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Abstract—This study describes a security system using a
humanoid robot by utilizing speech recognition. The robot has
two main parts, namely, Raspberry Pi3 and two Arduino UNO
R3 as a slave. This robot is designed as a combination of speech
recognition and voice biometric. The instruction given by a
speaker must be obeyed by the robot using servo motor.
Meanwhile, for voice biometric, robot may give access to an
authorized person using speech recognition. Mel Frequency
Cepstral Coefficients (MFCCs), their delta, and delta-delta are
used as feature extraction which is fed to a classifier, Gaussian
Mixture Model (GMM). Results of this study show that the
robot may recognize the speaker with an accuracy of 99.4% and
99% for 50% of testing data and 20% of testing data,
respectively. Thus, this suggests that the combination of MFCC
and GMM can be implemented in speech recognition for
security system performed by the robot.
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I. INTRODUCTION

Humanoid robot can be defined as a machine which can
be programmed and has a capability to mimic human as well
as resembling human’s body [ 1]. There are various application
of humanoid robot, for example as an assistant in building
construction, education, and security system. However, not
many studies focus on robot for security system which utilizes
the speech. Thus, this study aims to utilize a humanoid robot
which is designed to give an access to an authorized person
into a room. The access is given based on speech recognition.
Some studies have implemented voice biometric for security
system. Kong Aik Lee et al. implemented speech technologies
for smart home [2]. Meanwhile, [3] utilized speech for fire
safety.

In this study, speech will be used as an access control for
entrance and robot will give permission based on speaker
recognition. Hence, the designed humanoid robot is not only
able to communicate to human but also to control the security
system through speech recognition. In speech recognition,
utterances spoken by speaker are processed to generate
features which is then sent to the speech engine. Thus, features
extraction 1is important in speech recognition. The
combination of Mel Frequency Cepstal Coefficients (MFCCs)
and Dynamic Time Wraping (DTW) was used in [4]. MFCC
and probabilistic neural network have been implemented for
speech recognition in [5]. MFCCs have been utilized as
feature extraction because they may capture the characteristic
of voice and have low complexity in the speech recognition
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[6]. Thus, this study also uses MFCC because it is based on
human hearing perception. Later, speech will be classified
using Gaussian Mixture Model (GMM).

The paper will be organized as follows. In Section 2,

thods implemented in the study are described. The
experimental results and a discussion of the results are
provided in Section 3. The conclusion is presented in Section
4.

II. METHODS

The proposed security system was designed using a
humanoid robot which can recognize an input speech to give
a signal so the access will be opened. There are two parts that
must be considered in the robot design, namely electronic
system and body design.

Electronic system relates to wiring among components so
they can work well. The wiring must suit with the
communication sets between Rapberry Pi as a master and
other components such as Arduino Uno, servo motor, Radio-
frequency identification (RFID) MFRC522, and LED matrix.
Communication between these components uses serial, serial
peripheral interface (SPI), and Inter-integrated circuit (I12C)
since they need less cable so the design becomes simpler. The
design of electronic system of the proposed robot can be seen
in Fig. 1. After the electronic system, another importan part in
designing the proposed robot is the body which is made by a
mannequin. Fig. 2 shows the visual of the proposed robot.

Fig. 1. Design of Electronic System
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Fig. 2. Visual of Robot

In the robot, two main controls utilize Rapberry pi and two
Arduino UNO as control slaves which control two LED
matrix. These LED matrices functionize as the robot’s eyes
and robot’s name as shown in Fig. 2.

The designed robot must be able to recognize the speech
as the biometric to access the security system. The input
speech which is captured by a microphone will be processed
by Raspberry Pi to open the access. To prevent the failure of
accessing the security system, radio-frequency identifigsltion
(RFID) is used as the additional key. Working system of the
proposed method can be seen in diagram as in Fig. 3.
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Fig. 3. Working System of Robot

Flowchart of speech recognition which is used as the
biometric for a security system is shown in Fig. 4. At the
beginning, the speech is recorded by a microphone and then
the feature is extracted to capture characterictics of the speech.
Here, Mel Frequency Cepstral Coefficients (MFCCs), their

ﬁa, and delta-delta are used as the features trained by
Gaussian Mixture Model (GMM). After training, the new
data is input to the trained GMM to identify the speaker. Ifthe
speaker is recognized, then this information is sent to the
Arduino in robot to turn LED on or relay ON which indicates
the speaker is the same as the trained dataset.
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Fig. 4. Flowchar of Speaker Recognition for Security System

In the proposed speech recognition, the input speech will
be pre-processed using short time energy to distinguish speech
from non-speech before extracting the features. MFCCs are
chosen as the feature because they represent the human’s
auditory characteristic. To get better extraction, delta and
delta-delta are added because MFCC can only obtain spectral
from a frame. In fact, an utterance also has dynamics [7][8].
Thus, delta and double delta will be useful to improve the
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accuracy of recognition. The process to obtain MFCC is
shown in Fig. 5. The extracted features are then trained using
a GMM which utilizes probability distribution approach as
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As shown in Table 2, recognition error may still occur.
When the speaker is not recognized, the security system does
not allow the user to accesss the room which is indicated by
LED off in the robot. It might be caused by the noise in
recoding. Using (3), the accuracy obtained is 99%. This result
is slightly lower than the testing using 50% data. It may imply
that the more data used in training, the less error may be
obtained. Thus, the more data used in the training may
improve the accuracy.

IV. CONCLUSION

In this work, the security system is performed using speech
recognition which is used in the robot to give an access to the
authorized person based on the recognized speech. The LED
in the robot turns on when the speaker is recognized so only
the authorized person gets an access to open security
system. From the testing performed to the system, MFCCs and
their delta and double delta and GMM as the classifier are
good combination to the speech recognition. The accuracy
achieved are 99.4 % and 99% for testing 50% and 20% of data,
respectively. The error occured in the proposed speech
recognizion may be caused by the noise in the recording
process.

Thus, in the future, we plan to use different algorithm for
recognition such as deep learning which may be robust for
noisy environment.
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