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Abstract— The growth of the Internet of Thi
presents challenges in the field of security. The

(IoT)
ntrusion

Detect ystem is an alternative to protecting the internet of
things. In this study, we propose an intrusion de n system
model that combines unsupervised algorithm and a deep neural

network. Autoencoder as unsupervised learning algorithm has
a function as a feature extractor that §2fds up the learning
process on a deep neural network. The performance of a deep
learning model depends heavily on the selection of
hyperparameters of neural network architecture. In this case,
we used Bayesian Hyperparameter Optimization to perform
hyperparameter tuning of deep learning models with various
activation and weight initialization techniques. The
accumulation result is useful to help determine the correct
activation function and weight initialization and the
hyperparameters that most influence the deep learning model.
The results of this study show that Bayesian hyperparameter
optimization can improve classification results significantly.
Evaluation using the BoT-IoT dataset, the classification
accuracy results in deep learning model can reach 99.99%.

Ke yward\'mmwk classification, hyperparameter, Bayesian
optimization, Intrusion detection system, IoT

I. INTRODUCTION

The Internet of Things (1oT) is a significant component of
industrial automation. A complex paradigm is a way of
securing an loT system that links billions of devices with
different characteristics [1]. Different new threats begin to
emerge and grow more sophisticated. This increases the need
for intelligent security solutions to secure data in IoT
networks, naggaly the Intrusion Detection System (IDS) [2].

Various machine learning (ML) and deep learning (DL)
algorithms have been proven to be used in the research area of
intrusion detection systems [3]. Especially for DL, some
techniques h een widely implemented for anomaly-based
IDS such as Deep Neural Network (DNN), Recurrent Neural
Network (RNN), Deep Belief Network (DBN) [4]. However,
the design of the deep learning model itself has several
hype meters which need to be decided when constructing
and tramning the model. In order to achieve optimal
performance of DL architectural model, the right
hyperparameters must be determined [5].

The optimisation method for hyperparameters in deep
ﬁaming models is a costly computational problem. It takes

is research has received funding from Indonesia Ministry of Research,

configuration manually. The tuning proc an be done
automatically with various methods such as Grid search [12],
Random search [14], and Bayesian optimization [6], [15]
which is more flexible than manually tuning hyperparameters
(rial and emror) on deep learning models. Among these
methods, Bayesian optimization can produce better and faster
configurations than HPO with grid search and random search
techniques [5], [15]

several hours or even d'dy‘a to evaluation some I]IE)CI'[)HI‘HII]CI'EI‘

Contributions in this study include are: (1) we proposed
deep learning models using unsupervised autoencoder and
supervised deep neural networks using the Bayesian
hyperparameter optimization approach; (2) The results of this
study also evaluate the use of ReLU wariant activation
function in deep learning model so it can help determine the
proper activation function in deep learning model; (3) In
evaluation process we used various weight initialization
techniques to evaluate the impact of initialization technique to
the activation function.

We list the abbreviations and acronyms used in the paper
as a quick and convenient guide in Table 1.

TABLE L ACRONYMS AND ABBREVIATIONS LIST
ANN Artificial Neural Network
BO Bayesian Optimization
) Deep Autoencoder
%S Distributted Denial of Services
Deep Learning
DNN Deep Neural Network
DoS Denial of Service

Exponential Linear Unit
Hyperparameter Optimization
Intrusion Detection System

&

loT Internet of Things
ML Machine Learning
NIDS cork Intrusion Detection System

PrelLU metric ReLU

RelU ified linear units

SELU Scaled Exponential Linear Unit

SMOTE  Synthetic Minority Oversampling Technique

The rest of this paper is structured accordingly. In Sccan
2, we briefly analyze some relevant works corresponding to a
state-of-the-art method of deep learning and optimization of
hyperparameters in the framework of intrusion detection.
Section 3 presents our proposed DL architecture, and some
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methods of qwdl work are used. We give explanations of our
experiments 1n Section 4 and present the results. Finally, in
section 5, we end this paper with a few remarks.
II. RELATED WORK

Utilization ot deep learning (DL) in intrusion detection
systems has succeeded in impm\f\éaccm‘acy and attack
recognition [7]. The classification performance of the DL
model depends on the architecture of the DL. Some
researchers use various autoencoder variants in NIDS for
feature learning prgiAses combined with different classifiers
[8]-[11]. Author Yang et al. [8] combined improved
conditional variational autoencoder (ICVAE) with a deep
neural network. In the process to get the best model, a manual
gri rch was performed to determine hypermparameters such
as number of hidden layers, the number of nodes, the
learning rate, and L2.

Other researchers Rezvy et al. [9] used an AE autoencoder
in combination witfel dense neural network. AL-Hawawreh
et al. [10] proposed Deep Autoencoder (DAE) in combination
with the Deep Feed Forward Neural Network (DFFNN) as a
classifier. Zhao et al. [11] proposed method to identify new
forms of attacks through a Semi-Supervised Discriminant
Auto-encoder (SSDA) combined with a heuristic misiug

Most of the selection of DL model structures such as the
number of nodes, the number of hidden layers and several
other hyperparameters in previous researches performed
manually (trial and error) or with a limited combination of
grids. In fact, model performance is very sensitive to
hyperparameter layout as shown by Pawlicki 2019 [12] which
uses manual grid search to find hyprameter epoch, batch
size, activation function, oizer, number of hidden layers
and number of neurons in Artificial Neural Network (ANN)
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B. Dataset

This study uses the Bot-IoT dataset [17], which represents
an attack on the IoT environment. This dataset has been

Hyperparameter Tuning
using Bayesian Optimization

based on NIDS. The hyperparameter tuning process is
essential to improve deep learning performance [6], [13].

II. METHOD AND DESIGN
A. Proposed Model

In our previous study [16], we used the autoencoder based
feature extraction with various activation functions and a
varied number of nge§ll. The results of this study show the
activation function, and the number of nodes in the hidden
layer significantly determi e detection and classification
performance. However, the process of feature extraction in the
intrusion detection system [16] still uses manual search based

rial and error and is very time-consuming. For this reason,

isresearch, we propose an intrusion detection system with
an autoencoder pre-training process and a DNN classification
with a hyperparameter tuning process based on Bayesian
optimization (

The phases ot the proposed model can be seen in Figure 1,
which starts by choosing a dataset and pre-processing dataset.
For pre-training, the deep learning model uses an
unsupervised autoencoder algorithm which extracts features.
The encoder layer model will be transferred to a classifier
using a deep neural network. To improve accuracy
performance, we used automatic hyperparameter tuning based
on a Bayesian optimization ). The evaluated
hyperparameters are learning rate, number of nodes on a
hidden layer, batch size, activatio nction and weight

initialization. One of the focuses of this research is to
investigate the effect of hyperparameter tuning on deep
learning models using only 1 hidden layer. The Gaussian BO
function automatically updates the hyperparameter value to
the model evaluated by a certain number of iterations to obtain
the best results.

r

DNN Classifier | Evaluate Accuracy
1 Performance
Fine Tuning | On Validation-set

Update
Gaussian
Process

Gaussian Process

selected because it represents a quite rea]istic%»T attack
environment compared to the previous dataset. This dataset
consists of four types of attacks, namely DoS, DDoS,
information gathering and information theft. The attack types
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are grouped into eleven sub-classes as 1n Table 2. The number
of records from the dataset is quite large, more than 72
million records. In this experiment, we used the 5% version
of the entire dataset that consists of 46 features.

TABLE IL COMPOSITION OF THE BOT-10T DATASET USED
Flow  Training- Testing- Training-set
Category Sub Category count set set SMOTE

Normal Normal 477 381 96 50000

uUDP 1032975 826412 206563 8216412

DoS TP 615800 492826 122974 492826

HTTP 1485 1217 268 SO000

UDP 048255 T58690 189563 758690

DDoS TCP 977380 TRIGOT 195773 TR1607

HTTP YRy 87 202 50000

. Service_Scan Til68 SB4TO 14698 SB4T0
Reconnaissance - .

08 Fingerprint 17914 14364 3550 50000

Theft Keylogging ) 73 59 14 S0000

Data_Exfiltration ] 7 3 50000

Total 3668322 2034820 733706 3218005

40
In feature selection From Efeatures of the BoT-loT
aset [17], there were several features were eliminated, i.e.
pkSeqlD, stime, flgs number, proto number, saddr, sport,
daddr, dport, state number, and ltime. These features were
eliminated due to some duplication of features, and other
features are more specific to the identity of packages that are
not related to an attack's characteristics. Next step, we applied
feature modification in label subcategory by merging label
category-subcategory to facilitate the grouping of attack types.
Then attack, category and subcategory features are used as
labels. In the feature encoding process, we used a one-hot
encoding method for nominal or categorical features in flags,
protocol and state. The feature flag was mapped to 9 features,
and the feature protocol became 3, the feature state became
11. Feature labels have also been mapped into five classes for
categories and eleven classes for subcategory. After the
encoding process, the overall features of the data set were
transformed into 56 features, which became the input features

of the deep learning mg,

Furthermore, the dataset was divided into 80% into
training scts and 20% into testing scts. Specifically, for the
data_cxﬁtiun class, we added data redundancy for the
balanced process of the datasheet. The number of classes of
the subcategory itself is very imbalanced, especially for the
theft attack category (see table 2). We used the Synthetic
Minority Oversampling Technique (SMOTE) method to
generate balanced data then the IDS model could detect all
class attacks correctly. This balanced SMOTE process was
only carried out on the training set data by upsampling from
small data to 50000 samples.

The last step, Feature scaling is a process to convert data
into a specific range. In this phase, the feature scaling process
on training-set and testing-set uses Min-max scaling with a
range of [0.1]. Then the data is ready to be used on the deep
learning model

C. Deep Learning Model

Figure 1 shows a proposed deep architectural model. The
deep learning model uses a pre-training process using an
unsupervised autoencoder and a fine-tuning process with a
supervised DNN. The pre-training process with this
autoencoder is useful for extracting knowledge from

ipervised training sets. Autoencoder consists of 2 stages
of encoding a oding. The encoding process will
compress the mput data into a low-dimensional

representation. Then the decoder process will reconstruct the
low-dimensional data from the encoder so that the output
results from this autoencoder process produce an output that
is close to the input data. The encoder vector function h is
denoted as givenin (1).

. z=f(W.x+b) (1)
19

W 1s the weight matrix, and b is & bias vector, x is the input
feature vector, while f (.) is the activation function used.

The decoder function returns the vector z to the output
vector X, which has the same dimension as the input.

2=fWT. h+b" (2)

The activation function fEin this decoded process used
sigmoid. The loss function uses the mean square error ( MSE)
that will minimize the difference between the input and output
vectors.

Then by using the encoding vector z, which is a
representation of the extracted data, will be transferred to the
DNN 1 1. So the DNN model will consist of 3 layers,
namely the input layer and the hidden layer that comes from
the encoding layer, is then added to the output layer using
softmax activation. In supervised DNN, using bias values and
matric weights transferred from the encoding layer is retrained
to predict labess, Output labels will be evaluated in each
iteration using categorical cross-entropy as loss function, and
adam as optimizer function.

D. Bayesian Optimisation

Bayesian Optimization (BO) is an optimization model that
generates predictive distributions of potential value with a
probability approach to optimize the Blackbox function to be
optimized [18]. This Bayesian optimization process will look
for the next sampling point x; value by optimizing the
acquisition function using the Gaussian process:

%, = argmax,u(x|Dy 1) 3)

Where t = 1,2,--- is an iteration for several samples of
hyperparameter combinations to be evaluated, x is the
hyperparameter value to be observed. u is the acquisition
function, and D,.,_, is the posterior distribution to be
opted,

In this experiment, we use the Expected Improvement (EI)
(in equation 4) as acquisition function to take a sample from
the

EI(x) = Emax(f(x) = f(x"),0) “

f(x") represents the best sample value to far and x*is the
sample 's position.

E. Performance Metrics and Environment Setup

Evaluation of deep learning after hyperparameter
optimization used accuracy as a metric performance. We also
observed the time required to see the impact of the activation
and kernel initialization functions on the model in the deep

del training phase. After obtaining the most accurate
performance of the model, it is evaluated using the testing-set.
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The experiment was conducted using Python on the
Google Collaboratory framework using the Tensorflow and
Keras libraries. The Bayesian Optimization Hyperparameter
Method used the Skopt Optimization Library [19] to produce
the best model. Some of the hyperfeffameter values that the
tuning process performs include the value of the learning rate,
the number of hidden layer nodes, the activation function, and
the initial kernel (see Figure 1).

The pre-training process for the autoencoder and fine-
tuning of the deep learning model only uses 10 epochs each
stage. When training the DNN model, the training set that has
been upsampled with SMOTE becomes 3,218,005 records
data, 80% split for the learning process, and 20% for the
validation process. The best model obtained is re-evaluated
using a testing-set of 733,706 data.

IV. RESULTS AND DISCUSSION

A. Results of Bayesian Optimization

BO is only effective on continuous hyperparameters [15].
Therefore, BO was run in parallel to accelerate the tuning
process for hyperparameters in categorical dimensions such as
activation and weight initialization. Table 3 showed the effects
of hyperparameter tuning for the entire activation function and
the initial kernel function.

TABLE IIL BEST ACCURACY RESULTS FOR VARIOUS ACTIVATION AND
WEIGHT INTIALIZATION.

the best value after uning

base value *
Activation  Weight Learmi btk
function lization training  Leaming atch
Accuracy time rate nodes size  Accuracy
C

un_normal 0.8455 2BR.62T  0.0100 45 256 099975
glorot_uniform  0.8479 281494 0.0019 45 32 009000
he_normal 0.8207 282519 0.0100 45 128 099977

ELU lecun_uniform  0.8407 282.028  0.0100 45 256 099974
glorot_normal — 0.8376 283488 0.0100 45 256 099976
he_uniform 0.8413 282708  0.0100 45 256 099989
normal 0.8233 260454 0.0085 37 64 0.99901
lecun_normal 0.8250 266204  0.0051 28 128 098645
glorot_uniform  0.8385 26655 0.0100 20 256 098632
he_normal 0.8291 266814 0.0014 45 256 0.98481

LeakyReLU lecun_uniform  0.8299 266395 0.0029 45 32 048374
glorot_normal — 0.8377 267.113  0.0100 20 256 098526
he_unifgn 0.8377 264356 0.0006 20 32 008369
norma 0.8219 264731 0.0007 44 32 098574
lecun_normal 0.8353 232745 0.0100 45 128 0098474
glorot_uniform  0.8398 235674 0.0036 45 256 098508
he_normal 08381 23404 0.0040 21 32 D9B4RS

PReLU lecun_uniform 0.8322 232393 0.0020 45 32 098559
glorot_normal 08278 233031 0.0024 45 256 098501
he_unifgr 0.8317 23307 0.0011 20 32 098512
norma 0.8167 23635 0.0100 43 256 098607
lecun_normal 0.8527 250305 0.0099 30 64 000980
glorot_uniform  0.8432 248926 0.0100 45 32 099985
he_normal 0.8555 247071 0.0100 45 256 099985

ReLU lecun_uniform  0.8480 250595 0.0100 45 256 099982
glorot_normal 08569 252508 0.0100 45 32 099979
he_uniform 0.8504 249746 0.0100 45 32 099986
normal 0.8348 252115 0.0061 45 256 099967
lecun_normal 0.8620 252041  0.0017 45 32 099989
glorot_uniform  0.8775 254434 0.0100 45 32 099970
he_normal 0.8764 254358 0.0021 34 128 099958

SELU lecun_uniform  0.8657 25435 0.0034 45 32 099982
glorot_normal — 0.8767 255125 0.0100 45 64 099833
he_uniform 08791 253952 0.0053 25 32 099967

0.0100 25 256 000058

function and the kernel initialization. The deep learning model
is evaluated with 35 combinations with the hyperparameter
tuning BO process using the Gaussian Process for the value of
learning rate, number of nodes and batch_size. The base value
of the wvariety of the acti n and kernel initialization
functions uses the learning rate = 0.00001, the number of
neurons in the hidden layer = 30 and batch_size = 256.

Base - Accuracy
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Fig.2. Performance-based model based on combination activation and
kernel initialization using base value before tuning hyperparameter

The SELU activation function dominates the other
activation functions for the whole weight initialization
function in table 3 and Figure 2. SELU is a self-normalizing
development of ELU, makes learning particularly robust and
faster [20]. And the highest accuracy of 87.91 % is achieved
by he_uniform weight initialization. Figure 2 also shows that
the ReLU activation function is relatively stable for base
value.

Best -Accuracy
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Fig. 3. Performance-based model based on combination activation and
kernel initialization after tuning hyperparameter

We can observe the training process time for the base
value in Table 3. With the same hyperparameters, it points out
that PReLU activation function is the activation function with
the fastest training process. It shows that PReLU tends to
perform better for a limited number of epochs than ReLU. In
the meantime, ELU activation function is the activation
function with the longest learning time. 1t indicates that ELU
is slightly slower to train from these findings. The ELU
function has an exponential computation that slows down the

normal g:l.ﬂi‘)ﬂ 251.503
* for hase value ing rate= 000001, number of neuron =30, and batch sze=256

There were 5 activation functions of ReLU variants
evaluated in the experiment. Each of these activation functions
was tested using various weight initialization fun@dons. So
there were 35 kinds of combinations between the activation

process{2HMeanwhile, the effect of weight initialization is
not significant due to the unpredictable random factor.

After the hyperparameter tuning process with the total
number of evaluations was carried out for each combination n
calls = 15, the entire model has been evaluated with as much
as 525 options. Table 3 and Figure 3 show that, after tuning
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with BO and Gaussian Process, the accuracy value increases
to over 98.3%. Using the ELU activation function, normal
weight initialization, learning rate value at 0.0085, number of
nodes 37 and batch size 64, the results of the best accuracy
value reaching 99.991%.

Figure 3 also indicates the accuracy of the LeakyReLU
and PReLU activation functions underperformed due to other
activation functions. For all the tests performed, the
LeakyReLU alpha value was 0.01. The effects of LeakyReLU
could be affected by choosing the o value which is not the
optimal. Similarly, PReLU activation used only the default
value of the keras library in the experiment. There are several
alpha parameters PReLU itself, such as initialization,
restriction and regularizer, which must be tuned also to obtain
optimum value. Figure 3 also indicates the efficiency of the
LeakyReLU and PReLU activation functions underperformed
due to other activation functions.

The BO procedure searches hyperpmeters based on the
search-space dimension range on the learning rate, batch size
and number of hidden nodes. Figure 4 described the search
space dimension on the objective function for the ELU
activation function and normal weight initialization. The value
of partial dependencies is determined by calculating the
average target of many random samples for the

features had the greatest effect on the increased accuracy. And
results are shown to be the learning rate followed by the batch
size value for that have a significant impact on improving
accuracy. In contrast, the number of neurons doesn't have a
considerable effect on classification accuracy.

Feature Importance of Hyperparameters

leaming_rate

batch_size

neuron_hidl

an a2 04 3 o8 10

Fig. 5. Feature Importance of Continous hyperparameters

B. Performance Evaluation and comparison

After finding the best model for all ReLU, ELU, SELU,
LeakyReLU and PReLU activation functions, the best model
is evaluated using a testing-set. Table 4 summarizes the
findings of the best model assessment.

dimension of the learning rate, batch size and the number of ~ TABLEIV.  EVALUATION OF BEST MODEL IN TESTING-SET

nodes. The red‘ star m-dlcates: thﬂ‘t_-observed value. In Activation eight Data Trein Data Test
Figure 5é the best value for the study rate is 0,l1085, batch_size function intialization Loss  Accuracy  Loss  Accuracy
is 64 (2°) and the dense number 37. In the figure, the closer ELU normal 0000657 0999915 0001214 0999931

0.000729  0.999905
0.000907  0.999592
0.066026  0.986334
0.067739  0.986068

0.000854  0.999920
0.001423  0.999890
0.069737 0.985508
0.070105 0.985264

the average accuracy as objective value is to 0.01 (low = le-
6, h le-2). The higher the average accuracy. Similarly,
the higher the number of nodes, the higher the average

SELU lecun_nommnal
RellJ lecun_nomal
LeakyReLU glorot uniform
PRelLU normal

accuracy of the objectivelsfalue. In table 3, most of the best

values are obtained in the number of nodes in the hidden layer
at the largest value of the dimensional interval (low = 20, high
=435).
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Fig. 4. Partial Dependence plots of the objective function in ELU as
activation function and kemel _initialization normal

The effect of variable continuous hyperparameters that are
tuned based on the impact of increasing accuracy performance
can be evaluated from the general results of various
combinations of hyper-parameters (Figure 5). The results of
the different combinations of hyperparameters were tested
with a random forest regressor to decide the hyperparameters

The best score for the ELU activation function on the
testing set is 99,993%. The best accuracy as objective function
value is close to 100 % for any weight initialization with the
hyperparameters of the search space (15 calls).
Hyperparameter tuning with Gaussian method accelerates the
deep-le: g model's convergence, while in autoencoder as
well as n deep neural network processes the number of the
epoch was only 10.

Aﬂe@‘unning all those experiments, the activation
function ndeed affec final accuracies and the losses. ELU
activation is robust than ReLU, SELU, Leaky ReLU and
PReLU activation functions. The discussion of previous
studies by Pedamonti [20] supported this finding
Furthermore, the stability of the activation function must be
considered when selecting it. The results show that after
tuning, LeakyReLU and PReLU are significantly less accurate
than other activations. So it is necessary to determine the value
of the alpha parameter for both activation functions.

Owerall, the results obtained using just a small epoch with
BO's hyperparameter tuning method are very ng with
classification results will exceed 99.993% even with a small
number of epochs (10 epochs in the pre-training method and
10 epochs in the classification process). Compared to some
previous studies using the same data set for multiclass
classification, the detection rate (weighted overall accuracy)
results achieved are superior. As in previous studies by Alkadi
et al. [22] using Mixture Localization-based Outliers (MLOs)
and Gaussian mixture model to classify multiclass attacks
trends of only 97.98%. Similarly, the best results for deep
autoencoder models with a detection rate of 98.394% were
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obtained for research carried out by Ferrag et al,which
evaluated several deep learning models. Khraisat et al. [23]
proposed a hybrid intrusion detection system using an
ensemble method for the same datasets with features
selection. The detection rate of the proposed model was
99.97%.

Finally, our experiment has shown that the performance
depends on how we change the optimizer hyperparameters
and how we set up our deep learning model. In this study, ELU
activation and normal weight initializer with Bayesian
optimization using the Gaussian process were better than the
others, but this may not be the case with other tasks and other
data. In developing a deep learning model, multiple
possibilities need to be tested, and hyper-parameter selections
used to evaluate which options are best.

V. CONCLUSION

We proposed in this study deep learning models in
intrusion  detection  framework using unsupervised
autoencoder and supervised deep neural networks using the
Bayesian hyperparameter optimization method. With the
hyperparameter tuning process using Bayesian optimization,
the detection rate valé‘ of the BoT-IoT dataset has been
increased to 99.993%, which is higher than the previous state
of the art From the results of the best model after
hyperparameter tuning, it was found that compared to the
evaluated ReLU variant, the ELU activation function provided
the best performance. Based on the obtained results, the
learning rate value is the continuous parameter, which
influences most in deep learning performance, while batch
sized and the number of hidden layer nodes has no significant

effect.

In the future, we will evaluate the deep learning model by
adding the number of hidden layers and other hyperparameters
and comparing them with various deep learning methods and
various datasets.
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