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ABSTRACT

The optimized link state routing (OLSR) is a link state type, table driven and
proactive routing that uses the multipoint relays (MPRs) selection for forwarding the
network packets. In this book, the MPRs selection algorithm is enhanced using
particle swarm optimization (PSO). PSO sigmoid increasing inertia weight (PSO-
SIIW) is proposed as a new variation of PSO algorithm for improving the
convergence speed and generating the optimum solution in the multidimensional
space. Four standard non-linear functions have been used to confirm its validity. The
comparison has been simulated using sigmoid decreasing and linearly increasing
inertia weight. The simulation results show that PSO-SIIW give better performance
with faster convergence capability and aggressive movement towards the solution
region. This book also presents the investigation on the development of OLSR with
standard PSO and PSO-SIIW, called OLSR-PSO and OLSR-PSOSIIW. The new
fitness functions consist of packet delay and degree of willingness are introduced to
support MPRs selection in standard PSO and PSO-SIIW. The challenge faced by the
proposed method is on how to select MPRs node and find the optimal path in
delivering data packets under different scenarios with good performance in term of
throughput, end-to-end delay, and packet loss. The OLSR-PSO gives better
performance in throughput compared to the standard OLSR of up to 50 nodes in File
Transfer Protocol (FTP) application and achieves good performance up to 40 nodes
in voice application. In term of end-to-end delay, the OLSR-PSO achieves good
performance up to 40 nodes in FTP application and 20 nodes in voice application. On
the contrary, the standard OLSR shows better performance at 50 nodes in packet loss
for FTP application. The OLSR PSO-SIIW gives good performance in throughput
and end-to-end delay compared to standard OLSR and OLSR-PSO. It has been
observed that the performance of packet loss gives comparable results in both
applications. The work has been further extended to developing and integrating
OLSR-PSOSIIW into wireless routers. The algorithm has been validated and verified
in indoor wireless mesh networks environment. The experimental and simulation
results show that the OLSR-PSOSIIW is able to find optimal path and gives better
performance than standard OLSR and OLSR-PSO. In conclusion, the selection of
MPRs using PSO-SIIW provides a good performance in throughput (2,368.60 and
1,633.70 kbps), end-to-end-delay (4.99 and 1.41 ms), and packet loss (0.13% and
0.19%) for FTP and voice applications.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The need for Wireless Mesh Networks (WMNs) is necessitated by the desire

arises because of the need to substitute for larger coverage using wireless

infrastructure. The WMNs consist of mesh routers and mesh clients, where mesh

router have minimal mobility and form the backbone of WMNs. They provide

network access between mesh nodes (client or router) to existing networks. The

integration of WMNs with other communication technologies such as IEEE 802.11,

IEEE 802.15, IEEE 802.16, sensor networks, internet cellular etc can be achieved

using mesh nodes in order to carry the data packets (Akyildiz et al., 2005). The

WMNs use the existing physical (PHY) layer of the IEEE 802.11 a/b/g/n operating in

the unlicensed spectrum of 2.4 and 5 GHz frequency bands (Zhang et al., 2007).

Beside the capability for larger coverage, the WMNs can dynamically organize and

configure itself in order to maintain connectivity between the nodes. These features

become WMNs advantages for low cost installation, easy network maintenance,

robustness, and reliable service coverage (Waharte et al., 2006; Zhang et al., 2007).

As the traffic nodes in the WMNs increase, so will the complexity of routing

between nodes. WMNs also faced with the challenge of realizing efficient bandwidth

sharing that generally effect quality of service (QoS) requirements such as
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throughput, delay and packet loss. For example, the data packet transmitted from the

source node to the destination node through intermediate nodes is affected by delay

transmission of packet due to the number of nodes it passed through in WMNs. One

of the solution to the above matter is the design of routing scheme to support data

transmission, since the link quality must fulfill user expectation (Aguiar et al., 2011).

The WMNs share many common features with ad hoc networks, like routing

protocol. The routing protocol in ad hoc network can be implemented in WMNs.

Same characteristic between WMNs and ad hoc network allows for the sharing of

property of routing protocol. The classification of routing protocol in WMNs will be

explained in chapter 2.

The Optimized Link State Routing (OLSR) protocol is a well-known

proactive routing protocol. It employs the classical shortest path based on the number

of hop count for routes selection in wireless ad hoc (mesh) networks. It is developed

by the French National Institute for Research in Computer Science and Automatic

Control (INRIA) and has been proposed as standard at Internet Engineering Task

Force (IETF) as experiment Request for Comments (RFC) 3626 (Automatique,

2003). The multipoint relays (MPRs) selection as substituted classical link state

method for dividing network into subset of node to reduce broadcast that flood the

WMNs. In the classical link state data packets re-transmitted by all intermediate

nodes to give high probability each node will receive the data packets. It is simple

and easy to implement but have some drawbacks regarding diffuse network with

broadcast the data packets. This phenomenon in classical link state has already been

examined and compared with MPRs selection by researchers (Viennot, 1998; A.

Qayyum et al., 2002; Jacquet et al., 2006). They concluded that MPRs is an efficient

technique used to minimize flooding packet through the entire WMNs.

However, if MPRs node increased as a result of the number of data packets, it

will affect the QoS parameters such as throughput, end-to-end delay, and packet loss.

This will result in more use at MPRs nodes to deliver the re-transmission data

packets and floods in the WMNs. Another drawback of OLSR is that the MPRs

selection cannot establish route in order to support the applications with QoS

requirements. Therefore, the MPRs selection only build route without considering

the QoS parameters. In order to solve this problem, many researchers propose
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methods of MPRs selection with different techniques so as to improve OLSR

performance.

In early development of MPRs selection algorithm, the researchers applied

the QoS parameter in selecting the MPRs node for delivering the data packets

(Hakim Badis et al., 2003; Obilisetty et al., 2005; Cordeiro et al., 2007; Gantsou and

Sondi, 2007; Nguyen and Minet, 2007). They proposed the QoS parameters such as

available bandwidth, delay, loss rate, link stability and residual energy into MPRs

selection. The achievement has been shown in the results in term of network

performance. But the proposed methods cannot reduce the MPRs nodes while re-

transmitting the data packets to minimize set of MPRs. Minimizing the MPRs node

equally will decrease the number of nodes MPRs to broadcast the data packets.

Other methods using artificial intelligence techniques are introduced by

researchers to use some advantages for improving MPRs selection algorithm

performance in WMNs. Simulated annealing (SA), tabu search (TS), genetic

algorithm (GA), greedy algorithm and neural network (NN) are method that have

been proposed by researchers. These approaches enriched the development of MPRs

selection algorithm in OLSR.

Chizari et al.(2010) examined the MPRs selection algorithm using three

artificial intelligence technique (GA, TS and SA) and compared to standard MPRs

selection algorithm. The proposed methods were evaluated in energy efficiency and

propagation time. The energy efficiency and propagation time able to decrease with

reducing the number of MPRs nodes. However, Chizari et al.(2010) did not observe

further network benchmarks such as throughput, end-to-end delay and packet loss to

prove the proposed method is good in term of QoS performance. Other researchers

(Guo and Malakooti, 2007; Nguyen and Minet, 2007) also introduced greedy

algorithm and NN applied in MPRs selection algorithm. Guo and Malakooti (2007)

evaluated the proposed method using NN with end-to-end delay and packet delivery

ratio as network benchmark. On the contrary, Nguyen and Minet (2007) only

considered network density to examine their proposed method using greedy

algorithm.
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Existing methods of MPRs selection algorithm aim at reducing re-

transmission node and maximizing the QoS performance for delivering the data

packet in the WMNs with different scenarios. However, existing proposed methods

are unable to meet with network performance requirements. The problem faced by

MPRs selection in OLSR can be resolved with QoS parameters using particle swarm

optimization (PSO) algorithm. This proposed method of MPRs selection can be

adapted with network characteristic.

1.2 Problem Statement

Routing in the WMNs extends network connectivity to end users through

intermediate node as multi-hop relay including mesh router and gateway (Waharte et

al., 2006). Extending the network connectivity with larger number of nodes will

cause transmission delay from source to destination node. If the time limit has been

reached and the destination node still has not received the data packet, the source

node will send again the data packet. The problem arises when more data packet

flood into the WMNs thereby increasing network load. This will affect the QoS

performance such as throughput, delay and packet loss in the WMNs.

An efficient technique to reduce flooding is introduced in OLSR using MPRs

selection. The MPRs selection function selects the node of MPRs which have the

obligation to forward data packet to other node in the WMNs. Many researchers

found the new methods of MPRs selection to reduce re-transmission node and to

maximize the QoS performance for delivering the data packet such as file transfer

and voice applications in the WMNs. But the innovation is still wide open for

proposing a new method of MPRs selection. Optimizing network utilization by

reducing the node re-transmission and accommodating the QoS parameters will

increase the network performance. Therefore, the propose algorithm should has good

quality in term of QoS compare than standard MPRs selection in OLSR.
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1.3 Aim and Objectives

The aim of the research is to propose an optimized the wireless mesh routing

protocol (OLSR) using PSO in reducing re-transmission node and maximizing the

QoS performance for MPRs selection in the WMNs.

The objectives of the research are:

1. To investigate the PSO parameters such as inertia weight for improving

convergence speed and obtaining nearest optimum solution.

2. To design and develop a new method of inertia weight in the PSO

process for optimal MPRs selection algorithm.

3. To design and develop the MPRs selection using standard PSO with new

fitness function.

4. To design and develop the MPRs selection algorithm using proposed

method of inertia weight of PSO.

5. To validate and evaluate the performance of proposed method of MPRs

selection algorithm using proposed method of inertia weight of PSO on

wireless router broadband.

1.4 Scope

The scopes of the research can be stipulated as follows:

1. Comparison of constriction factor and inertia weights (constant, linear

decreasing, linear increasing, tracking and dynamic, and sigmoid

decreasing) using four non-linear functions (Sphere, Rosenbrock,

Rastrigrin, and Griewank).

2. Simulation and experimentation of proposed MPRs selection algorithm

using File Transfer Protocol (FTP) and voice applications in N x 2 grid

topology with number of nodes up to 50. Spacing among nodes are 1

and 200 m.

3. Throughput, end-to-end delay and packet loss were used for evaluate

the proposed MPRs selection algorithm in OLSR.
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4. Implementation and verification of the algorithm of MPRs selection

using proposed method of inertia weight of PSO in wireless router.

1.5 Original Contributions

The original contributions of this research are:

1. The new method of inertia weight of PSO called PSO Sigmoid

Increasing Inertia Weight (PSO-SIIW). This method considers the

modification of the inertia weight to increase convergence ability and

find near optimum solution.

2. The new method of  MPRs selection in OLSR using standard PSO,

delay and degree of willingness as new fitness function, for reducing

the number of re-transmission node and improving  QoS performance in

WMNs. This method called OLSR-PSO

3. The propose PSO-SIIW is used for MPRs selection algorithm to

improve the performance of QoS in WMNs.

4. The OLSR-PSOSIIW is examined in indoor environment (test bed) to

validate and verify the performance obtained in simulation results.

1.6 Outline of Book

This book consists of six chapters. Chapter one, gives a general introduction

on the importance of this research, problem statement, aim and objectives, scope,

original contributions and outline of the thesis.

Chapter two provides an extensive overview of wireless mesh routing and

particle swarm optimization, and describes the main background theory of this

research: innovation milestones of PSO.

Chapter three describes the overview of Optimized Link State Routing

Protocol, and describes the main background theory of this research: innovation

milestones method of MPRs selection algorithm in OLSR.
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Chapter four describes the methodology used in the simulations and

experimentations.

Chapters five presents the analysis of the results and the discussions of the

results and describe the analysis of simulation and experimental results. A detailed

discussion of the new method of inertia weight of PSO called PSO-SIIW, MPRs

selection using PSO (OLSR-PSO) and PSO-SIIW (OLSR-PSOSIIW), and

experimental results are presented.

Chapter six presents the summary conclusions and the recommendations for

future research.
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CHAPTER 2

WIRELESS MESH ROUTING PROTOCOL

2.1 Introduction

The last decade has seen the rapid change of wireless technology, attracting

end users by providing efficient communication. Wireless technology has become an

important component in providing networking infrastructure for localized data

delivery. This revolution has been changed by new paradigm which is becoming

more and more popular: peer-to-peer communications, where wireless nodes

communicate with each other and create ad hoc mesh networks independently of the

presence of any wireless infrastructure.

Due to the complexity and limitation of WMNs which are associated with the

increasing number of users, it becomes challenging to route data packet from source

to destination node with good QoS performance.  The wireless mesh routing protocol

uses different approach to handle traffic in the WMNs. The reactive, proactive and

hybrid are three type of wireless mesh routing protocol based on route discovery.

This chapter also describes and reviews some issues related to the

improvement of PSO in many application. The advantages of PSO bring some

benefit in the development of the applications. Inertia weight and increasing
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constriction factor that researchers are concern within improving the performance of

PSO are presented.

2.2 Routing Protocol in Wireless Mesh Networks

The routing in WMNs can be categorized into two types of routing protocol:

topology and position based as shown in Figure 2.1. Topology based uses topology

information from node to select route in the networks. Position based uses location or

position information of node in the networks such as Greedy Perimeter Stateless

Routing (GPSR) (Karp and Kung, 2000). Based on route discovery, the topology

based is divided into three types: reactive, hybrid and proactive. Reactive routing

protocol initiates route computation when there is demand from node in the network.

The source node asks permission to transfer the data packet and need a route for

transmitting to destination node. If there is no change in the network then the route

assumed remains valid. Therefore, when destination is unreached because the link is

broken or the node is no longer available, then routing protocol will update routing

table. A number of on-demand routing protocols have been proposed, for example

Ad hoc On-Demand Distance Vector (AODV) (M. A. H. N. W. Group, 2003), Radio

Metric AODV (RM-AODV) (T. I. W. Group, 2005), and Dynamic Source Routing

(DSR) (N. W. Group, 2007).

In proactive routing protocol, the node regularly updates one or more routing

table that contains routing information from other nodes. This process will apply to

all nodes in the network and consistently update the routing table on topology change

in the WMNs. A number of proactive routing protocols have been proposed, for

example Optimized Link State Routing Protocol (OLSR) (Automatique, 2003),

Radio Aware OLSR (RA-OLSR) (P802.11s™/D0.01, 2006), Topology Broadcast

based Reverse-Path Forwarding (TBRPF) (N. W. Group, 2004), Open Shortest Path

First Mobile Ad hoc Network (OSPF-MANET) (N. W. Group, 2010 ), and Fisheye

State Routing (FSR) (I. M. W. Group, 2002). Hybrid protocols, like Zone Routing

Protocol (ZRP) (I. W. Group, 2002) and Hybrid Wireless Mesh Protocol (HWMP)

(P802.11s™/D0.01, 2006) use a combination of both proactive and reactive activities
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to collect route information for transmitting the data packet to the destination in

WMNs.

Figure 2.1 Classification of the wireless mesh routing protocols (Zhang et al., 2007)

The OLSR is one of proactive routing protocol designed for quick response in

order to re-structure the routing table due to link failure and minimized the overhead

for maintaining data packet in WMNs. The features become completed with

advantage of OLSR using MPRs selection algorithm to cover weakness of proactive

routing protocol. The efficient technique called MPRs selection algorithm embedded

in OLSR is able to minimize the flooding through WMNs.

The development of MPRs selection algorithm has been proposed by

researchers to improve the performance in term of QoS parameters. They modified

the algorithm and evaluated in difference scenarios and applications. Reduce number

of MPRs node and increase the QoS performance are main issue to solve the problem

in MPRs selection.
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In Corson et al. (1998) a heuristic approach for MPRs selection was proposed

and documented as an internet draft.  The draft describes multipurpose network-layer

protocol called Internet MANET Encapsulation Program (IMEP) which is designed

to support the operation of many routing algorithms, network control protocols and

other Upper Layer Protocols (ULP) such as the algorithm of MPRs selection.  The

MPRs selection algorithm is defined by Viennot (1998), Qayyum et al.(2002), and

Jacquet et al. (2006) as NP-complete problem. They analyzed and proved that the

MPRs selection algorithm is NP-complete using dominating set. Qayyum et

al.(2002) examined the MPRs selection algorithm with different approach with

Viennot (1998) in term of NP-complete problem. The difference in their work is that

Qayyum et al.(2002) used simulation approach and Viennot (1998) use mathematical

analysis approach. The comparison between MPRs selection and classical link state

routing protocol is simulated and analyzed by A. Qayyum et al.(2002). MPRs

selection heuristic approach using dominating set problem was addressed by Garey

and Johnson (1990). Simulation is done to compare two types of algorithms, which

are pure flooding and MPRs heuristics, for the diffusion of packets in the radio

network. Viennot (1998), Qayyum et al.(2002), and Jacquet et al. (2006) explained

that flooding of data packet can effectively be reduced by the MPRs algorithm. The

evaluation performances of MPRs selection that was proposed in Corson et al. (1998)

was analyzed with analytical methods (generating function, asymptotic expansion)

for indoor (random graph) and outdoor (unit graph) environment models by Minet et

al.(2002). They (Minet et al., 2002) made comparison between MPRs OLSR with

non-optimized link state routing protocols. These researches (Viennot, 1998; Minet

et al., 2002; A. Qayyum et al., 2002; Jacquet et al., 2006) provided the proof of

MPRs selection as efficient technique to minimize the flooding without examined

using QoS parameters.

Other INRIA Technical Report written by D. Nguyen and P. Minet (2007)

added QoS parameters such as available bandwidth, delay, loss rate and residual

energy into MPRs selection. They made comparison in MPRs selection using non-

QoS and QoS parameters respectively. This research set number of nodes up to

10,000 nodes is unrealistic scenarios if implement in real environment. The

drawback of this approach is that QoS MPRs flooding generates more re-

transmissions per flooded message than MPRs flooding in large and dense network.
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The optimal path in MPRs selection using QoS parameters is an interesting

issue for the enhancement of the OLSR. The methods of MPRs selection have been

proposed for OLSR that select MPRs node by aiming to optimize some aspects

related to QoS, such as bandwidth and delay. Two algorithms (QOLSR_MPR1 and

QOLSR_MPR2) for MPRs selection based on QoS parameters are introduced (H.

Badis et al., 2004).  These approaches continue work from same authors to select

MPRs node using bandwidth and delay as QoS parameters called QOLSR (Hakim

Badis et al., 2003). In this study, the maximum bandwidth and minimum delay was

chosen as QoS parameters to improve quality requirements of the MPRs selection

and routing information. The comparison among standard OLSR, QOLSR,

QOLSR_MPR1 and QOLSR_MPR2 were made in order to examine each methods so

as to finding the optimum path. According with Leguay et al. (2006), QOLSR has a

number of drawbacks. First, QOLSR does not have backward compatibility with

other OLSR versions. TC and HELLO messages from QOLSR cannot be understood

by standard OLSR (RFC 3626). Second, bandwidth and delay are very difficult to

measure when using the IEEE 802.11 MAC layer. Third, QOLSR has lack of

flexibility due to the responsibility to use bandwidth and delay as basic metrics.

Irrespective of the three methods mentioned above, the QoS parameters are

used in different method of MPRs selection such as link stability (Obilisetty et al.,

2005), link delay measurement (Cordeiro et al., 2007), and probability of delivery in

data packet transfer (A. Qayyum et al., 2002; Gantsou and Sondi, 2007). Therefore,

Härri et al.(2005), Obilisetty et al. (2005), and Gantsou and Sondi (2007) also

combine probability or prediction approach using QoS parameters. The probability

and prediction using QoS parameters cannot determine network density whether in

small or large networks. This effect can increase MPRs size because of the collision

occurring in the receiver nodes.

The OLSR based link delay measurement called OLSR-MD can be used to

solve the weaknesses reported by Leguay et al. (2006).  The OLSR-MD results

demonstrate that the minimum delay metric performs best in terms of average packet

loss probability (Staehle et al., 2009). An analysis of the throughput and per-flow

delay reveals that OLSR-MD results in low throughput and high delay for nearly half

of all flows. This happened because the one-delay are determined with small probe
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packets before setting up the routing topology without consider traffic characteristic.

The link will experience higher delay or re-transmission due to congestion when

larger data packets are sent on links in WMNs.

The artificial intelligence algorithm such as genetic algorithm (GA),

simulated annealing (SA), tabu search (TS), greedy algorithm and neural network

(NN) also contribute to the improvement of MPRs selection algorithm in OLSR. The

MPRs selection using GA, SA and TS is introduced by Chizari et al. (2010). Nguyen

and Minet (2007) and Guo and Malakooti (2007) are proposed the greedy algorithm

and NN for achieving the improvement of the OLSR. These methods of MPRs

selection aim to minimize node re-transmission by selecting the MPRs node and to

deliver the data packet efficiently with less packet loss in WMNs. The drawback of

these methods is the computation time consumed in the node when calculation the

MPRs selection in WMNs.

2.3 Particle Swarm Optimization

PSO introduced by Kennedy and Erberhart (Kennedy and Eberhart, 1995) is

a population based stochastic optimization technique inspired by fish schooling and

bird flocking. A PSO algorithm maintains a swarm of particles as potential solution

in search space dimension. In paradigm of evolutionary computation, a swarm is

analogous to a population; a particle is analogous to an individual. The particles are

flown through search space dimension, where the position of each particle is updated

regarding to its own knowledge and that of its neighbors. The adjustment of

trajectories have been made by each particle to get best position from its previous

attained by any member of its neighborhood or globally, the whole swarm. Each

particle moves in search space dimension with adaptive velocity and keeps the best

position of the search space dimension it has ever visited. The searching of best

particles will continue until a relatively unchanging state has been encountered or

limit of generation/iteration has been exceeded.

Since its introduction, PSO has gone through many improvements and has

successfully been used in many applications (see section 2.6). Improving
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convergence of the PSO and increasing the diversity of the swarm are among the

most PSO modifications proposed by researchers (R. Eberhart and Kennedy, 1995).

The advantages of PSO algorithm are its simplicity and ability to converge to good

solutions. A number of modifications have also been made to the PSO including

improving the speed of convergence and the quality of solution. Bai (2010) reported

that the modifications in PSO could be categorized into four: inertia weights,

increase convergence factor, selection and hybridization with other intelligent

algorithms. The detail of the improvement in PSO will be discussed in section 2.6.

2.4 Particle Swarm Optimization Algorithm

The basic PSO concept consists of the position of the particle, velocity, social

and cognitive component. The particles change its condition based on inertia weight,

finding the condition according to its most optimist position and searching to the

swarm’s most optimist position. In the Figure 2.2, each particle flew searching its

personal best position (pbest) and global best (gbest) positions at each time step. The

pbest is the best position that the particle has visited since the first time step.

Moreover, the gbest is the best value in the group among pbest. The pbest and gbest

of particles are calculated as follows (Kennedy and Eberhart, 1995):
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where 1k
iv is the velocity of particle i at time step k. Velocity ( k

iv ) is weighted by a

random term, with separate random numbers generated for velocity toward pbest and

gbest positions. The fitness function is identified based on problem solved by PSO.

The terms c1 and c2 are cognitive and social coefficients that influence the

experimental knowledge of the particle and socially exchange information from the

particle’s neighborhood.
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Figure 2.2 Particle movements in PSO

The process of PSO can be described as follows:

1. Initialize an array of population of particles, S[n], with random

positions, k
iS , and velocities , k

iv ,  on dimensions in the problem

space.

2. Evaluate the optimization of fitness function in variables for each

particle.

3. Compare particle’s fitness evaluation with particle’s pbest. If current

value is better than pbest, then set pbest position equal to current

position in search space dimension.

4. Compare fitness evaluation with the population’s overall previous

best. If current value is better than gbest, then reset gbest to the

current particle’s array index and value, 1k
iS .

5. Change the velocity and position of the particle according to equations

(2.1) and (2.2) respectively:
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where ,, 1k
i

k
i vv and k

iS are velocity vector, modified velocity and

positioning vector of particle i at generation k, respectively. The c1 and

c2 are learning factors. Loop to step 2 until a criterion is met, usually

a sufficiently best fitness or a maximum number of generations.
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2.5 The Advantage of Particle Swarm Optimization against Genetic

Algorithm

Evolutionary computations are stochastic population based on optimization

approach that is inspired by the behavior of nature.  Comparison of PSO with other

evolutionary computation especially with genetic algorithm (GA) has been done by

other researchers such as (Angeline, 1998; R. C. Eberhart and Shi, 1998; Boeringer

and Werner, 2003; Elbeltagi et al., 2005; Hassan et al., 2005; Jones, 2006; Panda and

Padhy, 2008). All evolutionary computation processes have same paradigm, which

are updating the population by applying some iteration/generation. Thus, the

similarity between the techniques is that they do not require gradient information of

the fitness function to be considered. However, all techniques begin with a group of a

randomly generated population and utilize a fitness value to evaluate the population.

Thus, searching process is done in parallel based on the population. Finally, the

particles update the population and search for the optimum value based on the

objective of fitness function.

The main difference between the PSO and GA is that PSO does not have

genetic operators, such as crossover and mutation as in GA. The population will

change when the particle in PSO updates its velocity. In GA, the chromosome share

information with each other. Thus, the population moves like one group towards an

optimal value based on objective of fitness function. In PSO, only the best particle

carries the information to others. All particles are kept as members of the population

in PSO through the direction of the run.

Based on computation process, there are some advantages of PSO compared

to other evolutionary algorithms. PSO is easy to implement and computationally

inexpensive since its memory and CPU speed requirements are low (Hassan et al.,

2005; Jones, 2006). Jones (2006) states that GA needs at least ten steps to realize a

basic GA and basic PSO needs only five steps. Furthermore, the PSO requires less

parameter to be adjusted than others. Thus, the PSO has quick convergence ability in

searching for optimum or near-optimum solution (Angeline, 1998). It can be

concluded that PSO has been proven to be an efficient method for numerous general

optimization problems (Kennedy and Eberhart, 1995).
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2.6 Improvement of Particle Swarm Optimization

As far as PSO algorithm is concerned, solution swarm is compared to the bird

swarm, the birds’ moving from one place to another is equal to the development of

the solution swarm, good information is equal to the most optimist solution, and the

food resource is equal to the most optimist solution during the whole course. The

most optimist solution can be worked out in the PSO algorithm by the cooperation of

each individual. The particle without quality and volume serves as each individual,

and the simple behavioral pattern is regulated for each particle to show the

complexity of the whole particle swarm. This algorithm can be used to work out the

complex optimist problems.

The PSO has been remarkably successful in a number of problems and

applications such as:

 antenna design (Jin and Rahmat-Samii, 2008; W. T. Li et al., 2008)

 communication networks (Jiabin et al., 2010; Xuemei et al., 2010)

 wireless routing (Shahzad et al., 2010; Xuemei et al., 2010)

 control (Oliveira et al., 2009; Wei and Kangling, 2009)

 distribution networks (Alinejad-Beromi et al., 2008; Qianjin and

Chuanjian, 2010)

 robotics (Vatankhah et al., 2009; Adam et al., 2010; Ma and Lei,

2010) and etc as reported by Poli (2008).

Engelbrecht (2006) added the improvement of PSO also including standard function

optimization problems (Angeline, 1998; Ho et al., 2006; Jong-Bae et al., 2006),

training multi-layer neural networks (Chaurasia and Daware, 2009; Ye, 2009; Zhang

Yu et al., 2010) and solving permutation problems (Zhixiong and Shaomei, 2006;

Moraglio and Togelius, 2010).

The PSO proved to be able to solve various numbers of problem and

applications for improving performance. The application research involves

continuing its advantages, overcoming its shortcomings and developing its

application ranges. Among the optimization algorithm, PSO become the solution for
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solving the problems that only require less computation process and memory. These

advantages give opportunity to our research in OLSR especially MPRs selection

algorithm to achieve better performance and compete with standard OLSR.

In Bai (2010) it was shown in that there are four parameters that researchers

focused on in order to improve on PSO in several applications including wireless

mesh routing protocol. The parameters are inertia weight, increase convergence

factor, selection mechanism and hybridization with other intelligent algorithms.

According Bai (2010), these parameters are the most that researchers are conceded

with to modify the PSO process and to get better performance when implemented in

systems or applications.

In the next section, we focus on the inertia weight and the convergence factor

only, because their functions are able to fulfill the requirement of MPRs selection in

OLSR and replace the standard one. Comparative analysis is conducted using several

methods of inertia weight and convergence factor to find suitable method for

improving MPRs selection performance in OLSR.

2.6.1 Inertia Weight

The concept of an inertia weight was developed in order to provide better

control of exploration and exploitation. The aim of inertia weight was to be able to

control the exploration and exploitation mechanism and to ensure convergent

behavior. Exploration is the capability of search algorithm to search different search

space dimension in order to find a good optimum. On the other hand, exploitation is

the capability to concentrate the search around a promising area in order to refine a

candidate solution. The balance between exploration and exploitation provides

optimum optimization algorithm. Thus, these objectives are addressed by the

velocity update equation.

The inclusion of an inertia weight parameter in the PSO algorithm was first

published in 1998 (Shi and Eberhart, 1998a) and the impact of inertia weight is

analyzed in (Shi and Eberhart, 1998b). The inertia weight (w) controls the

momentum of the particle by weighting the contribution of the previous velocity.
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Equation (2.3) and (2.4) describe the velocity and position update equations with an

inertia weight. It can be seen that these equations are identical to equations (2.1) and

(2.2) with the addition of the inertia weight (w) as a multiplying factor of k
iv in

equation (2.3).
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Engelbrecht (2006) divided two types of inertia weight (w) based on value:

 For w ≥ 1, velocities increase over time, accelerating towards the

maximum velocity with limited using velocity clamping and the

swarm diverges. Particle failed to change direction in order to move

back to promising areas.

 For w < 1, particles decelerate until the velocities reach zero.

Reaching zero value depend on the values of the acceleration

coefficients (c1 and c2).

If value of inertia weigh is set larger it facilitates exploration with increased

diversity. And smaller value of inertia weight promotes local exploitation. On the

other hand, when the value of inertia weight is too small it will eliminate the

exploration swarm capability. But for the smaller inertia weight, the position update

will be able to be controlied by the cognitive and social components.

Five different approaches to vary the inertia weight are introduced by

Engelbrecht (2006) briefly as follows:

 Random adjustments, where different inertia is randomly selected at

each iteration. The random inertia weight is calculated using Gaussian

distribution (Jinchun et al., 2000; Pant et al., 2007).

 Linear decreasing, where an initially large inertia weight (usually

0.9) is linearly decreased to a small value (usually 0.4) (Shi and

Eberhart, 1999).
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 Nonlinear decreasing, where initial large value decreases nonlinearly

to a small value. Nonlinearly decreasing methods allow a shorter

exploration time than the linear decreasing methods, with more time

spent on refining solutions (exploiting). There are many researchers

proposed nonlinearly decreasing methods such as  sigmoid function

(Adriansyah and H.M.Amin, 2006), nonlinear function modulated

inertia weight adaptation with time varying (Chatterjee and Siarry,

2006),  tracking and dynamic system (R. C. Eberhart and Shi, 2001)

and develop velocity updates without the cognitive component (Clerc,

2001).

 Fuzzy adaptive inertia, where the inertia weight using fuzzy logic

sets and rules (Shi and Eberhart, 2001).  Shi and Eberhart (2001)

define a fuzzy system for inertia adaptation to consist of:

- Two inputs, one represent the fitness of the global best position,

and the other is the current value of inertia weight.

- One output to represent the inertia weight change

- Three fuzzy sets, LOW, MEDIUM and HIGH, consecutively,

represented as a left triangle, triangle, and right triangle

membership function (Shi and Eberhart, 2001).

 Increasing inertia, where the inertia weight is linearly increased from

0.4 to 0.9 (Yong-Ling et al., 2003a, 2003b).

Moreover Engelbrecht (2006) describes four parameters of type of inertia

weight, that are type of inertia weight proposed by other researchers:

 (Shi and Eberhart, 1998b) proposed constant inertia weight. Shi and

Eberhart (1998b) proposed constant inertia weight to define

relationship between maximum velocity (Vmax) and inertia weight. It

is concluded the Vmax is small (≤ 2) and the inertia weight set to 1.

When Vmax ≥ 3 then the inertia weight set to 0.8. Another method of


