
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 16, No. 1, October 2019, pp. 389~394

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v16.i1.pp389-394 389

Journal homepage: http://iaescore.com/journals/index.php/ijeecs

Efficient mobilenet architecture as image recognition on mobile

and embedded devices

Barlian Khasoggi, Ermatita, Samsuryadi
Master of Informatics Engineering, Sriwijaya University, Indonesia

Article Info ABSTRACT

Article history:

Received Jan 7, 2019

Revised Apr 10, 2019

Accepted May 15, 2019

 The introduction of a modern image recognition that has millions of
parameters and requires a lot of training data as well as high computing power
that is hungry for energy consumption so it becomes inefficient in everyday

use. Machine Learning has changed the computing paradigm, from complex
calculations that require high computational power to environmentally
friendly technologies that can efficiently meet daily needs. To get the best
training model, many studies use large numbers of datasets. However, the
complexity of large datasets requires large devices and requires high
computing power. Therefore large computational resources do not have high
flexibility towards the tendency of human interaction which prioritizes the
efficiency and effectiveness of computer vision. This study uses the
Convolutional Neural Networks (CNN) method with MobileNet architecture

for image recognition on mobile devices and embedded devices with limited
resources with ARM-based CPUs and works with a moderate amount of
training data (thousands of labeled images). As a result, the MobileNet v1
architecture on the ms8pro device can classify the caltech101 dataset with an
accuracy rate 92.4% and 2.1 Watt power draw. With the level of accuracy and
efficiency of the resources used, it is expected that MobileNet's architecture
can change the machine learning paradigm so that it has a high degree of
flexibility towards the tendency of human interaction that prioritizes the

efficiency and effectiveness of computer vision.

Keywords:

CNNs

Deep learning

Image recognition
MobileNet

Tensorflow

Copyright © 2019 Institute of Advanced Engineering and Science.
All rights reserved.

Corresponding Author:

Ermatita,

Master of Informatics Engineering,

Sriwijaya University,

30862 South Sumatera, Indonesia.

Email: e-mail: ermatitaz@yahoo.com

1. INTRODUCTION
Convolutional neural networks (CNNs) are current state-of-the-art architectures and widely used as

image classification solutions [1]. CNNs make an important contribution to the great advances in computer

vision, especially in applications and everyday utilities such as self-driving car, robotics, drones, medical

diagnostics, and treatment for vision impairment. These successes spurred a new line of research that focused

on finding higher performing convolutional neural networks. Starting in 2014, the quality of network

architectures significantly improved by utilizing deeper and wider networks [2]. To improve network

performance, many studies use larger datasets, better learning models, and better techniques to prevent

overfitting [3]. In a study that has been done with relatively small image datasets with labels consisting of tens

of thousands to millions of images such as DeCAF [3], NORB [4], Caltech-101/256 [5, 6], and CIFAR-10/100

[7] can accomplish simple tasks with good image recognition results, especially when coupled with label-

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 16, No. 1, October 2019 : 389 - 394

390

preserving transformations. One of the most excellent research results with the lowest current error rate is on

the task of introduction of MNIST digits (<0.3%) closer to human performance [8].

In the model training of Convolutional neural networks (CNNs) [4, 6, 9, 10, 11, 12, 13], a model with

a large learning capacity is required. However, the complexity of large datasets requires large devices and

requires high computing power. Therefore, large computing resources do not have a high flexibility to the

tendency of human interaction which prioritizes the efficiency and effectiveness of computer vision.

Convolutional Neural Networks (CNNs) training with MobileNet architecture for image recognition on mobile

devices and embedded devices on limited resources with ARM-based CPUs and work with moderate amount
of training data (thousands of labeled images). This research get results with an accuracy of 86.3% by doing

30 minutes training with mobilenet architecture. With limited resources, these results are closely linked to

numbers that are not too far away when compared to the inception v3 architecture (with same dataset).

2. CONVOLUTIONAL NEURAL NETWORKS ARCHITECTURES

Convolutional Neural Networks have been some of the most influential innovations in the field of

computer vision. In 2012, year that CNNs grew to prominence as Alex Krizhevsky [1] used them to win that

year’s ImageNet competition, dropping the classification error record from 26% to 15%, an astounding

improvement at the time. Ever since then, a host of companies have been using deep learning at the core of

their services. Facebook uses neural nets for their automatic tagging algorithms, Google for their photo search,

Amazon for their product recommendations, Pinterest for their home feed personalization, and Instagram for
their search infrastructure.

CNNs are made up of neurons that have learnable weights and biases. Each neuron receives some

inputs, performs a dot product and optionally follows it with a non-linearity. The whole network still expresses

a single differentiable score function from the raw image pixels on one end to class scores at the other [14].

And they still have a loss function on the last (fully-connected) layer and all the guidelines developed for

learning regular Neural Networks still apply. CNNs architectures make the explicit assumption that the inputs

are images, which allows us to encode certain properties into the architecture. These then make the forward

function more efficient to implement and vastly reduce the amount of parameters in the network.

CNNs take advantage of the fact that the input consists of images and they constrain the architecture

in a more sensible way. In particular, unlike a regular Neural Network, the layers of a CNNs have neurons

arranged in 3 dimensions: width, height, depth. That the word depth here refers to the third dimension of an
activation volume, not to the depth of a full Neural Network, which can refer to the total number of layers in a

network, here is a visualization:

As described Figure 1, a simple CNNs is a sequence of layers, and every layer of a CNNs transforms

one volume of activations to another through a differentiable function. This research use three main types of

layers to build CNNs architectures: Convolutional Layer, Pooling Layer, and Fully-Connected Layer (exactly

as seen in regular Neural Networks). Later, this research stack these layers to form a full CNNs architecture.

Figure 1. The regular convolutional neural networks

3. MOBILENET ARCHITECTURE

MobileNets is a model constructed mainly from depthwise separable convolutions originally

announced in [15] and afterward used in Inception models [16] to decrease the volume of computation

constraints in the first few layers. Flattened networks [17] construct a network out of fully factorized

convolutions and presented the potential of exceptionally factorized networks. Factorized Networks [18]
presents a similar factorized convolution in addition to use of topological networks. Successively, the Xception

network [19] established how to scale up depthwise separable filters to perform better than Inception V3

networks. Another small network is Squeezenet [20] which uses a bottleneck method to design a very small

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Efficient mobilenet architecture as image recognition on Mobile and embedded devices (Barlian Khasoggi)

391

network. Other decreased computation networks include arranged transform networks [21] and deep fried

convnets [22]. This section will describe the principal layers that MobileNet is built on which are depthwise

separable filters.

3.1. Depthwise separable convolution

The MobileNet model is based on depthwise separable convolutions which is a procedure of factorized

convolutions which factorize a regular convolution into a depthwise convolution and a 1 × 1 convolution named

a pointwise convolution [26]. MobileNets depthwise convolution uses a single filter to every input channel.

The pointwise convolution then applies a 1 × 1 convolution to merge the outputs the depthwise convolution.

A regular convolution both filters and merge inputs into a new set of outputs in one step. The depthwise
separable convolution splits this into two layers, a separate layer for filtering and a separate layer for merging.

This factorization has the effect of extremely reducing computation and model size. Figure 2 shows how a

regular convolution 2(a) is factorized into a depthwise convolution 2(b) and a 1 × 1 pointwise convolution 2(c).

(a) Regular Convolutional Filters

(b) Depthwise Filters

(c) 1 × 1 Convolutional Filters called Pointwise Convolution in the context of Depthwise
Separable Convolution

Figure 2. The regular convolutional filters in (a) are replaced by two layers: depthwise convolution in (b) and

pointwise convolution in (c) to build a depthwise separable filter.

A regular convolutional layer takes as input a DF × DF × M featuremap F and produces a DF × DF ×

N feature map G where DF is the spatial width and height of a square input feature map1, M is the number of

input channels (input depth), DG is the spatial width and height of a square output feature map and N is the

number of output channel (output depth). The regular convolutional layer is parameterized by convolution

kernel K of size DK ×DK ×M ×N where DK is the spatial dimension of the kernel assumed to be square and
M is number of input channels and N is the number of output channels as defined previously.

𝐺𝑘,𝑙,𝑛 = ∑ 𝐾𝑖,𝑗,𝑚,𝑛 . 𝐹𝑘+𝑖−1,𝑙+𝑗−1,𝑚

𝑖,𝑗,𝑚

 (1)

Regular convolutions have the computational cost of:

DK . DK . M . N . DF . DF (2)

where the computational cost depends multiplicatively on the number of input channels M, the number of

output channels N the kernel size Dk × Dk and the feature map size DF × DF. MobileNet models report each

of these terms and their relations. First it uses depthwise separable convolutions to break the relations between

the number of output channels and the size of the kernel. The regular convolution operation has the result of

filtering features constructed on the convolutional kernels and merging features in order to produce a new

depiction. The filtering and combination steps can be split into two steps via the use of factorized convolutions

called depthwise separable convolutions for substantial decrease in computational cost. Depthwise separable

convolution are made up of two layers: depthwise convolutions and pointwise convolutions. Then depthwise

convolutions to apply a single filter on each input channel (input depth). Pointwise convolution, a simple 1×1

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 16, No. 1, October 2019 : 389 - 394

392

convolution, is then used to create a linear combination of the output. This model use both batchnorm and

ReLU nonlinearities for both layers.

Depthwise convolution with one filter per input channel (input depth) can be written as:

Ĝ𝑘,𝑙,𝑚 = ∑ Ĥ𝑖,𝑗,𝑚 . 𝐹𝑘+𝑖−1,𝑙+𝑗−1,𝑚

𝑖,𝑗

 (3)

where Ĥ is the depthwise convolutional kernel of size DK × DK × M wherethe m filterin Ĥ is applied to the m

channel in F to produce the mth channel of the filtered output feature map Ĝ.

Depthwise convolution has a computational cost of:

DK . DK . M . DF . DF (4)

Depthwise convolution is extremely efficient relative to regular convolution. However it only filters

input channels, it does not combine them to create new features. So an additional layer that computes a linear
combination of the output of depthwise convolution via 1 × 1 convolution is needed in order to generate these

new features. The combination of depthwise convolution and 1 × 1 (pointwise) convolution is called depthwise

separable convolution which was formerly introduced in [15].

Depthwise separable convolutions cost:

DK . DK . M . DF . DF + M . N . DF . DF (5)

which is the sum of the depthwise and 1 × 1 pointwise convolutions. By using convolution as a two step process

of filtering and combining to get a reduction in computation of:

𝐷𝐾 . 𝐷𝐾 . 𝑀 . 𝐷𝐹 . 𝐷𝐹 + 𝑀 . 𝑁 . 𝐷𝐹 . 𝐷𝐹

 𝐷𝐾 . 𝐷𝐾. 𝑀 . 𝑁 . 𝐷𝐹 . 𝐷𝐹
=

1

𝑁
+

1

𝐷𝐾
2 (6)

MobileNet uses 3 × 3 depthwise separable convolutions which increase efficiency than regular convolutions at

only a small reduction in accuracy. Additional factorization such as in [17, 2] does not show increase of

computation efficiency as very little computation is spent in depthwise convolutions.

3.2. Network structure and training
 The MobileNet structure is built on depthwise separable convolutions as mentioned in the previous

section except for the first layer which is a full convolution. By defining the network in such simple terms are

able to easily explore network structure to find a good network. All layers in MobileNet are followed by a

batchnorm [16] and ReLU nonlinearity with the exception of the final fully connected layer which has no

nonlinearity and feeds into a softmax layer for classification. Figure 3 contrasts a layer with regular

convolutions, batchnorm and ReLU nonlinearity to the factorized layer with depthwise convolution, 1 × 1

pointwise convolution as well as batchnorm and ReLU after each convolutional layer. Down sampling is

handled with strided convolution in the depthwise convolutions as well as in the first layer. A final average

pooling reduces the spatial resolution to 1 before the fully connected layer. Counting depthwise and pointwise

convolutions as separate layers, MobileNet has 28 layers.

Figure 3. Left: Regular convolutional layer with batchnorm and ReLU. right: depthwise separable convolutions

with depthwise and pointwise layers followed by batchnorm and ReLU

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Efficient mobilenet architecture as image recognition on Mobile and embedded devices (Barlian Khasoggi)

393

Instance formless light matrix operations are not typically faster than thick matrix operations until a

very high level of sparsity. This model structure puts nearly all of the computation into dense 1 × 1

convolutions. This can be implemented with highly optimized general matrix multiply (GEMM) functions.

Often convolutions are implemented by a GEMM but require an initial reordering in memory in order to map

it to a GEMM. This method is used in the popular Caffe package [23]. 1 × 1 convolutions do not require this

reordering in memory and can be implemented directly with GEMM which is one of the most improved

numerical linear algebra algorithms.

MobileNet models were trained in TensorFlow [24] using RMSprop [25] with asynchronous gradient

descent similar to Inception V3 [2]. However, opposing to training large models use less regularization and

data augmentation techniques that small models rarely have trouble with overfitting. When training
MobileNets, use side heads or label smoothing and additionally reduce the amount image of distortions by

limiting the size of small crops that are used in large Inception training [2]. Additionally, found that it was

important to put very little or no weight decay on the depthwise filters since their are so few parameters

in them.

4. MOBILENET ARCHITECTURE RESULTS AND ANALYSIS

In this section, first investigate the effects of depthwise convolutions as well as the choice of shrinking

by reducing the width of the network rather than the number of layers. Then show the trade offs of reducing

the network based on the two hyper parameters: width multiplier and resolution multiplier and compare results

to a number of popular models. And then investigate MobileNets applied to a number of different devices.
Result Performance of CNNs as shown in Table 1.

Table 1. Result performance of CNNs
Device Processor RAM(GB) Architecture Power(W) Execution Time(s) Final accuracy

Macbook(CPU)

Macbook(CPU)

Macbook(CPU)

Intel i5

Intel i5

Intel i5

8

8

8

Mobilenet V1 0.5 224

Mobilenet V1 0.75 224

Mobilenet V1 1.0 224

49.5

49.5

49.5

395.29

390.00

400.98

90.1%

92.1%

93.3%

PC(GPU)

PC(GPU)

PC(GPU)

GTX 1070

GTX 1070

GTX 1070

8

8

8

Mobilenet V1 0.5 224

Mobilenet V1 0.75 224

Mobilenet V1 1.0 224

192.7

192.7

192.7

396.44

396.57

386.83

91.8%

91.1%

92.3%

M8S PRO Amlogic S905X 2 Mobilenet V1 0.5 224 2.1 3099.80 88.3%

M8S PRO

M8S PRO

RaspberryPI3

Amlogic S905X

Amlogic S905X

Cortex-A53

2

2

1

Mobilenet V1 0.75 224

Mobilenet V1 1.0 224

Mobilenet V1 0.5 224

2.1

2.1

3.5

3103.25

3123.19

4636.49

91.0%

92.4%

89.2%

RaspberryPI3

RaspberryPI3

Cortex-A53

Cortex-A53

1

1

Mobilenet V1 0.75 224

Mobilenet V1 1.0 224

3.5

3.5

5611.14

5208.18

91.5%

92.6%

5. CONCLUSION
This paper proposed model architecture that can run on eco-friendly devices with MobileNets based

on depthwise separable convolutions. Result from investigated some of the important design decisions leading

to an efficient model. Then demonstrated how to build smaller and faster MobileNets using width multiplier

and resolution multiplier by trading off a reasonable amount of accuracy to reduce size and latency.

This research compared different mobile devices and different model architecture to demonstrating how

efficiency tradeoff with accuracy. Finally, this paper concluded that this can be solution for training data with

moderate dataset in real world with eco-friendly mobile and embedded device.

REFERENCES
[1] Krizhevsky, A., Sutskever, I., and Hinton, G. E. ImageNet classification with deep convolutional neural networks.

In NIPS, 2012.
[2] C.Szegedy, V.Vanhoucke, S.Ioffe, J.Shlens, and Z.Wojna, Rethinking the inception architecture for computer vision.

arXiv preprint arXiv:1512.00567, 2015.
[3] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, Trevor Darrell. DeCAF: A

Deep Convolutional Activation Feature for Generic Visual Recognition, Arxiv preprint arXiv: 1310.1531v1, 2013.
[4] Y. LeCun, F.J. Huang, and L. Bottou. Learning methods for generic object recognition with invariance to pose and

lighting. In Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer

Society Conference on, volume 2, pages II–97. IEEE, 2004.
[5] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: An incremental

bayesian approach tested on 101 object categories. Computer Vision and Image Understanding, 106(1):59–70, 2007.

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 16, No. 1, October 2019 : 389 - 394

394

[6] G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset. Technical Report 7694, California Institute
of Technology, 2007.

[7] A. Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, Department of Computer

Science, University of Toronto, 2009.
[8] D. Cires a̧n, U. Meier, and J. Schmidhuber. Multicolumn deep neural networks for image classification.

Arxiv preprint arXiv:1202.2745, 2012.
[9] A. Krizhevsky. Convolutional deep belief networks on cifar-10. Unpublished manuscript, 2010.
[10] H. Lee, R. Grosse, R. Ranganath, and A.Y. Ng. Convolutional deep belief networks for scalable unsupervised

learning of hierarchical representations. In Proceedings of the 26th Annual International Conference on Machine
Learning, pages 609–616. ACM, 2009

[11] Y. Le Cun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, L.D. Jackel, et al. Hand written digit
recognition with a backpropagation network. In Advances in neural information processing systems, 1990.

[12] N. Pinto, D. Doukhan, J.J. DiCarlo, and D.D. Cox. A highthroughput screening approach to discovering good forms
of biologically inspired visual representation. PLoS computational biology, 5(11):e1000579, 2009.

[13] S.C.Turaga, J.F. Murray, V. Jain, F.Roth, M.Helmstaedter, K.Briggman, W.Denk, and H.S.Seung. Convolutional
networks can learn to generate affinity graphs for image segmentation. Neural Computation, 22(2):511–538, 2010.

[14] K. Simonyan and A. Zisserman. Very deep convolutional networks for large scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[15] L. Sifre. Rigid motion scattering for image classification. PhD thesis, Ph. D. thesis, 2014.
[16] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate

shift. arXiv preprint arXiv:1502.03167, 2015.
[17] J.Jin, A.Dundar, E.Culurciello. Flattened convolutional neural networks for feedforward acceleration. arXiv preprint

arXiv:1412.5474, 2014.
[18] M. Wang, B. Liu, and H. Foroosh. Factorized convolutional neural networks. arXiv preprint arXiv:1608.04337, 2016.
[19] F. Chollet. Xception: Deep learning with depthwise separable convolutions. arXiv preprint arXiv:1610.02357v2,

2016.
[20] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, and K. Keutzer. Squeezenet: Alexnet level accuracy

with 50x fewer parameters and¡ 1mb model size. arXiv preprint arXiv:1602.07360, 2016.

[21] V. Sindhwani, T. Sainath, and S. Kumar. Structured transforms for small-footprint deep learning. In Advances in
Neural Information Processing Systems, pages 3088–3096, 2015.

[22] Z. Yang, M. Moczulski, M. Denil, N. de Freitas, A. Smola, L. Song, and Z. Wang. Deep fried convnets.
In Proceedings of the IEEE International Conference on Computer Vision, pages 1476–1483, 2015.

[23] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell.
Caffe: Convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.

[24] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, et al.
Tensorflow: Large scale machine learning on heterogeneous systems, 2015. Software available from tensorflow. org,

1, 2015.
[25] T. Tieleman and G. Hinton. Lecture 6.5 rmsprop: Divide the gradient by a running average of its recent magnitude.

COURSERA: Neural Networks for Machine Learning, 4(2), 2012.
[26] H. Andrew, Z. Menglong, C. Bo, K. Dmitry, W. Weijun, W. Tobias, A. Marco, A. Hartwig. MobileNets: Efficient

Convolutional Neural Networks for Mobile Vision Applications. arXiv preprint arXiv:1704.04861v1, 2017.

