Resti, Yulia (2022) iThenticate Article of Implementation of a Breakpoint Halfway Discretization to Predict Jakarta's Air Quality. FMIPA Universitas Sriwijaya.
Text
06_JURNAL_S_2022_Implementation_of_a_Breakpoint_Ha.pdf - Other Download (2MB) |
Abstract
Despite the pandemic, Jakarta is one of the most polluted cities in the world. Knowing the daily air quality forecast aids the community, particularly Jakarta residents. Among these is the ability to protect oneself from dangerous air. The multinomial naive Bayes and the decision tree-ID3 methods are popular and perform well. Both of these strategies, however, require categorical variables. This need necessitates the implementation of a discretization technique for numerical variables. The purpose of this study is to predict Jakarta's air quality using the multinomial naive Bayes and decision tree method based on Particulate Matter 10 µg (PM10), Sulfur Dioxide (SO2), Nitrogen Dioxide (NO2), Ozone (O3), and Carbon Monoxide (CO). These continuous variables are discretized in two ways: using all midway breakpoints or halfway re breakpoints. The results indicated that the decision tree method with the mixture breakpoints halfway approach performed better than the multinomial nave Bayes method, with an accuracy of 98.90%, a specificity of 98.92%, a sensitivity of 75.00%, a precision of 75.00%, and an F1 score of 97.81%.
Item Type: | Other |
---|---|
Subjects: | #3 Repository of Lecturer Academic Credit Systems (TPAK) > Results of Ithenticate Plagiarism and Similarity Checker |
Divisions: | 08-Faculty of Mathematics and Natural Science > 44201-Mathematics (S1) |
Depositing User: | Mr. Irsyadi Yani, S.T., M.Eng., Ph.D. |
Date Deposited: | 28 Apr 2023 23:09 |
Last Modified: | 28 Apr 2023 23:09 |
URI: | http://repository.unsri.ac.id/id/eprint/97931 |
Actions (login required)
View Item |