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ABSTRACT Over history, games have served multiple purposes. It serves as a fun activity for players who
need the entertainment to become test-beds for artificial intelligence. Solving games is beneficial in providing
a better understanding of how information is progressing throughout the game. Uncertainty in games affects
the way a game is solved and the way the game is experienced. Previous works have interpreted uncertainty
in the game progress through various means, but there have been no clear links among those interpretations.
In this paper, the probability-based proof number search (PPNS) and single conspiracy number (SCN)
were used as the domain-independent indicators to analyze how uncertainty affects various game elements.
PPNS exploits information from certain and uncertain information to reach convergence in solving games.
Meanwhile, SCN evaluates the game states’ difficulty and describes game-playing patterns to understand
play positions better. The study’s objective focuses on finding the optimal difficulty ordering of a game
solver, defining the indicator for entertainment, and linking game-tree search and entertainment in different
game environments. Experiments results demonstrate the link between the search indicators and the measure
of entertainment where uncertainty plays a vital role in both contexts, verified from both two-person and
single-agent games. Such a situation is also crucial for both computation and entertainment measures since
it impacts both the quality of information and the expected game-playing experience.

INDEX TERMS Search algorithm, game tree, entertainment, single agent game, puzzle game, single
conspiracy number.

I. INTRODUCTION
Game is one of the most sought-after activities for a human as
a medium of entertainment. Currently, the game-playing cul-
ture has been proven as a place of comfort when human is not
allowed to enjoy physical, social activity [1]. The essence of
play that included the elements of fun [2], and purpose [3] had
been coincided with the transition of human wisdom and sen-
sibilities for several millennia. With the advancement of tech-
nology and communication systems availability (such as the
internet, personal computers, and fast computing resources),
design and research in games had been accelerated at a rapid
pace alongside the domain of artificial intelligence (AI) [4].

Many problems encountered in games reflect real-world
problems, which made the game’s uses much more impact-
ful [5]. Based on such notions, research in games had
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branched into many sub-fields, encompassing many dis-
ciplines. Among the most studied is game theory and
evolutionary games. Game theory involves mathematically
model conflicts and cooperation between intelligent, ratio-
nal decision-makers [6], [7]. Such a theory was widely per-
vaded in economic theory while being widely adopted to
better understand sociology, political, and biological phe-
nomena. Meanwhile, the evolutionary game is the adaptation
of the traditional game theory, which expanded the strate-
gic interactions to a large population of agents driven by
natural selection (population-wise) or by myopic decision
rules (individual-wise) [8]. The evolutionary game had been
applied to a variety of fields, such as transportation science,
computer science, sociology [9], environmental science [10],
ecology [11], and even epidemiology [12].

In regards to game studies in general, the notion of gam-
ification and ludification had been gained attention rela-
tive to educational studies [13], cultural anthropology and
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philosophy [14], as well as game studies’ influences on soci-
etal culture [15]. These studies emphasize that game-playing
and game designs’ behavioral aspects coincide with some
effects of societal interests, such as learning, thinking,
decision-making, and interactions within the digital spheres.
Moreover, purposeful design in games had been increasingly
being considered since it has been proposed by von Anh
back in 2006 [16] and had a close relation to the concept of
serious games [13]. The concept of game with purpose leads
to crowd-sourced computation that leverages vast resources
of human interactions with computers over the Internet.
Meanwhile, the concept of serious games adopted game
design elements in non-game contexts (i.e., healthcare [17]).
Purposeful design in games had been seen as a successful
adaptation of game-related concepts into automating data
labeling, and categorization [16], intention-based design [18],
and social-based and location-based data tagging [19].

The domain of games remains a fascinating ground for
AI development and test-bed purposes. The main reason for
games being used as AI test-beds is because it is cheap,
deterministic, easily repeatable and controllable, as well as
an entertaining environment [20]. In recent years, AI contin-
ues making breakthroughs in games through Deep Blue in
chess [21], Chinook in checkers [22], AlphaGo in Go [23],
and AlphaZero in chess again [24]. These rapid AI develop-
ments in games are highly affected by (end)game solvers in
a game. A game is considered solved when its outcome can
be predicted from any state, assuming that both players play
perfectly. The concept of solving games is usually applied
to full-information games without any chance element. The
idea of solving games is a part of achieving the general goal
of creating a good game-playing program [25].

The goal of solving games is to find the game’s theoretical
value. However, it is also proven beneficial in providing a bet-
ter understanding of how a game works [26]. This condition
ultimately leads to a better understanding of how information
is progressing throughout the game. Uncertainty in games
does affect how a game is solved and the way the game
is experienced. During game-playing, a game started in a
state of uncertainty where there was no information about
the winner of the game [27]. As the game progresses, more
information is obtained. Throughout this study, the notion
of ‘‘uncertainty’’ is defined as the amount of information
currently unknown and required to be traversed throughout
the processes (or state spaces) in determining (or reaching)
the win state (or target goal) of the game.

Currently, the game progress can be observed using two
different approaches. The first approach is by observing its
game progress pattern using a search indicator such as the
Probability-based Proof Number Search (PPNS) [28] and the
Single Conspiracy Number (SCN) [29]. The second approach
is by analyzing and observing the game information progress
model, called the motion in mind [27], [30]. Although the
two approaches exploited information differently, both mea-
sure the game progress, where the link between the two
approaches is investigated.

The aim of adopting PPNS and the Single Conspiracy
Number (SCN) as the main tools for the experimentation
of this study is that these search indicators provide bet-
ter insights into the influence of uncertainty in the games.
On the one hand, such insight involves computing the opti-
mal play by the PPNS and the influence of uncertainty in
the tree-search framework. On the other hand, the insight
provided by the SCN encompasses reasonable interpreta-
tion of uncertainty and their expected entertainment values
from the games. Hence, uncertainty can be established as
the link between the optimal play domain and the game
entertainment measure, where its implications in games com-
putation and game-playing experience can be identified. As
such, the main aim of this study revolves on the following
objectives:

1) To find the optimal difficulty ordering procedure for
game solver for different game-tree structures.

2) To define the indicator for entertainment using a
game-tree search framework.

3) To define the link between the game-tree search result
and entertainment indicator in different game environ-
ments.

It is important to note that, in the context of optimization,
PPNS and SCN are categorized as recursive, tree-traversal
algorithms that enumerate the subset of the solution set
(called branches or leaves) from a candidate solution set
(called root) through exploring the adversarial state-space
search (a game-tree search framework). Hence, PPNS and
SCN were deterministic global optimization/exact strategies,
specialized in a game-tree search that provided the measures
of decision complexity [31] and decision difficulty [29], [32],
respectively, in identifying the optimal (or winning) game
state.

The paper is organized as follows. Section II reviews some
of the important works related to PPNS and SCN relative to
other state-of-the-art in the domain of game tree search. Then,
Section III provides an overview of the PPNS application in
the domains of two-person and single-agent games. Then,
Section IV provides an overview of the SCN and the current
related findings for two-person and single-agent games. The
link between optimal play and game entertainment is estab-
lished in Section V. The findings and discussion from the
perspective of entertainment and information science were
provided in Section VI. Finally, Section VII concludes the
paper.

II. DOMAIN-INDEPENDENT INDICATORS
A. CONSPIRACY NUMBER
Conspiracy number search (CNS) [33] is a MIN/MAX tree
search algorithm that attempts to guarantee the accuracy of
theMIN/MAXvalue of a root node. The likelihood of the root
taking a particular value is reflected in that value’s associated
conspiracy number. The conspiracy number is the minimum
number of leaf nodes in the tree that must change their score
(by searching deeper) to result in the root taking on that new
value [34].
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CNS was proposed to design a strong computer player but
suffers from a low search efficiency because of its slow con-
vergence and the high cost of computing conspiracy numbers.
However, CNS provides a promising concept for measuring
stability using its conspiracy numbers. In the current context,
the measure of ‘‘stability’’ refers to the ability of the conspir-
acy number to indicate the root node convergence towards
stable states within the game-tree framework. Some variants
inspired by CNS have been proposed as game-independent
heuristics. The most successful among them is the proof
number search (see Section II-B).

Meanwhile, another study of CNS rooted on improving the
performance of the CNS, where Lorenz et al. [35] expanded
the necessary steps of CNS, where the selection is made by
assigning demands (called en targets) on the nodes of a game
subtree in a top-down fashion, and a set of leaves is selected
in a single action. Then, Lorenz [36] proposed controlled
conspiracy-2 search (CC2S) to improve root stability against
single faulty leaf evaluation, which applied in the Chess
domain.

A different approach toward conspiracy numbers since
previous methods only use conspiracy number of a single
(as in the original CNS [33]) or two (as in αβ-conspiracy
search [37]) evaluation values to determine the direction of
the search. Then, conspiracy number was adopted to iden-
tify the critical positions in simple games (Tic-tac-toe and
Othello) to apply speculative play [31], [38]. Another study
adopted conspiracy number for improving the move selection
was conducted by Vu et al. [39], where conspiracy number in
a game situation is regarded as the probability distribution of
evaluating a situation (i.e., high conspiracy number indicates
the difficulty of achieving and vice versa).

An experiment using game transcripts from the United
States 2015 National Open tournament of Othello profes-
sional games, where a novel move selection policy was
proposed that treated conspiracy number as a whole; thus,
enables a better understanding of a game situation and
determine a better decision [39]. Finally, Pawlewicz and
Hayward [40] developed a global heuristic evaluation that
reliably scores relative strengths of node siblings via siblings
comparison evaluation function (SCEF) and incorporating
algorithm-wide enhancements, such as Rapid Action Value
Estimate (RAVE) statistics [41], transposition tables, and
paralleling.

B. PROOF NUMBER
Proof number search [42] is one of the most efficient algo-
rithms for solving games and complex endgame positions
inspired by the concept of conspiracy numbers. Proof number
search focuses on the AND/OR tree and tries to establish
the game-theoretical value in a best-first manner. In proof
number search, each node has a proof number and a disproof
number (DN). The proof number (DN) represents the scale of
difficulty of proving (disproving) a node. The proof number
search process involves expanding the most-proving node,

which is the most efficient node for proving (disproving) the
root.

Compared with conspiracy number search, proof number
search is more successful in practical use. Such considera-
tion reduces the relevant numbers to two, the proof num-
ber and the disproof number, thereby improving the search
efficiency. Nagai [43] proposed a depth-first proof num-
ber (df-pn) search by adopting iterative deepening, which
improves the original proof number search to utilize less
computational resources by lessening the expansion on the
interior node and reducing the number of proof number and
DN that have to be recomputed. A df-pn enhancement via the
1 + ε method reduces the search’s tendency to jump around
the tree [44], where it was found to be more robust than proof
number search in its application to Atari Go and Lines of
Action. A scalable parallel version of df-pn search (SPDFPN)
had also been proposed by Pawlewicz and Hayward [45]
based on the serial version of enhanced df-pn [44], where
SPDFPN solved all previously intractable 9 × 9 Hex open-
ing moves and the first to solve the 10 × 10 Hex opening
move.

The proof number and DN are highly instrumental in
solving games when proving (disproving) a search-tree posi-
tion. Such indicators had been leveraged alongside MCTS,
where an improved game solver’s quality is expected.
An early example of such a combination is the Monte-Carlo
proof number search (MCPNS) [46], a best-first search
designed to work in an AND/OR game-tree. Employing
MIN/SUM rules to backpropagate information from the
simulation, node information was accessed based on its
Monte-Carlo which was infused with proof number and
DN, called the Monte-Carlo proof number (pmc) and the
Monte-Carlo disproof number (dmc). Similarly, an algorithm
called Product Propagation (PP) was proposed by Saffi-
dine and Cazenave [47] that combines the idea of proof
number search, and probabilistic reasoning to solve three
perfect information game test-beds (Y, Domineering, and
NoGo) where it had outperformed other proof number search
variants.

The most recent improvements to the df-pn are the
DFPN-E introduced by Kishimoto et al. [48], where an
added edge cost initialization to the df-pn had been proposed.
DFPN-E was applied to the chemical synthesis problem with
an unbalanced search space where the tree is identified to be
lopsided, and the DFPN-E is proven to be successful where it
traversed the least number of nodes [48].

C. MONTE-CARLO TREE SEARCH (MCTS)
The Monte-Carlo tree search (MCTS) is a best-first search
algorithm that has been commonly employed to solve games.
First proposed by Coulom in 2006 [49], the MCTS frame-
work consists of four steps: (1) selection, (2) expansion,
(3) simulation, and (4) backpropagation. The algorithm starts
with selecting the next action based on a stored value (selec-
tion). When it encounters a state that cannot be found in the
tree, it expands the node (expansion). The node expansion is
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based on multiple, randomly simulated games (simulation or
playout). The value is then stored and backpropagated to the
tree’s root, where the algorithm continues to repeat the steps
until the desired outcome is reached (backpropagation).

MCTS utilizes simulations to gain information from unex-
plored nodes, and this was expanded by introducing upper
confidence bound applied to trees (UCT) by Kocsis and
Szepesvári [50]. Although it has been proven thatMCTS con-
verges to minimax when evaluating the available moves [51],
MCTS converges only in so-called ‘‘Monte Carlo Perfect’’
games [52].

A new best-first search algorithm derived fromMCTS and
UCT was then introduced by Chaslot et al. [53]. The algo-
rithm’s goal was to overcome the difficulty of building heuris-
tic knowledge for a non-terminal game state by employing
stochastic simulations. Determining a game-playing strategy
is useful when using multiple simulations. Its usage has
become well known, especially in Go, and in part led to the
AlphaGo’s wins against top grandmasters [23].

III. CREATING AN EFFICIENT SOLVER VIA
PROBABILITY-BASED PROOF NUMBER SEARCH
Intuition and expertise are the main essences of game-
playing, which are also crucial in decision-making. Under-
standing the game intricacies had spawned a popular study
known as game-solving. The purpose of such a study is to
estimate the possible game outcome by analyzing the game
information. In this study, the proposed probability-based
proof number search (PPNS) algorithm is adopted for such
a purpose.

PPNS is a best-first search algorithm that is set to be
used in an AND/OR game tree structure. The proof num-
ber and disproof number are highly instrumental when the
branching factor varies, giving distinguishable information
to indicate the shortest path of proving or disproving a node
[28]. However, for games with a balanced tree (almost fixed
depth and an almost fixed branching factor), the proof num-
ber search is relatively weak because the proof numbers
and disproof numbers are too similar to give distinguishable
information.

Instead, PPNS uses an indicator called a probability-based
proof number to indicate a node’s probability leading to
the expected position. The idea originates from the concept
‘‘searching with probabilities’’ [54], where the core idea
involves that proving a node is computed from the proba-
bilities of proving its children while following the AND/OR
rules of probability events. The probability-based proof num-
ber specifies the probability of a node (terminal nodes,
leaf nodes, or internal nodes) to be proven in an AND/OR
tree [28]. The probability-based proof number assigned to
an OR and AND internal node is the product of its child
values. As such, the probability-based proof number of a
node contains two different pieces of information derived
from the current game-tree. All of these nodes have their
probability-based proof number (nppn) value that is calculated
as follows:

• If n is a terminal leaf node, then

nppn =

{
1 if n = winning node;
0 if n 6= winning node;

(1)

• If a node n is a leaf node, then let R be the winning rate
as a result of game playout, and θ is a small positive
number close to 0, then

nppn =


R if R ∈ (0, 1);
R− θ if R = 1;
R+ θ if R = 0;

(2)

• If a node n is an internal node, then
– if n is an OR node,

nppn = 1−
∏

nc∈ children of n

(1− nc) (3)

– if n is an AND node,

nppn =
∏

nc∈ children of n

nc (4)

For experiments conducted in this section, a specialized
program is written in C++ programming language. The
experiment was conducted on a computer with an Intel i5-
8400 processor running at 2.81 GHz using 8 GB of RAM,
running Windows 10, on a 64-bit machine.

A. TWO-PERSON GAME
In the two player game domain, solving game means being
able to predict the outcome when both players conducted a
perfect play. In this case, the solver that can give the most
prediction is indicated by its ability to converge in the root
node. In the domain of two-person game, Connect Four and
Othello (Figure 1) were adopted as the test bed [55].

FIGURE 1. Illustration of (a) the standard 8× 8 Othello board and (b) the
standard 7× 6 Connect Four board. Both games are distinctive in the
sense where Othello could flip the discs (board pieces) to any side based
on the ‘‘capture’’ rule, and the game is won by having more discs at the
end of the game. Meanwhile, the Connect Four game mechanics utilizes
gravity to play and can be characterized as a k-in-a-row family of games
where the game is won when either side achieved 4-in-a-row pieces in
any direction.

PPNS performance had been investigated in P-game tree
(each move is randomly assigned a chosen value in a
MIN/MAX tree [50]) and compared with PNS, MCPNS [46],
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UCT (MCTS solver equipped with the Upper Confidence
Bounds applied to Trees), and pure MCTS solver [57]. Two
experiments were conducted on 400 P-game tree, where the
first 200 having two brancheswith 20 layers, while the second
involves the remaining 200 having eight branches and eight
layers [28]. The study found that PPNS outperformed others,
while on average, taking less time and fewer iterations to
prove or disprove a game tree, converges faster to the correct
solution compared to PNS, MCPNS, and the pure MCTS
solver, and the error rate of selected moves decreases more
smoothly as the number of iterations increases.

Recent application of PPNS was conducted on Connect
Four, a perfect information k-in-a-row game where the game
is won by lining up four chips in either horizontal, vertical,
or diagonal1). Gravity is an essential element of play in the
game where pieces fall as far to the bottom as possible,
and the game can be won between 13-ply to 42-ply (the
board is filled), implying that the game search tree highly
varied in the number of depth and the game-tree structure
is unbalanced. The experiment with 200 generated Connect
Four positions (each position contains 12-ply of randomly
generated moves) had found that using real-numbers causes
unnecessary prolonging of the search procedure of PPNS
[58]. The results demonstrated that PPNS with a pr value
reduces the amount of explored nodes needed to solve up
to 57% (Figure 2), implying that even a small amount of
explored nodes allowed information from an unexplored area
to be exploited and combined to reach the desired goal.

FIGURE 2. Number of 200 generated Connect Four positions solved,
unsolved, and out of bounds (memory and time) by PNS, MCPNS, and
PPNS. The application of the pr parameter in PPNS (denoted as PPNS*)
increases the total positions that are concluded (solved or unsolved)
where the optimal configuration of θ = 0.001 and pr = 0.001 with a total
of 135 positions was found [55].

A further experiment was conducted on Othello,2 which
is a board game that played on an 8 × 8 board where two
disks of each color (black and white) are initially placed
diagonally in the center of the board [55]. Othello has a

1Connect four game rules can be found at http://www.ludoteka.com/
connect-4.html

2Othello game rules are described at https://www.mastersofgames.com/
rules/reversi-othello-rules.htm

balanced game-tree structure (required to play the game
until the board is full) with the state-space size of Othello
is approximately 1028 [59]. An experiment on 600 Othello
positions was performed for three randomly generated moves
(18, 26, or 32 moves of the game) which are given in Table 1.
The experiment was conducted considering the precision rate
(pr = 0.00001) parameter, which found that PPNS performs
the best by solving most positions in every stage of the game
(72% positions on average).

TABLE 1. Experimental result of different algorithms applied to
600 Othello positions (200 for randomly generated moves of 18, 26,
or 32) [55].

Probability-based proof number is an instrumental
indicator in PPNS, where its ability to solve games was
successfully demonstrated in two-person games. Current
insight suggests that probability-based proof number is suited
for solving a game that requires a long look-ahead strat-
egy. The probability-based proof number in Connect Four
showed that the quality of information is critical, where even
a small amount of explored nodes with appropriate statis-
tical information of unexplored nodes can vastly improve
the solver’s performance. Furthermore, the application of
probability-based proof number in Othello affirms that PPNS
is an optimal solver for games with a balanced tree structure,
where an increased amount of information allowed for more
positions to be solved. The probability-based proof number
also demonstrates the importance of considering the appro-
priate ‘‘moment’’ to take advantage of both the explored and
unexplored nodes to solve more positions faster and earlier.

B. SINGLE-AGENT GAME
Expanding the PPNS framework to the single-agent game
requires revisiting its general idea of such a framework.
In a two-person search framework, the OR nodes repre-
sent the maximizing agent (select the child with maximum
probability-based proof number) while the AND nodes rep-
resent the minimizing agent (select the child with minimum
probability-based proof number) before back-propagating its
result to the root [28]. In the single-agent game realm, while
the maximizing agent is the sole player of the game who tries
to gain themost upper hand and reach their objective, themin-
imizing agent can be elusive as there is no clear opposing
player that tries to gain the upper hand in the game. Such
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games’ objectives can be in the form of a score, point, or an
end position. Single-agent games usually possess a mechanic
that is used to hinder the player from reaching their objec-
tive. The inherent inhibiting mechanics in single-agent games
(Table 2) were meant for the player, which is equivalent to
the minimizing agent. Thus, the feature of these inhibitor
mechanics was adopted in place of the second player.

TABLE 2. Inhibiting mechanics in the single-agent games.

The game of 2048 was first published by its creator,
Gabriele Cirulli, in 2014 [64]. The main objective of 2048 is
to join identical tiles currently available on the board to obtain
the highest tile number. The game of Three inspired the first
iteration of the game [65] and played in a 4×4 board. Moving
a tile in a particular direction pushes it in such a direction until
it is stopped by either another tile or the grid’s edge. If there
are two tiles with the same number next to each other, they
will be merged, creating a tile with a number equal to the
sum of the two original tiles. A turn is only valid if it causes
a change in the board, whether it is moving tiles or merging
tiles. If a move that the player chooses does not change the
board’s state, it is not considered a turn.

In the current context, a 2 × 2 version board of the game
2048 was adopted as the testbed where the highest available
tile number is tile with value 32 (via brute force enumeration
[66]) and player mobilization is very limited. The rule of the
game’s initial position remains the same, in which there are
two tiles with a value of 2 placed arbitrarily on the board.
The board states on the OR nodes consist of at most four
states (move directions), the ANDnodes consist of at most six
states, and there can be three empty tiles. However, there are
two possible tiles, numbered 2 and 4, which doubled the total
number of available states. As the game nature is different
from the previous two-person counterpart, minor modifica-
tions in the playout step were conducted on the PPNS, which
does not affect its domain-independent feature.

As 2× 2 2048 only has six enumerable opening positions,
all the positions were adopted in the experiment disregarding
the mirroring positions. Two win objectives were set where
the first one being the highest number tiled equal to 16 and
the second being the highest number tiled equal to 32. Three
different algorithms, PNS, MCPNS, and PPNS, were com-
pared to solve each position independently. The experiment
was simulated in 60moves for bothMCPNS and PPNS, while
the PPNS utilizes θ = 0.01 and pr = 0.0001.

The three algorithms’ effectiveness was compared where
all of the algorithms could solve all the initial positions of
2× 2 2048, where the number of visited nodes and iterations
were given in Table 3. Such a result can be categorized as

TABLE 3. Average iterations and nodes visited by the PNS, MCPNS, and
PPNS applied to 2× 2 of 2048.

ultra-weakly solved with the game-theoretical value being a
win for the player. This situation implies that given no change
in rules and handicaps, a player that employs a perfect play
strategy would be able to achieve the two objectives for the
game. The highest numbered tile equals to 16 and 32, which
aligns with the combinatorial enumeration of the game [66].
The end of the game can be reached as early as the highest
available tile value of 8 and the highest quality tile equal to
32; thus, making its game-tree highly varied and exhibits the
behavior of the unbalanced game-tree. All algorithms were
able to converge while traversing less than 1% of all states.

The result of the quality measure between the algorithms
showed that PPNS took the least resources to converge from
the table comparison. Nodes traversed by each of the search
algorithms represent the board’s state where the combinato-
rial bounds of game states in 2× 2 2048 are computed to be
of 537 states inclusive of the six initial positions [66]. When
mirroring positions and repeated positions are removed, it is
calculated to be 59 possible states with two initial positions
[67]. Compared to the nodes traversed to reach convergence,
the best-first search algorithms all traversed fewer nodes
than the available nodes. This situation shows the efficacy of
generalizing the PPNS to the single-agent domain, where it is
considered as ‘‘vanilla’’ since it disregards the possibility of
enhancements (i.e., transposition table).

IV. MEASURING GAMING EXPERIENCE VIA SINGLE
CONSPIRACY NUMBER
The ability to use conspiracy numbers to improve the play
experience leads to a hypothesis that these numbers can be
used to assess a certain position in a game. One shortcoming
of the conspiracy number approach, however, is that there
are multiple numbers for each node. To enable its use as an
indicator, the SCN was proposed. It incorporates the idea
of the conspiracy number, but rather than one node having
several associated numbers, those numbers are all merged
into one value called the SCN.

The SCN reflects the difficulty of a node obtaining a
value of no less than T , where T is a threshold on the
legal MIN/MAX values. When T equals the maximum legal
MIN/MAX value, the SCN is equivalent to the proof num-
ber. When T equals the minimum legal MIN/MAX value,
the SCN is zero because there is no difficulty for a node

72092 VOLUME 9, 2021



A. Primanita et al.: Computing Games: Bridging Gap Between Search and Entertainment

to obtain a value that is no less than the minimum. When
T is between the maximum and minimum legal MIN/MAX
values, the SCN indicates the difficulty of a position obtaining
a score of no less than T .
Compared with the conventional evaluation method using

MIN/MAX values, the SCN is more game-independent and is
expected to yieldmore information on game progress patterns
while indicating the potential change in the MIN/MAX val-
ues. Therefore, the SCN is expected to be a good supplement
to evaluation function values for analysing game progress
patterns.

Let nscn be the SCN of node n, let m be the MIN/MAX
value of node n, and let T be a threshold on the legal
MIN/MAX values. Then, the formalism of the SCN is given
as follows:
• When n is a terminal node:

nscn =

{
0 if m ≥ T ;
∞ if m < T ;

(5)

• When n is a leaf node (not terminal):

nscn =

{
0 if m ≥ T ;
1 if m < T ;

(6)

• When n is an internal node:
– If n is MAX node, then

nscn = min
nc∈child of n

nc (7)

– If n is MIN node, then

nscn =
∑

nc∈child of n

(nc) (8)

For experiments conducted in this section, a specialized
program is written in Python programming language. The
experiment was conducted on a computer with an Intel
i5-8400 processor running at 2.81 GHz using 8 GB of RAM,
running Windows 10, on a 64-bit machine.

A. TWO-PERSON GAME
Previous applications of SCN had been applied to abstract
strategy two-person board games. For example, Song and
Iida [29], [32] have tested the effectiveness of the SCN by
examining it in Xiang Qi (or Chinese chess), which is a
family of abstract strategy board games similar to (Western)
chess and shogi (Japanese chess), through self-play experi-
ments using the ElephantEye (Light) program. In addition
to the differences in the rules, piece behavior, and cultural
reflections in Xiang Qi compared to chess [68], Xiang Qi
is an extremely tactical game that requires the evaluation
of positions far ahead into the future. As such, Xiang Qi
is the perfect testbed to determine the effectiveness of the
SCN in estimating long-term outcomes based on its ability
to reflect the game progress pattern [32]. It was found that
long-term positions require a precise evaluation technique
(see Figure 3), for which the SCN is more consistent and

FIGURE 3. Depiction of an example tactical position in Xiang Qi, where
the SCN and MIN/MAX values were compared. In such a position, the Red
player is considered to have an advantage over the Black player, where its
next move leads to better board states based on the high MIN/MAX
value; hence, associated with a very low SCN value. Meanwhile,
the MIN/MAX value of the Black player does not provide enough
information to judge the next moves but better illustrated by the SCN,
where the next move to be made is a ‘challenging’ state correspond to
the search depth. Hence, it can be observed that SCN can demonstrate
the implication of such a tactical position more effectively.

accurate than conventional heuristics (such as MIN/MAX
values) [29], [32].

Then, SCN is further implemented on top of a pop-
ular open-source checkers program; namely, Samuel AI.
Checkers has an unbalanced tree-search structure [69] and
a high decision complexity [22], where the SCN stabilizes
for medium-term and short-term positions depending on the
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relative differences in the SCN values and the tree-search
structure. A recurring pattern identified is that a low SCN
value (→ 0) implies a winning position, while a high SCN
value (→ ∞) implies a losing position (see example in
Figure 4(a)). Additionally, a constant intermediate SCN value
indicates a ‘‘loop’’ or repetitive play.

FIGURE 4. Analysis of SCN results for two board games: (a) checkers and
(b) GoBang. The SCN results of both games indicated the game-playing
conditions (favorable or unfavorable) and progress continuity (ending or
condition changes), where a situation of repetitive play in checkers and
the adversarial struggles of players in GoBang was visualized.

Recently, the game progress in GoBang was analyzed
through an experiment conducted on authoritative data [70],
called a ‘‘chessmanual’’, whichwere downloaded from a pro-
fessional GoBang official website (http://game.onegreen.net/
Soft/HTML/47233.html). The collected data recorded the
game scores from various competitions ranging from the
global to the national level, associating the game scores with
every player’s moves. In this experiment, a GoBang program
was implemented to calculate both the MIN/MAX and SCN
values, and each move was defined as one play. The SCN
value was observed to indicate both the game conditions
(favorable or unfavorable) and progress continuity (ending or
condition changes) [70]. Additionally, opposing and similar
SCN trends imply ‘‘defensive’’ and ‘‘neutral’’ game situa-
tions (see example in Figure 4(b)). The selection of a higher
threshold (T ) value relative to the MIN/MAX value also
allows the game condition and situation to be reflected better
than a lower T .

SCN is a heuristic-free informative indicator for analyzing
game progress patterns that had been successfully achieved in
two-person games. It is mainly used to distinguish whether
positions are favourable or unfavourable to the player.
Additionally, fluctuation patterns indicate a seesaw turnover

frequency, which is indicative of a ‘‘tough’’ game between the
players. Therefore, for two-person games, the SCN typically
indicates the stability of a position in a game. A stable state
is indicated by fewer fluctuations (or a high frequency of low
values) of the SCN, implying a lower difficulty of reaching
a specific position in a game (high certainty). On the other
hand, an unstable state is indicated by more fluctuations (or
a high frequency of high values) of the SCN, implying more
difficulty in reaching a particular game position (high uncer-
tainty). Additionally, a high SCN implies good prospects
for a better position and vice versa. Because the SCN is
a game-independent indicator, it is expected that the SCN
can be extended to a single-agent problem, for which it can
potentially be used to find the cause of failure in the game.

B. SINGLE-AGENT GAME
The original version of the game is played on a 4 ×
4 board [64]. The original game’s starting position consists
of three tiles with the number 2 and a single tile with the
number 4 (Figure 5 (left)). Each turn, the player has at most
four options: to move the tile to the right, left, up, or down.
After a valid turn, a new tile will pop up at a random location
on the board (Figure 5 (right)). The new tile can be a number 2
tile or number 4 tile.

FIGURE 5. Illustration of tile merging from an initial state of the game
of 2048, where the player chooses to move ‘‘down’’ (left). Then, a random
tile appears in a single turn of the game immediately after the merging of
tiles (right).

The game of 2048 is a stochastic gamewith complete infor-
mation. The player can observe the entire state of the board
at any point in the game. However, the player cannot predict
the progress of the entire game from the board’s current state
because, in every turn, a random tile will appear [71]. The
appearance of random tiles gives a unique character to the
game, as for each turn, there are only at most four options,
but there are a large number of possible board states.

Compared to the previous implementation of the SCN in
the minimax framework, the treatment for obtaining the m
value is different. In this experiment, the m value is cal-
culated based on the Expectimax values of the nodes. The
Expectimax or Expectiminimax algorithm is a variation of the
minimax algorithm. It was developed specifically for games
that depend not only on player skill but also on random
chance [72]. The random factors are represented by special
nodes, known as chance nodes. Thus, along with MIN and
MAX nodes, there are three kinds of nodes in the Expectimax
game tree structure.
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FIGURE 6. Illustration of the SCN calculation in the Expectimax framework. The SCN value is obtained by considering the
MIN/MAX value at the leaf or terminal node corresponding to the T value, which then propagated to the root node through
the tree structure considering three layers of different node types and their associated propagation rule.

However, the definition still holds, as the m value is a
node’s inherent minimax value. For every leaf and terminal
node in the tree, the Expectimax values of the nodes are
calculated based on (9), where E(s) is the evaluation function,
w and b is the weight and board indexes, respectively.

E(s) =
3∑
i=0

3∑
j=0

w[i][j]× b[i][j] (9)

In a single-agent game, the SCN value is calculated only
for MAX and MIN nodes. This is because the chance nodes
do not represent the ‘difficulty’ or ‘stability’ of a node [31],
[38]; rather, they represent the random chance. In this case,
the chance nodes are treated the same way as MIN nodes.

Compared to the previously considered board games, it was
observed that the T value is vital for observing the game
progress and represents an intermediate stage between stable
and unstable state [69]. In a single-agent game, T cannot be
defined with only one single value; as the game progresses,
the m value will continuously increase for the same state
difficulty. Thus, a newway to calculate T is proposed by (10).
The SCN calculation in 2048 is illustrated in Figure 6.

Tnew = Told ∗ 2n (10)

An experiment was conducted to test the effectiveness of
the SCN in representing the game progress for 2048. Every
appearance of a new highest-number tile can be thought of as
a progress milestone. Thus, every step taken by the player is a
step to achieve this milestone. Accordingly, the T value in the
2048 case is changed every time such a milestone is achieved.

In this experiment, the algorithm was set to play 2048
20 times in 3 different configurations based on the Expec-
timax search depth (d). The 3 different configurations repre-
sent different player capabilities, ranging from a rookie player
(d = 2) to a casual player (d = 3) to an expert player (d = 4).

For each configuration, the single-agent SCN for every turn
was recorded. Implementing the Expectimax algorithm with
the three different configurations yields the results displayed
in Table 4. It can be observed that the deeper the search
depth is (the higher d is), the higher the chance of obtaining
higher-number tiles (2048 or greater). This situation also
affects the average score and the average number of steps
taken to reach the result. Therefore, it can be said that the
three configurations representing rookie, casual, and expert
players perform as expected.

TABLE 4. Results of Expectimax implementation for the game of 2048.

The SCN results for a simulated rookie player (d = 2) are
shown in Figure 7. Because the T value changes every time
a new milestone is reached, the SCN will decrease to a low
number when such a transition occurs (high frequency of low
SCN values). This situation can be translated to mean that
the game is always stable, making the player take a constant
gamble to end the game prematurely. In the single-agent
game context, the high frequency of low SCN value implies
an unstable position. The rookie player does not have suffi-
cient capacity to effectively overcome the stable game state
(in other words, ‘‘stability trap’’) player is continually choos-
ing unstable positions. Effectively, this player takes constant
gambles to reach the game objective.

For games with a simulated casual player (d = 3), each
category’s game results are shown in Figure 8. For these
games, it can be seen that the SCN fluctuates among several
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FIGURE 7. Illustration of games of 2048 with d = 2 (SCN values
normalized between 0 and 1). A high frequency of middle to low SCN
values was observed, which indicates the game is stable (or in a constant
state of a gamble between better and worst game state).

FIGURE 8. Illustration of games of 2048 with d = 3 (SCN values
normalized between 0 and 1). A high frequency of high SCN values was
observed, which indicates the game continuously transitions between
stable and unstable, which implies a speculative game state and the play
is longer.

ranges of values, indicating that the player is employing
particular strategies in achieving milestones. For example,
arranging higher-numbered pieces into one specific area on
the board to improve movement flexibility. A player with
sufficient play experience will gain the knowledge to traverse
both unstable and stable state and retain to play longer. This
condition corresponds to a high frequency of high SCN value,
indicating that the game is unstable and becomes speculative.
However, such a player may still lead to a deadlock, forcing
the game to end earlier, indicated by the ratio of the frequency
of low SCN values being greater than the frequency of high
SCN values.

For games with a simulated expert player (d = 4),
the results are shown in Figure 9. For these games, the fluc-
tuations in the SCN are the highest (the SCN values show
the most significant variety). These fluctuations show that
an experienced player progresses through the game while
frequently changing stance from stable to unstable positions
and vice versa. Similarly, an expert player would choose a
more stable position (high frequency of low SCN values).
As the SCN value lowered, a less stable position will be
selected, which returned into a more unstable state. However,
expert players always overcome unstable positions (match
high-valued tiles as quickly as possible, resulting in more
empty board spaces), leading to more prolonged gameplay
and possibly better scores. Nevertheless, the frequency of
high SCN values is also the highest, indicating that the game

FIGURE 9. Illustration of games of 2048 with d = 4 (SCN values
normalized between 0 and 1). A high frequency of low and high SCN
values was observed, which indicates the game was able to be retained
more unstable states compared to stable ones, and the game rapidly
changes from stable to unstable positions and vice versa, leading to a
prolonged play.

remains in such a turnover position until the game cannot
continue (is forced to end because the board has filled up to
the point where no further move can be made).

V. MOTION IN MIND AND SINGLE CONSPIRACY
NUMBER
The game refinement (GR) theory plays an essential role in
quantifying game sophistication by determining the rate of
solved uncertainty along the game length where the appro-
priate amount of fairness, excitement, and thrills were empir-
ically quantified [27], [73]. Expanding GR theory further by
analogously defining the notion of success rate as velocity
(v) and difficulty rate as mass (M ), then various ‘‘motion in
mind’’ can be measured (Table 5) [30].

TABLE 5. Analogical link between motion in mind and motion in
physics [30].

Such analogies have been adopted to measure sophisti-
cation of player’s entertainment in board games and scor-
ing sports games. It was found that the game’s motion in
mind is closely related to the cultural aspects of the games’
origin (in board games) and game’s popularity (in sports
games). The relationship between game-playing and reward-
ing experience had also been established via operant
conditioning [74].

SCN featured the stability indicator to determine the diffi-
culty of reaching a state value not less than the threshold (T ).
Based on the motion in mind concepts from the aspects
of entertainment [30], the velocity (v) corresponds to the
normalized SCN values, given by (11) and (12). Since v is
a vector quantity, it describes not only the progression of
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TABLE 6. Results of the application of various average of motion in mind
measures in 2048.

reaching the winning state (or goal) but also the ‘direction,’
which refers to the two-dimensional invariant property that
corresponds to the gain (positive) or loss (negative) of such
winning rate.

scnnorm =
1
k

k∑
n=1

ni −min(n)
max(n)−min(n)

(11)

v = scnnorm (12)

The applications of motion in mind measures based on
SCN were conducted to the 2048 games with Expectimax
search depth, d ∈ [2, 5], where d = 5 simulates a master
player. Interesting results were observed for the 2048 games,
albeit calculated from different depths, achieved quite similar
results (Table 6). In average, v = 0.38549 (M = 0.61451)
gives the average Ep = 0.20686 and Ep = 0.18101. According
to Iida and Khalid [30], the game is motivating enough to
play because the information expectation is high (high Ep).
In addition, the game is considered sophisticated enough
where it has a sufficient challenge level fitting the effort made
by the player (high Ep) except for the rookie player with d = 2
by having M > 1

2 . This situation explains the popularity
of 2048, as players with different degrees of skills can play
the game with equal levels of fairness.

However, such a result does not show the different exper-
tise representation between the skill levels as the SCN sug-
gested due to the changing threshold. Thus, the scnnorm data
were then observed separately. The separation is made based
on the previously defined threshold. Each data point con-
sists of the data from one threshold to the next, depicted as
in Figure 10. Based on the momentum and potential energy
of player with different skill levels, different game-playing
experience can be observed.

For a rookie player, the value is concentrated at a certain
point. The player starts their game when the game is consid-
ered high-tension (v ' 0.2 with fair Ep and small Ep). The
peak momentum (competitive balance) was never reached,
which means that their game-playing experience relies on
the board’s random tiles. Meanwhile, a casual player starts
their game in a similar position with a rookie player but
later reaches the peak of the game’s potential energy and
momentum. Such a condition showed that their game-playing
experience does not rely only on chance but also on their skill.

The game-playing experience for expert and master play-
ers has a distinctive similarity, in which both initially have
very low Ep and Ep values (challenging). However, the game
becomesmore interestingwhen several milestoneswere over-
come. The game also prolonged and peaked Ep and Ep due to
the large gap betweenmilestone changes. An expert player’s Ep
and Ep were at the cross point, which implies that competitive
balance was stroked in most of their game-playing experience
and makes the game more exciting. The expert player game
ended while they are at the peak of Ep (balanced game-playing
experience). Meanwhile, the game ended later for a mas-
ter player, in which the game is considered much more
challenging.

VI. FINDINGS AND DISCUSSIONS
A. INFORMATION QUALITY AND INTUITIVE CAPACITY
Three experiments were conducted on three games with dis-
tinctively different game tree structures, namely, Connect
Four, Othello, and 2× 2 2048. These experiments were done
to explore and examine the quality of PPNS. The Connect
Four game was chosen to represent the real case with an
unbalanced game tree structure, while the Othello game was
chosen to represent a balanced game tree structure. The last
game, 2 × 2 2048, is an extension where the concept of
searching in a two-person game tree structure is expanded
into a single-agent game tree structure. The results of those
experiments are then compared to two related solver algo-
rithms, namely, PNS and MCPNS, to examine the impact of
combining uncertainties into getting the game’s theoretical
value.

The solver framework’s general idea was revisited, which
results in finding the opponent’s representation, making
it possible to solve a single-agent game. The possible
game-theoretical value, in the end, is similar to that of a
two-person game (win, lose, or draw). Comparison results
from the experiments show that the PPNS performs bet-
ter than the other two algorithms. In both two-person and
single-player games, it demands less resource yet can con-
verge successfully. It is likely that the result of the difference
in information quality is stored in the probability-based proof
number. The MPN in PPNS is chosen based on the highest
probability-based proof number of the current tree. Experi-
ments with two-person games show that information quality
is most critical, where the best solver is the one that utilizes
the smallest amount of explored nodes.

The probability-based proof number of a node stores infor-
mation from both its predecessors and likely successors,
relieving the need to explore unnecessary nodes. A human
player should make an educated guess to win a single-agent
game with random mechanics. Such a condition is reflected
by the probability-based proof number, considering certain
information from its predecessors and uncertain informa-
tion from its likely successors similar to a human player
using their prior knowledge to make an educated guess. The
way the algorithm explores a game tree is similar to that
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FIGURE 10. SCN and motion in mind measures for various depths (d ∈ [2,5]). It can be observed that the player’s skill levels (increasing d )
are described by the capability to reach the peak momentum and high potential energy, implying excitement and challenge.

of human intuition. This insight is further emphasized with
the implementation of PPNS in a single-agent game. The
2048 game requires creating a higher numbered tile piece and
considering the placements of the tile. In the 2 × 2 board,
the player’s mobility becomes limited, with only four grids
available. It needs a clear look-ahead tile placement strategy
for the player to reach the desirable highest tile. PPNS requir-
ing the least resource shows that it is the best-suited solver for
the game that requires such intuition.

B. PLAYER EXPERIENCE AND RISK MANAGEMENT
Comparing the results of the simulated casual and expert
players reveals the difference in their intuition and
decision-making ability. The simulated expert player can
escape from multiple ‘‘pitfalls’’ in the game, while the casual
player will succumb to them. This situation leads to the
‘‘stability trap’’ in the game of 2048. In the current context,
the ‘‘stability trap’’ refers to a position on the board that
is considered stable (promising) but does not favour the
player (i.e., will cause the game to end early). This trap
can be demonstrated when a player chooses a more stable
position on the board, constantly creating multiple tiles (with

FIGURE 11. Depiction of the occurrence of the ‘‘stability trap’’ in the
simulated expert player games (d = 4). Expert players will be able to
escape from trap positions and continue their games, leading to higher
scores and longer games.

high numbers) and filling the board with untouchable tiles.
An expert player would be able to escape this position
(Figure 11). However, casual and rookie players have a lower
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FIGURE 12. Depiction of the occurrence of the ‘‘stability trap’’ in the
simulated casual player games (d = 3). Casual players have a higher
chance of being trapped in unfavourable positions, leading to an early
end to the game.

chance of escaping from the trap, which lessens their chance
of progressing (Figure 12).

Based on the experimental results and discussions, play-
ers with different ability levels can be observed using the
proposed variant of the SCN. Using the proposed method,
the stability trap was identified, which should be approached
differently by the players. An expert player will deliberately
approach this position, as such a player has sufficient ability
to escape from the trap. However, a player with less knowl-
edge is unable to escape from the trap immediately. Such a
situation will cause the game to converge to a position that is
typically regarded as unfavourable, causing the game to end
prematurely.

The case of trapping positions is not unique to single-agent
games such as 2048. The term has been used for years in
research on games, related to a problematic position in a
two-person game such as chess [75], to refer to a position
or state that seems to be promising at first but ends up in
a reversal, leading to states that are more favourable to the
opponent. Jansen [75] discussed two circumstances that are
crucial in recognizing the opponent’s strategy (speculative
play). One circumstance involves the presence of a strong
indication causing a goodmove to be underestimated, leading
the opponent to play poorly (swindle position). The other
circumstance involvesmaking a badmove to induce the oppo-
nent to overestimate the available opportunity (trap position).

C. ‘‘ROLLER COASTER’’ IN MIND
A game-theoretic value is obtainable in a two-person game
context based on the best possible play by both players.
A better result is not possible unless the opponent makes
a move that reduces his or her game-theoretic value (i.e.,
the opponent makes a mistake) [76], [77]. In such a case,
exploiting the opponent’s mistake would allow for move

decisions that lead to better game-theoretic values (to win
from a draw, or to draw or win from a loss).

With the extension of the SCN to single-agent games,
it displays an informative aspect of the game progress pat-
terns, albeit from a different perspective. Since no apparent
‘‘opponent’’ is present, the SCN reflects the game progress
relative to the player’s own ability and own chances to
progress through the game. A ‘‘mistake’’ here corresponds to
the frequency of the stability trap, where a greater frequency
of staying in the trap induces the effect of the player choosing
positions from which the player overestimates the ability to
progress.

Analyzing further from the perspective of the M dynam-
ics is demonstrated by the situation that can be interpreted
similarly to a ‘‘roller-coaster’’ experience when a player
faces adverse conditions in their game-playing progression
(Figure 13). It can be observed that the SCN changeover
gap (from one milestone to another) is large in the first
few milestones, demonstrating the transitions from uncer-
tainty to various unstable (or unfavorable) states. This situ-
ation is similar to the roller coaster ride going down (gain
velocity) from the top ramp (significant change of v). Then,
it slowed down with some fluctuation (change in v), implying
the existence of the acceleration (thrilling experience). This
situation implies the game changes from being challenging
in the short-term aspect of game-playing (high M ) into a
more challenging in the long-term aspect of game playing
(middle M ), which requires some level of strategic planning
and knowledge-based play.

However, the ‘‘ride’’ experience started to be distinctive
when the milestone transitioned from 8 → 16, 32 →
64 and 64 → 128, simulated by the different skill levels
(or depth, d). This situation can be observed from the fluc-
tuation of the M value where the SCN changeover gap is
medium (or low), and the SCN value is high (or middle).
It implies that the game state is situated in a favorable position
but may become stable or unstable depending on the skill
levels (i.e., d = 2 and d = 3). For d = 4 and d = 5,
the unstable game state was utilized as an advantage to stay
and play longer (utilizing appropriate heuristic from more
access to information, i.e., applying strategy gained from play
experience) instead of trapped in a stable state and end the
game.

Table 7 illustrates the player’s flow-experience promotion
model via the bridging of motion in mind and SCN. A general
interpretation of SCN based on the application of motion
in mind had found that any game’s initial state (S0) starts
with low-value SCN and a medium to high amount of SCN
changeover gap.

Novice player tends to let their game state in an unstable
position due to apathy, denoted by unchanging high SCN.
However, an abrupt change in their position, indicated by the
high or medium changeover gap, shows that they are falling
into the stability trap. The sudden change could be attributed
to the sense of worry while playing the game as they fell
into the stability trap. Casual player tends to be situated at
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FIGURE 13. M dynamics of 2048 games for various depth (d ∈ [2,5])
where the fluctuations of M is greater when d is higher.

TABLE 7. Generalized interpretation of the SCN relative to positions in a
single-agent game. A low changeover gap of high (or mid) SCN values
indicates the best outcome, while a high (mid) changeover gap of
high (low) SCN values indicates chances to move forwards.

the high SCN with a high (or medium) SCN changeover gap
due to anxiety or arousal. However, an expert player would
be situated at average low SCN with medium (or low) SCN
changeover gap due to flow or control, whereas a master
player would be situated at low SCN.

However, most players would experience a middle SCN
value where its uncertainty is most significant (low SCN
changeover gap), where the probability of success or failure to
enter or leave the state of stability trap is uncertain. However,
the middle to high SCN changeover gap requires observing
the magnitude of change, where rapid increase means a favor-
able condition that usually happens at the end of the stability
trap or rapidly decreases, which implies entering the stability
trap.

VII. CONCLUSION
This study explores the idea of search ‘‘indicator,’’ whose
idea was originated from the scalar versions of the origi-
nal conspiracy number search (CNS) framework [33]. How-
ever, expanding from such an idea leads to the various
domain-independent indicators, which are useful in the
search process of the AI adopted in the domain of games.
It was found that such domain-independent indicators were
an effective tool for solving and understanding search-tree
computation that has strong relations with the informational
uncertainty of the game states. Such condition generates two
related but distinct veins of research: solving and understand-
ing games.

In another direction, the inspiration of conspiracy numbers
was reflected in SCN for understanding games based on
the stability change of the root node via the SCN. Adopt-
ing SCN as the change of stability (equivalent to veloc-
ity in mind, v), dynamics of its changeover (v-dynamics)
is essential for engagement from a long-term perspective
(i.e., repeated play). In contrast, a considerable change of v
(i.e., acceleration) is crucial for the sense of thrills in the
short-term (in the 2048 game, random tile appearance caused
such dynamics). Having visual and empirical evidence of
such dynamics can better understand entertainment moments
from a search process (i.e., a roller coaster in mind).

In essence, PPNS and SCN, both inspired from conspir-
acy number as domain-independent indicators, provided two
essential directions on game-related computing, which relies
on the uncertainty of root stability in the framework of the
search-tree. On one end, PPNS leverage known informa-
tion and unknown information via probability, representing
appraisal of information quality and uncertainty that can
simulate the notion of intuition. On the other end, SCN
is a functional measure of game-playing expertise and risk
management by providing the possibility of identifying risk
(i.e., of losing or failure) and appraise judgment as early as
possible.

The implications of both directions are crucial for pre-
serving valuable resources and saving precious time while
potentially suited for addressing high-stakes decision-making
and long-term planning to optimize values and minimize
risks. In similar directions, it is interesting to investigate
using a family of AI algorithms for global optimizations,
such as evolutionary computation,3 where similar effects can
be achieved, particularly in determining the optimal solution
in long-term planning and risks minimization in decision-
making.

Future research efforts should also emphasize establishing
search and entertainment in a multidisciplinary perspective
to bridge information and computation in conjunction with
psychological study and affective sciences. Other interesting
direction worth venturing includes verifying further the feasi-
bility of PPNS and SCN in multiplayer games and non-game

3A comprehensive review on the families of global optimization algo-
rithms can be found in [78]
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contexts (i.e., education and business application) and explor-
ing the impact of the incomplete-information game.
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