	
11	Reniza Ramadhanti	03121403021	Dr. Ir. H. M. Hatta Dahlan, M.Eng.	
	Elsa Rama Lumban Gaol	03121403048	D. Y. II M IX-44- Dahlas M.F.	
12	Abiyyu Ahmad	03121403056	Dr. Ir. H. M. Hatta Dahlan, M.Eng.	
• • •	Flavia Mech Devega	03121403033	In Hi Deadione Meeksin MT	
13	Sania Daniati	03121403059	Ir. Hj. Rosdiana Moeksin, MT	
.,	M. Faisal	03121403023	Y. YE CLAI MILE. L. DATE	
14	Yogi Pratama	03121403043	Ir. Hj. Siti Miskah, MT	
1.5	Iskandar Zulkarnain	03121403046	Y. TY: C:4: NA:-L-L NAT	
15	Wiliyardi Pramana	03121403050	Ir. Hj. Siti Miskah, MT	
1.0	Kurnia Indah Pratiwi	03121403027	Duraf In Culturina Naciu MC Dh D	
16	Muhammad Wandy Amrullah	03121403053	Prof. Ir. Subriyer Nasir, MS. Ph.D	
	Odi Prima Putra	03121403037	To III Don't an Name of Street	
17	Arista Khanza Septiani	03121403040	Ir. Hj. Rosdiana Moeksin, MT	
18	Farista Galuh Sandra	03121403003	Fide Melwite ST MT DL D	
18	Putri Ayu Elisa	03121403005	Elda Melwita, ST. MT. Ph.D	
19	M. Ardhy Zulyo	03121403006	Elde Melwite ST MT DL D	
ן וא	Agus Krismaya	03121403055	Elda Melwita, ST. MT. Ph.D	
-20	M. Riska Juliansyah P.	03121403010	Prof. Dr. Ir. H. M. Said, M.Sc.	
20	Anindya Fatmadini	03121403041		
21	Ahmad Andriansyah P. 03121403013 Ir. Rosdiana Mu'in, MT	Ir Rosdiana Mu'in MT		
21	K. M. Idris Bayu Saputra	03121403063	A. Avodiana ivau iii, iva	

No.	Nama	NIM	Dosen Pembimbing	
22	Julio Vikri Rakhmadi	03121403007	Ir. Pamilia Coniwanti, MT	
	Ersalina Dwi Putri	03121403015	Ir Pamilia Caniwanti MT	
23	Puji Wulandari	03121403016	Ir. Pamilia Coniwanti, MT	
24	Dwi Mefa Septiani	03121403019	Dr. Ir. Hj. Tri Kurnia Dewi, M.Sc.	
24	Olhika Adzalia	03121403049	Dr. H. H., Tri Kurma Dewi, M.Sc.	
25	Deni Arbain Rahmat	03121403020	Ir. Faisol Asip, MT	
25	M. Reza Aldinata	03121403030	II. Palsor Asip, III	
26	Putri Ayu Wulandari	03121403024	Ir. Hj. Farida Ali, DEA	
26	Faddel Pinasthika	03121403065	Ir. Hj. Farida Ali, DEA	
27	Yulianto	03121403025	Dr. Hj. Tuty Emilia A., ST. MT	
2/	Tiara Fransiska Harianja	03121403035	Dr. Hj. 1 uty Emma A., 31. Wi	
28	Ahmad Zarkasyi	03121403051	Dr. Ir. H. M. Faizal, DEA	
28	Razuma Noverdi	03121403060	DI. II. II. IV. Paleal, DEA	
29	Mona Maulina Arief	03121403026	Dr. Ir. H. M. Faizal, DEA	
29	Abraham Oktapian	03121403044		
30	Debi Putri Suprapto	03121403045	Solniana ST MT	
30	Ridho Patratama	03121403047	Selpiana, ST. MT	
31	Patricia	03121403031	Selpiana, ST. MT	
51	Cindy Putri Anggraini	03121403039	Scipiana, St. 1911	
32	Pitri Yanti	03121403032	Lia Cundari, ST. MT	
32	Karindah Ade Syaputri	03121403042	Lia Cundari, St. W.I	
33	Fergie Medisa Ginting	03121403014	Dr. Hj. Tuty Emilia A., ST. MT	
33	Sri Widya Ningsih	03121403012	Di. Gj. Tuty Emma A., ST. W.	

Dekan,

Prof. Ir. Subriyer Nasir, MS. Ph.D NIP. 19600909 198703 1 004

LAPORAN PENELITIAN

PEMBUATAN BIOETANOL GEL DENGAN PEREKAT KALSIUM ASETAT

Disusun Untuk Memenuhi Syarat Kurikulum Tingkat Sarjana pada Jurusan Teknik Kimia Fakultas Teknik Universitas Sriwijaya

OLEH:

WINDA RAHMA TIARA

03121403018

ANA BARIKA

03121403038

JURUSAN TEKNIK KIMIA
FAKULTAS TEKNIK
UNIVERSITAS SRIWIJAYA
PALEMBANG
2016

LEMBAR PENGESAHAN

Judul Penelitian:

PEMBUATAN BIOETANOL GEL DENGAN PEREKAT KALSIUM ASETAT

Oleh:

WINDA RAHMA TIARA

03121403018

ANA BARIKA

03121403038

Telah Diseminarkan pada Tanggal 21 Mei 2016 Di Jurusan Teknik Kimia Fakultas Teknik Universitas Sriwijaya

Mengetahui,

Ketua Jurusan Teknik Kimia

Dr. Ir. Hj. Susila Arita R., DEA

NIP. 196010111985032002

Palembang, Juni 2016 Disetujui Oleh, **Dosen Pembimbing Penelitian**

Novia, S.T., M.T., Ph.D NIP. 197311052000032003

LEMBAR PERBAIKAN PENELITIAN

Dengan ini menyatakan bahwa:

Winda Rahma Tiara

03121403018

Ana Barika

03121403038

Judul Penelitian: "Pembuatan Bioetanol Gel dengan Perekat Kalsium Asetat"

Mahasiswa tersebut telah menyelesaikan tugas perbaikan yang diberikan pada Ujian Seminar Laporan Penelitian di Jurusan Teknik Kimia Fakultas Teknik Universitas Sriwijaya pada tanggal 21 Mei 2016 oleh Dosen Penguji:

1. <u>Ir. Hj. Rosdiana Moeksin, M.T.</u>

NIP. 195608311984032002

2. Dr. Ir. H. M. Hatta Dahlan, M.Eng

NIP. 195910191987111001

(....)

3. Dr. Hj. Leily Nurul Komariah, S.T., M.T.

NIP. 197503261999032002

Mengetahui,

M Ketua Jurusan Teknik Kimia

Dr. Ir. Hj. Susila Arita R., DEA

NIP. 196010111985032002

Abstrak

Lignoselulosa adalah bahan baku biomassa yang berasal dari tumbuh-tumbuhan dengan komponen penyusun lignin, selulosa, dan hemiselulosa. Ketersediaannya yang melimpah secara luas dialam menjadikan lignoselulosa berpotensi sebagai sumber energi. Bahan baku lignoselulosa dapat dikonversikan menjadi bioetanol. Bioetanol dapat menjadi bahan bakar alternatif yang potensial karena sumbernya dapat diperbaharui dan ramah lingkungan. Namun ada beberapa kendala yang harus dihadapi agar bioetanol dapat digunakan oleh masyarakat secara luas. Bioetanol yang berfase cair beresiko tumpah saat pendistribusian, sehingga bioetanol yang berfase cair diubah fasenya menjadi fase padatan dengan menambahkan gelling agent berupa kalsium asetat. Penelitian ini bertujuan menganalisa pengaruh variasi penambahan kalsium asetat dan variasi kecepatan pengadukan terhadap karakteristik nilai kalor, viskositas, titik nyala/flash point, warna nyala api dan stabilitas nyala api api terhadap bioetanol gel yang dihasilkan. Dari hasil penelitian menunjukan kondisi optimum pembuatan bioetanol gel dengan berat kalsium asetat 10 gram pada kecepatan pengadukan 1500 Rpm yang menunjukan nilai kalor tertinggi 4332,9841 cal/gram dan nilai flash point/titik nyala 31°C serta nilai viskositas 5,8736 m.Pa/s.

Kata kunci: Bahan Bakar Padat, Bioetanol, Biomassa, Lignoselulosa, Perekat.

Abstract

Lignocelluloses are biomass feedstock that derived from plants with components of lignin, cellulose and hemicelluloses. Availability of lignocelluloses in nature so widely makes lignocelluloses potential as a source of energy. Lignocelluloses can be converted into bio-ethanol. Bio-ethanol can be a potential alternative fuels as sources of renewable and environmentally friendly. But there're several obstacles that must be faced for bio-ethanol can be used by the other people. Bio-ethanol is at risk of spillage when liquid-phase distribution, so that bio-ethanol liquid-phase is converted into the solid phase by adding a gelling agent such as calcium acetate. This research aimed to analyze the effect of variations of the added calcium acetate and stirring speed variation of the characteristics of heating value, viscosity, flash point, flame colors and flame stability against bio-ethanol gel produced. From the results of the research showed the optimum conditions to production bio-ethanol gel with a weight of 10 grams of calcium acetate on the speed rpm which showed 1500 4332.9841cal/gram and flash point value 31°C and viscosity value 5.8736m.Pa/s. the highest Keywords: Solid Fuel, Bio-ethanol, Biomass, Lignocellulose, Gelling Agent.

KATA PENGANTAR

Puji dan syukur ke hadirat Allah SWT atas limpahan rahmat dan karunia-Nya yang telah memberikan kemampuan, kekuatan dan kesempatan bagi penulis dalam menyelesaikan Laporan Penelitian berjudul "Pembuatan Bioetanol Gel dengan Perekat Kalsium Asetat" tepat pada waktunya. Laporan penelitian ini diselesaikan berdasarkan hasil penelitian yang telah dilaksanakan pada tanggal 9 November 2015 – 16 Desember 2015.

Laporan Penelitian ini merupakan salah satu mata kuliah yang harus ditempuh oleh mahasiswa Teknik Kimia Fakultas Teknik Universitas Sriwijaya sebagai salah satu syarat untuk memperoleh gelar Sarjana Strata Satu (S1) di bidang Teknik Kimia.

Selama proses penelitian dan penyelesaian Laporan Penelitian ini, penulis menyadari bahwa tanpa bantuan dari berbagai pihak, laporan ini tidak mungkin dapat terselesaikan dengan baik. Oleh karena itu, ucapan terima kasih disampaikan kepada:

- 1) Ibu Dr. Ir. Hj. Susila Arita, R., DEA selaku Ketua Jurusan Teknik Kimia Universitas Sriwijaya.
- 2) Ibu Novia, ST., MT., Ph.D selaku Sekretaris Jurusan Teknik Kimia Universitas Sriwijaya dan juga selaku Dosen Pembimbing Penelitian.
- 3) Ibu Erwana Dewi, M. Eng selaku Kepala Laboratorium Teknik Kimia Politeknik Negeri Sriwijaya Palembang.
- 4) Orangtua dan seluruh keluarga tercinta atas dukungan moril maupun materil.
- 5) Teman- teman seperjuangan Teknik Kimia 2012 Kampus Palembang.

Akhir kata penulis mengharapkan kritik dan saran yang bersifat ilmiah agar laporan penelitian ini dapat lebih bermanfaat.

Palembang, 8 Maret 2016

DAFTAR ISI

Lembar Lembar Kata Per Daftar Is Daftar T	Pengartangentsi	ul
DAD 1	DEN	TEN A TETTE ET A NI
BAB 1		IDAHULUAN 1
		Latar Belakang
	1.2.	2 - Marabali 1714041411 2
	1.3.	Tujuan Penelitian
	1.4.	Hipotesa2
	1.5.	Manfaat Penelitian2-3
	1.6.	Ruang Lingkup Penelitian
BAB 2	TIN	JAUAN PUSTAKA
	2.1.	Bioetanol4
		2.1.1. Sifat Fisika
		2.1.2. Sifat Kimia
		2.1.3. Kegunaan Bioetanol
	2.2.	Biomassa Lignoselulosa
		2.2.1. Selulosa
		2.2.2. Hemiselulosa
		2.2.3. Lignin
	2.3.	Geiling Agent
		2.3.1. Kalsium Asetat
		2.3.2. Carbopol
	2.4.	Diociation (ich
		2.4.1. Karakteristik Bioetanol Gel
BAB 3	MET	FOROI OCI PENER 777 - 17
DAD 3		TODOLOGI PENELITIAN
	3.1. 3.2.	Waktu dan Tempat Pelaksanaan
	3.2.	Ballall
		3.2.1. Alat
	2 2	3.2.2. Bahan
	3.3. 2 1	Prosedur Penelitian
	J.4.	Analisa Hasil
		3.4.1. Analisa Kualitatif
	3.5.	3.2.2. Analisa Kuantitatif
		Diagram Alir Percobaan Pembuatan Bioetanol
	5.0.	Matriks Penelitian
		3.6.1. Pengaruh Variasi Kecepatan Pengadukan dan Vari-

	asi Penambahan Kalsium Asetat terhadap nilai kal- or bioetanol yang dihasilkan	31
	3.6.2. Pengaruh Variasi Kecepatan Pengadukan dan Variasi Penambahan Kalsium Asetat terhadap viskositas bioetanol yang dihasilkan	31
	3.6.3. Pengaruh Variasi Kecepatan Pengadukan dan Variasi Penambahan Kalsium Asetat terhadap <i>flash po-int</i> /temperatur nyala bioetanol yang dihasilkan	
	3.6.4. Pengaruh Variasi Kecepatan Pengadukan dan Vari- asi Penambahan Kalsium Asetat terhadap warna nya- la api bioetanol yang dihasilkan	
D.D.	3.6.5. Pengaruh Variasi Kecepatan Pengadukan dan Vari- asi Penambahan Kalsium Asetat terhadap nyala api bioetanol yang dihasilkan	
BAB 4	HASIL DAN PEMBAHASAN	
	4.1. Hasil	35
	4.1.1. Hasil Analisa Nilai Kalor	. 35 25
	4.1.2. Hasil Analisa Nilai Viskositas	
	4.1.3. Hasil Analisa Nilai Flash Point (Titik Nyala)	. 30
	4.1.4. Hasil Analisa Warna Nyala Api	
	4.1.5. Hasil Analisa Nyala Api	
	4.2. Pembahasan	. 38
BAB 5	KESIMPULAN DAN SARAN	
	5.1. Kesimpulan	43
	5.2. Saran	
TO A FORM A		- • •
	AR PUSTAKA	
LAMPI	RAN	

DAFTAR TABEL

		5
Tabel 2.1.	Cifat Figika Rigetanol	
Tabel 2.2.	Kandungan Selulosa, Hemiselulosa dan Lignin pada Ampas Tebu))
Tabel 2.3.	Kandungan Karbohidrat pada Ampas Tebu	フ 1 つ
Tabel 2.4.	Klasifikasi Gel menurut Liebermann (1996)	13
Tabel 2.5.	Klasifikasi Gel menurut Martin (1993)	14
Tabel 2.6.	Sifat-sifat Kalsium Asetat	14
Tabel 2.7.	Densitas Energi dari Beberapa Bahan Berbasis Alkohol	18
Tabel 3.1.	Hasil Analisa Pengaruh Variasi Kecepatan Pengadukan dan Variasi	
	Penambahan Kalsium Asetat terhadap nilai kalor Bioetanol Gel	31
Tabel 3.2.	Hasil Analisa Pengaruh Variasi Kecepatan Pengadukan dan Variasi	
	Penambahan Kalsium Asetat terhadap viskositas Bioetanol Gel	31
Tabel 3.3.	Hasil Analisa Pengaruh Variasi Kecepatan Pengadukan dan Variasi	
	Penambahan Kalsium Asetat terhadap flash point (titik nyala) Bio-	
	etanol Gel	32
Tabel 3.4.	Hasil Analisa Pengaruh Variasi Kecepatan Pengadukan dan Variasi	
	Penambahan Kalsium Asetat terhadap warna nyala api Bioetanol	
	0.1	33
Tabel 3.5.	Hasil Analisa Pengaruh Variasi Kecepatan Pengadukan dan Variasi	55
	Penambahan Kalsium Asetat terhadap nyala api Bioetanol Gel	22
Tabel 4.1.	Hasil Analisa Nilai Kalor Bioetanol Gel dengan Perekat Kalsium Ase-))
	tat	25
Tabel 4.2.	Hasil Analisa Nilai Viskositas Bioetanol Gel dengan Perekat Kalsium	33
	asetat	25
Tabel 4.3.	Hasil Analisa Nilai Flash Point/Titik Nyala Rioetanol Gel donger De	35
	ickat Kaisiuiii Aseiai	2.
Tabel 4.4.	Hasil Analisa Warna Nyala Api Bioetanol Gel dengan Perekat Kalsi-	36
		~~
Tabel 4.5.	Hasil Analisa Nyala Api Bioetanol Gel dengan Baralasa K. 1	37
		~-
		37

DAFTAR GAMBAR

Gambar 2.1.	Struktur Selulosa	.10
Gambar 2.2.	Susunan Dinding Sel	.11
Gambar 2.3.	Struktur Hemiselulosa	.12
Gambar 2.4.	Warna Nyala Api Biru	.21
Gambar 2.5.	Warna Nyala Api Merah	.21
Gambar 2.6.	Warna Nyala Api Putih	.22
Gambar 2.7.	Over-ventilated dan Under-ventilated pada nyala api difusi	.24
Gambar 2.8.	Tipe-tipe nyala api difusi	.25
Gambar 2.9.	Skema Perubahan bentuk api terhadap kecepatan aliran ba-	
	han bakar	.27
Gambar 3.1.	Rangkaian Alat Pembuatan Bioetanol Gel dengan Perekat	
	Kalsium Asetat	.29
Gambar 3.2.	Diagram Alir Pembuatan Bioetanol Gel dengan Perekat Kalsi-	
	Um Asetat	.30
Gambar 4.1.	Grafik Pengaruh Variasi Kecepatan Pengadukan dan Variasi	
	Berat Kalsium Asetat terhadap Nilai Kalor Bioetanol Gel	.39
Gambar 4.2.	Grafik Pengaruh Variasi Kecepatan Pengadukan dan Variasi	
	Berat Kalsium Asetat terhadan Nilai Viskositas Bioetanol Col	.40
Gambar 4.3.	Grafik Pengaruh Variasi Kecepatan Pengadukan dan Variasi	
	Berat Kalsium Asetat terhadap Flash Point/Titik Nyala Rio	
	etanol Gel	11

BAB I

PENDAHULUAN

1.1. Latar Belakang

Energi memiliki peranan yang sangatlah penting bagi kebutuhan manusia. Namun, saat ini energi sebagai bahan bakar untuk keperluan rumah tangga atau industri semakin langka. Krisis kelangkaan penghasil energi ini disebabkan oleh semakin meningkatnya perkembangan jumlah penduduk, kemajuan teknologi serta pertumbuhan industri sehingga berbagai macam sumber penghasil energi semakin berkurang. Bahan bakar minyak masih menjadi kebutuhan yang digunakan masyarakat secara luas. Namun, di Indonesia cadangan untuk bahan bakar minyak semakin menipis, maka dari itu diperlukan suatu bahan bakar alternatif sebagai pengganti dari bahan bakar minyak.

Lignoselulosa adalah bahan baku biomassa yang berasal dari tumbuhtumbuhan dengan komponen utama penyusunnya adalah selulosa, hemiselulosa serta lignin. Ketersediannya yang melimpah secara luas (terutama sebagai limbah industri pertanian, perkebunan dan kehutanan) menjadikan limbah lignoselulosa berpotensi menjadi suatu sumber energi. Selain itu biomassa lignoselulosa dapat dikonversikan secara fisika, kimia serta biologis. Proses konversi biomassa lignoselulosa menjadi bioetanol merupakan salah satu proses konversi biomassa yang banyak diteliti dan dikembangkan. Dimana bioetanol dapat menjadi bahan bakar alternatif yang potensial karena sumbernya dapat diperbaharui serta ramah lingkungan (karena dapat memanfaatkan limbah sebagai bahan bakunya).

Namun, ada beberapa kendala yang harus dihadapi agar bioetanol dapat digunakan oleh masyarakat secara luas. Selama ini produksi bioetanol dalam skala kecil hanya diproduksi di daerah-daerah tertentu, sehingga tidak semua daerah memproduksi bioetanol. Serta, bioetanol yang berfase *liquid*/cair memiliki resiko yang mudah tumpah saat proses pendistribusian ke daerah-daerah lain karena biasanya bioetanol didistribusikan menggunakan drum yang kurang aman dalam pengangkutannya. Selain itu, bioetanol yang berfase *liquid*/cair lebih beresiko mudah meledak karena sifatnya yang mudah menguap (*volatile*). Maka dari itu

BAB 2

TINJAUAN PUSTAKA

2.1. Bioetanol

Bioetanol merupakan golongan alkohol dengan komponen penyusun utama karbon, hidrogen serta oksigen dengan rumus molekul C₂H₅OH yang dihasilkan dari proses fermentasi glukosa (C₆H₁₂O₆). Untuk menghasilkan bioetanol berkadar tinggi diperlukan suatu proses pemurnian secara lebih lanjut yaitu proses destilasi ataupun proses dehidrasi. Tjokroadikoesoemo (1986) memaparkan bahwa suatu proses distilasi alkohol dari fermentasi glukosa (C₆H₁₂O₆) menggunakan sistem pemisahan uap-cair atau sering disebut dengan sistem pemisahan alkohol-air. Secara umum, proses distilasi untuk meningkatkan kadar bioetanol berlangsung pada kondisi operasi tekanan atmosfer. Bioetanol telah digunakan sejak zaman prasejarah sebagai bahan baku dalam pembuatan minuman beralkohol. Bioetanol dapat diproduksi dari bahan baku biomassa seperti sorgum, kentang, singkong, hagung, molase, buah bit, nira aren, serta dapat juga diproduksi dari limbah biomassa contohnya ampas tebu, tandan kosong kelapa sawit (TKKS), tongkol jagung, limbah sayuran, limbah jerami padi dan lain-lain yang keberadaannya melimpah di Indonesia.

Bioetanol dapat menjadi sumber energi alternatif atau bahan bakar alternatif yang potensial karena sumbernya mudah diperbaharui serta ramah lingkungan. Karena semakin menipisnya sumber energi fosil serta semakin meningkatnya pencemaran terhadap lingkungan, maka penggunaan bioetanol sebagai bahan bakar alternatif dapat mengurangi ketergantungan terhadap penggunaan energy fosil serta bahan baku bioetanol yang berbasis tumbuhtumbuhan tidak menyebabkan pencemaran lingkungan. Pemanfaatan dari bioetanol bervariasi, dengan *grade* bioetanol yang berbeda-beda sesuai dengan penggunaannya masing-masing. Bioetanol yang memiliki *grade* 90-96,5% vol dimanfaatkan untuk keperluan skala industri, bioetanol dengan *grade* 96-99,5% vol digunakan sebagai bahan baku industri farmasi serta bahan baku untuk pembuatan minuman beralkohol. Serta bioetanol yang mempunyai *grade* 99,5-

BAB3

METODOLOGI PENELITIAN

3.1 Waktu dan Tempat Pelaksanaan

Waktu : 9 November 2015 – 16 Desember 2015

Tempat : Laboratorium Rekayasa Bioproses Teknik Kimia Politeknik

Negeri Sriwijaya

3.2 Alat dan Bahan

3.2.1. Alat

- 1) Erlenmeyer 250 mL
- 2) Erlenmeyer 100 mL
- 3) Hot Plate
- 4) Magnetic Stirrer
- 5) Beaker Gelas 50 mL
- 6) Gabus Penutup
- 7) Gelas Ukur 50 mL
- 8) Stopwatch
- 9) Neraca Analitis
- 10) Cawan Petri
- 11) Cawan Porselin
- 12) Pipet Tetes
- 13) Viskometer
- 14) Spatula
- 15) Corong

3.2.2. Bahan

- 1) Bioetanol
- 2) Kalsium Asetat (Ca(CH₃COO)₂)
- 3) Natrium Hidroksida (NaOH)
- 4) Aquadest

BAB 4 HASIL DAN PEMBAHASAN

4.1. Hasil Analisa

4.1.1. Hasil Analisa Nilai Kalor

Tabel 4.1. Hasil Analisa Nilai Kalor Bioetanol Gel dengan Perekat Kalsium Asetat

Kecepatan Pengadukan (rpm)	Berat Asam Asetat (Ca(CH3COO)2) (gram)	Nilai Kalor (Cal/Gram)
1200 rpm	7	3230,4548
	8	3365,2012
	9	3495,8925
	10	3680,4799
1300 rpm	7	3448,3960
1000 Ip	8	3764,8441
	9	4116,2085
	10	4200,4859
1400 rpm	7	3303,8227
1 100 Ip	8	3749,5768
	9	3986,4225
	10	4100,0524
1500 rpm	7	4180,4552
1500 ip	8	4215,6389
	9	4295,5817
	10	4332,9841

4.1.2. Hasil Analisa Nilai Viskositas

Tabel 4.2. Hasil Analisa Nilai Viskositas Bioetanol Gel dengan Perekat Kalsium Asetat

Kecepatan Pengadukan (rpm)	Berat Asam Asetat (Ca(CH ₃ COO) ₂) (gram)	Nilai Viskositas (m.Pa/s)
1200 rpm	7	2,7746
	8	3,1580
	9	4,0677
	10	4,3276

BAB 5

KESIMPULAN DAN SARAN

5.1. Kesimpulan

- 1. Nilai kalor bioetanol gel semakin meningkat apabila kecepatan pengadukan tinggi dan berat kalsium asetat (Ca(CH₃COO)₂) semakin banyak. Dimana nilai kalor bioetanol gel terbesar 4332,9841 cal/gram pada kecepatan pengadukan 1500 Rpm dan berat kalsium asetat 10 gram. Semakin banyak kalsium asetat (Ca(CH₃COO)₂) yang ditambahakan maka semakin banyak ikatan polimer antara bioetanol dan kalsium asetat (Ca(CH₃COO)₂) yang terbentuk sehingga, viskositas bioetanol gel yang dihasilkan semakin tinggi. Hasil yang didapatkan nilai viskositas bioetanol gel terbesar 7,9990 m.Pa/s pada kecepatan pengadukan 1300 Rpm dan berat kalsium asetat 10 gram. Nilai *flash point*/titik nyala bioetanol gel terbesar 31°C pada kecepatan pengadukan 1500 Rpm dan berat kalsium asetat 10 gram. Berdasarkan data hasil analisa rata-rata nilai *flash point*/titik nyala kurang dari 60,5 °C dapat diklasifikasikan bahwa bioetanol gel yang dihasilkan mudah terbakar.
- 2. Warna nyala dari bioetanol gel yang dihasilkan rata-rata berwarna biru akan tetapi ada juga yang warna nyalanya mula-mula biru dan lama kelamaan menjadi biru-kekuningan. Warna biru pada awal nyala disebabkan oleh bioetanol yang terbakar sedangkan warna kekuningan timbul karena jumlah bioetanol berkurang serta pengaruh kalsium asetat (Ca(CH₃COO)₂) yang terbakar. Dalam pembuatan bioetanol gel ini jumlah kalsium asetat (Ca(CH₃COO)₂) yang digunakan berkisar 7-10 gram/50mL bioetanol. Pada komposisi ini gel yang terbentuk tidak mudah tumpah, mudah terbakar dan nyala apinya stabil, serta pada *range* ini besarnya nilai kalor (cal/gram) paling tinggi.
- 3. Kelebihan bioetanol gel, antara lain: warna api lebih biru, tidak menimbulkan jelaga serta hasil pembakaran tidak menimbulkan bau.

LAMPIRAN

BAHAN

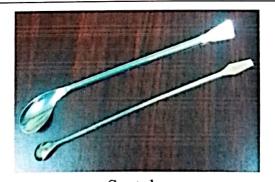
Bioetanol

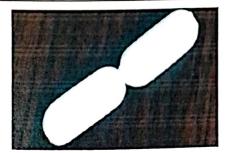
NaOH

PERALATAN

Erlenmeyer 250mL

Hot Plate


Kaca Arloji


Neraca Analitik

Cawan Petri

Spatula

Magnetic Stirrer

Pipet Tetes

PEMBUATAN BIOETANOL GEL DENGAN PEREKAT KALSIUM ASETAT

Novia^{*}, Winda Rahma Tiara, Ana Barika

*Jurusan Teknik Kimia Universitas Sriwijaya Pelembang Jalan Palembang-Prabumulih KM. 32 Ogan Ilir Sumatera Selatan 30662 Email: noviasumardi@yahoo.com

Abstrak

Lignoselulosa adalah bahan baku biomassa yang berasal dari tumbuh-tumbuhan dengan komponen penyusun lignin, selulosa, dan hemiselulosa. Ketersediaannya yang melimpah secara luas dialam menjadikan lignoselulosa berpotensi sebagai sumber energi. Bahan baku lignoselulosa dapat dikonversikan menjadi bioetanol. Bioetanol dapat menjadi bahan bakar alternatif yang potensial karena sumbernya dapat diperbaharui dan ramah lingkungan. Namun ada beberapa kendala yang harus dihadapi agar bioetanol dapat digunakan oleh masyarakat secara luas. Bioetanol yang berfase cair beresiko tumpah saat pendistribusian, sehingga bioetanol yang berfase cair diubah fasenya menjadi fase padatan dengan menambahkan gelling agent berupa kalsium asetat. Penelitian ini bertujuan menganalisa pengaruh variasi penambahan kalsium asetat dan variasi kecepatan pengadukan terhadap karakteristik nilai kalor, viskositas, titik nyala/flash point, warna nyala api dan stabilitas nyala api terhadap bioetanol gel yang dihasilkan. Dari hasil penelitian menunjukan kondisi optimum pembuatan bioetanol gel dengan berat kalsium asetat 10 gram pada kecepatan pengadukan 1500 Rpm yang menunjukan nilai kalor tertinggi 4332,9841 cal/gram dan nilai flash point/titik nyala 31°C serta nilai viskositas 5,8736 m.Pa/s.

Kata kunci: Bahan Bakar Padat, Bioetanol, Biomassa, Lignoselulosa, Perekat.

Abstract

Lignocelluloses are biomass feedstock that derived from plants with components of lignin, cellulose and hemicelluloses. Availability of lignocelluloses in nature so widely makes lignocelluloses potential as a source of energy. Lignocelluloses can be converted into bio-ethanol. Bio-ethanol can be a potential alternative fuels as sources of renewable and environmentally friendly. But there're several obstacles that must be faced for bio-ethanol can be used by the other people. Bio-ethanol is at risk of spillage when liquid-phase distribution, so that bio-ethanol liquid-phase is converted into the solid phase by adding a gelling agent such as calcium acetate. This research aimed to analyze the effect of variations of the added gelling agent such as calcium acetate. This research aimed to analyze the effect of variations of the added gelling agent such as tability against bio-ethanol gel produced. From the results of the research showed the optimum conditions to production bio-ethanol gel with a weight of 10 grams of calcium acetate on the stirring speed 1500 rpm which showed the highest heating value 4332.9841cal/gram and flash point value 31°C and viscosity value 5.8736m.Pa/s.

Keywords: Solid Fuel, Bio-ethanol, Biomass, Lignocellulose, Gelling Agent.

1. PENDAHULUAN

Energi memiliki peranan yang sangatlah penting bagi kebutuhan manusia. Namun, saat ini energi sebagai bahan bakar untuk keperluan rumah tangga atau industri semakin langka. Krisis kelangkaan penghasil energi ini disebabkan oleh semakin meningkatnya perkembangan jumlah penduduk, kemajuan teknologi serta pertumbuhan industri sehingga berbagai macam sumber penghasil energi semakin berkurang. Bahan bakar minyak masih menjadi kebutuhan yang digunakan masyarakat secara luas. Namun, di Indonesia

cadangan untuk bahan bakar minyak semakin menipis, maka dari itu diperlukan suatu bahan bakar alternatif sebagai pengganti dari bahan bakar minyak.

Lignoselulosa adalah bahan baku biomassa yang berasal dari tumbuh-tumbuhan dengan komponen utama penyusunnya adalah selulosa, hemiselulosa serta lignin. Ketersediannya yang melimpah secara luas (terutama sebagai limbah industri pertanian, perkebunan dan kehutanan) menjadikan limbah lignoselulosa berpotensi menjadi suatu sumber energi. Selain itu biomassa

SURAT PERNYATAAN TIDAK PLAGIAT

Saya yang bertanda tangan di bawah ini:

Nama

: Winda Rahma Tiara

NIM

: 03121403018

Jurusan : Teknik Kimia

Menyatakan dengan sebenarnya bahwa penelitian yang berjudul: "Pembuatan Bioetanol Gel dengan Perekat Kalsium Asetat" benar-benar merupakan hasil karya sendiri, bebas dari peniruan terhadap karya orang lain. Kutipan pendapat dan tulisan orang lain dirujuk sesuai dengan cara-cara penulisan karya ilmiah yang berlaku. Apabila di kemudian hari terbukti bahwa dalam penelitian ini terkandung ciri-ciri plagiat dan bentuk-bentuk peniruan lain yang dianggap melanggar peraturan, maka saya bersedia menerima sanksi atas perbuatan tersebut.

Palembang, 8 Maret 2016

Pembuat pernyataan,

ua Rahma Tiara

NIM. 03121403018

SURAT PERNYATAAN TIDAK PLAGIAT

Saya yang bertanda tangan di bawah ini:

Nama

: Ana Barika

NIM

: 03121403038

Jurusan : Teknik Kimia

Menyatakan dengan sebenarnya bahwa penelitian yang berjudul : "Pembuatan Bioetanol Gel dengan Perekat Kalsium Asetat" benar-benar merupakan hasil karya sendiri, bebas dari peniruan terhadap karya orang lain. Kutipan pendapat dan tulisan orang lain dirujuk sesuai dengan cara-cara penulisan karya ilmiah yang berlaku. Apabila di kemudian hari terbukti bahwa dalam penelitian ini terkandung ciri-ciri plagiat dan bentuk-bentuk peniruan lain yang dianggap melanggar peraturan, maka saya bersedia menerima sanksi atas perbuatan tersebut.

Palembang, 8 Maret 2016

Dembuat pernyataan,

Ana Barika

NIM. 03121403038