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ABSTRACT 

This paper proposes the normal and the t copulas for modeling the dependence of claim severities 
for the Malaysian motor insurance data. The claim severities are fitted using two different 
assumptions; the independent assumption where the claim types are assumed to be independent, 
and the dependent assumption where the dependence between claim types are modeled by the 
normal and the t copulas. The result indicates that the t copula is an improvement over the normal 
copula, whereas the normal copula is better than the independent model.  
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1. INTRODUCTION 

In property and liability insurance, the process of establishing premium rates involves the estimation 
of two crucial elements, the claim frequency and the claim severity. Claim frequency can be defined 
as the claim count per exposure unit, whereas claim severity can be defined as the average claim 
cost per claim. Statistical estimates of claim frequency and claim severity are often calculated through 
the process of grouping risks with similar risk characteristics, which is known as risk classification.  

Based on the actuarial literature, the Poisson regression model has been considered as a standard 
method for fitting the claim count data (Aitkin et al. 1990, Renshaw 1994). In other areas, several 
models have been recommended for handling overdispersion in count data, namely the quasi-
Poisson (McCullagh & Nelder 1989, Brockman & Wright 1992), the negative binomial (Cameron & 
Trivedi 1986, Lawless 1987), and the generalized Poisson (Consul & Famoye 1992, Wang & Famoye 
1997, Ismail & Jemain 2007) regression models. 
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Several regression models have also been suggested for estimating the claim severities, or the 
average claim costs per claim. Since it is well established that the claim severity distributions 
generally have positive support and are positively skewed, the gamma (McCullagh & Nelder 1989,
Brockman & Wright 1992, Renshaw 1994, Ismail & Jemain 2006), and the inverse Gaussian 
regression models (Venter 2007, Resti et al. 2010) have been used by past researchers. 

In insurance practice, claim frequencies and claim severities may give rise to multiple types. As an 
example, the claims for motor insurance may be categorized into several types such as the Own 
Damage (OD), the Third Party Property Damage (TPPD) and the Third Party Bodily Injury (TPBI). A 
standard method for estimating the risk premium is by estimating the claim frequencies and the claim 
severities independently for each claim type (Brockman & Wright 1992, Renshaw 1994, Haberman & 
Renshaw 1996). However, the modeling of risk premium via the estimation of claim frequency and 
claim severity independently for each claim type assumes that the joint behavior of two or more 
random variables is based upon an independent assumption. In practice, the independent assumption 
between claim types may not be true for all cases. One may question the impact of the dependence 
of claim types, such as, if there is an error in one type of claim, another type of claim may be affected, 
and the overall risk premium may also be affected. 

As an alternative, a copula model can be used for handling the dependence of claim severities. A 
copula model expresses the joint distribution of two or more random variables by separating the joint 
distribution into two contributions; the marginal distributions of the individual variables, and the 
interdependency of the probabilities of the individual variables. The advantage of using a copula 
model is that each marginal distribution can be specified in the isolation of others, and then joined by 
the copula. 

Copula models have been applied in several areas such as finance, insurance and environmental 
studies. In the actuarial and insurance literatures, Frees and Valdez (1998) and Klugman and Parsa 
(1999) applied the copula model for the claim sizes and the allocated loss adjusted expenses, Frees 
and Wang (2005) handles the serial time dependence through the t-copula by assuming the marginal 
distribution for claim severity data follows the generalized linear model (GLM), Pettere and Kollo 
(2006) used the copula model for the outstanding claim reserves, and Frees and Wang (2006) 
modeled the time dependence for count data by using the elliptical copulas. For more details, 
introduction to copulas can be found in Frees and Valdez (1998).  

The objective of this article is to propose two types of copula models, the normal copula and the t
copula, for accommodating the dependence of claim severities in the Malaysian motor insurance 
data. The estimation of risk premium is implemented by having three stages of modeling; the 
modeling of claim frequency by using the negative binomial regression, the modeling of claim type by 
applying the multinomial regression, and the modeling of claim severity by fitting the trivariate 
distribution with the gamma regression model for the marginals, and the normal and the t copulas for 
the dependence of claim severities. 

2. METHODOLOGY 

Consider an insurance claim data where ni ,...,2,1  is the rating class and ,..2,1j  is the claim type. 

For each i , we denote iY  as the random variable for the claim count and ie  as the exposure 

measured in a car-year unit. 
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For each i  and j , we denote ijM  as the random variable for the claim type and ijC  as the random 

variable for the claim severity equivalent to the average claim cost. The claim count for each i  and j

is denoted by ijy . The rating factors are represented by the explanatory variables, ijkijij xxx ,...,, 21 .

Table 1 shows an example of an insurance claim data with three claim types and four explanatory 
variables. 

When a claim is made, it is possible to have one type of claim only, or a combination of two claim 
types, or a combination of three claim types. The joint distribution of the dependent variables, 

),,( ijiji CMY , can be written as, 

),|()|Pr()Pr(),,( ijiijiijijiiijiji mncfnmMyYcmyf  ,

which encompasses three components; the claim frequency where )Pr( ii yY   is the probability of iy

claim count, the claim type where )|Pr( iijij ymM   is the conditional probability of ijm  claim type 

given iy  claim count, and the claim severity where ),|( ijiij mycf  is the conditional density of ijc  claim 

severity given iy  claim count and ijm  claim type. 

2.1 Claim Frequency Model 

The dataset for modeling the claim frequencies are ),( ii eY , where iY  denotes the claim count and ie

is the exposure. The claim count is represented by both paid and estimate of outstanding, and the 

claim frequency is equal to the claim count divided by the exposure, 1
iieY . If iY  is distributed as a 

negative binomial, the probability mass function (p.m.f.) is, 

,...2,1,0   ,
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with mean iiYE )(  and variance iii aYVar  )1()(  , where a  denotes the dispersion parameter. 

The covariates can be incorporated through a log link function, )exp( xTiii e , where   is the vector 

of regression parameters and ix  is the vector of explanatory variables. The maximum likelihood 

estimates of  and a  can be obtained by maximizing the log likelihood with respect to  and a .   
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2.2   Claim Type Model 

The dataset for modeling the claim type are ijM , where ijM  denotes the claim type. The multinomial 

probability of a claim of type m  is, 

)Pr( mMijm  ,

where 1
m

m . For each claim type, or for each j , the covariates can be included through a logit 

function, xTi








r

m


ln , where ix is the vector of explanatory variables,  is the vector of regression 

parameters and r  is the base level. The maximum likelihood estimates of  can be obtained by 

maximizing the log likelihood with respect to  .

As an example, consider a data where three claim types are observed; type 1, type 2 and type 3. 
Therefore, 7,...,2,1M , where 1M  refers to the claims of type 1 only, 2M  refers to the claims of 

type 2 only, 3M  refers to the claims of type 3 only, 4M refers to the claims of both type 1 and 
type 2, 5M refers to the claims of both type 1 and type 3, 6M  refers to the claims of both type 2 
and type 3, and 7M  refers to the claims of all three types. 

2.3 Claim Severity Model

The dataset for modeling the claim severities are ),( ijij yC , where ijC  denotes the claim severity or the 

average claim cost per claim and ijy  is the claim count. The claim severity, which is already adjusted 

and trended for inflation, is represented by both paid and estimate of outstanding. The total claim cost 
is equal to the product of the claim count and the average claim cost, ijijCy . For each claim type, or 

for each j , if iC  is distributed as a gamma, the probability density function (p.d.f.) is, 

0     ,exp
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with mean iiCE )(  and variance 2221)( iiiCVar    , where 2  denotes the scale 

parameter. For a case where the variance vary within the classes and depend on the claim count, the 

scale parameter can be written as 2  iii yy  so that 212211)( iiiii yyCVar    . The 

covariates can be included via a log link function, )exp( xTii  , where   is the vector of regression 

parameters and ix  is the vector of explanatory variables. The maximum likelihood estimates of  and 

 can be obtained by maximizing the log likelihood with respect to  and  .   
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2.4 Normal Copula Model 

Consider a two-dimensional cumulative distribution function (c.d.f), F . The idea of Sklar’s Theorem is 

to represent the c.d.f., F , in two parts; the marginal c.d.f., iF , and the copula c.d.f, H , which 

describes the form of dependence in the distribution. Both iF  and H  are connected by the c.d.f. 

),())(),((),( 21221121 uuHcFcFHccF  ,

where 1U  and 2U  are the standard uniform random variables. By differentiation, the corresponding 

probability distribution function (p.d.f.), f , is given by, 

),()()(),( 21221121 uuhcfcfccf  ,

where if   is the marginal p.d.f. and h the copula p.d.f. 

We will fit two types of elliptical copula; the normal and the t. The elliptical copula is, 

))(),((),( 2
1

21
1

121 uFuFFuuH  ,

and the copula of a normal joint c.d.f. is called the normal copula. If   is the correlation parameter, 

the p.d.f. of a normal copula is given by, 
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2.5 t-Copula Model 

The copula of a student-t joint c.d.f. is called the t copula. Let ,vT   be the student-t joint c.d.f. with 

degrees of freedom v  and correlation  , and 1
vT  be the inverse of the student-t univariate c.d.f. with 

degrees of freedom v . The t-copula is defined as,

))(),((),( 2
1

1
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21 uTuTTuuH vvv
 ,

and the p.d.f. is given by, 
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2.6 Maximum Likelihood Estimation 

Consider an insurance claim data where the claims are categorized into three types, and the data is
fitted to a trivariate distribution with gamma marginals and a normal copula. The joint p.d.f can be 
written as, 

))(),(),(()()()(),,( 332211332211321123 iiiiiiiiiiiiiiii cFcFcFhcfcfcfcccf  ,

where ijf  is the p.d.f. associated with the ith rating class and jth claim type, and h  is the p.d.f. of the 

trivariate normal copula. The log likelihood is,  

 
ii

i
i

i
i

i hfffL logloglogloglog 321 ,

where each marginal can be specified in the isolation of others and joined by the copula.  

If the gamma regression model is used for the marginal claim severity, the covariates can be 

incorporated by writing the mean as )exp( xTii  , and the claim count can be included by writing the 

scale parameter as 2  iii yy  in the fitting procedure. The maximum likelihood estimates of the 

marginal parameters,   and  , and the copula parameter,  , can be obtained by maximizing the log 

likelihood with respect to  ,   and  .

2.7   Risk Premium 

A common method for estimating the risk premium of the i th rating class, ir , is by estimating the 

claim frequencies and the claim severities independently for each claim type (Brockman & Wright 
1992, Renshaw 1994, Haberman & Renshaw 1996), 

332211 ˆˆˆˆˆˆˆ iiiiiii cfcfcfr  ,

where )(ˆ 1
ijijij YEef   denotes the estimate of frequency for the j th claim type, and )(ˆ ijij CEc   the 

estimate of claim severity (average claim cost) for the j th claim type. If the claim types are assumed 

to be independent, the risk premium can be written as, 

)ˆˆˆˆˆˆ(ˆˆ 332211 iiiiiiii cpcpcpfr  ,

where )(ˆ ijij MEp   is the estimate of probability for the j th claim type.  

However, if the claim types are assumed to be dependent, the risk premium can be rewritten as, 

)ˆˆˆˆˆˆˆˆˆˆˆˆˆˆ(ˆˆ 123123232313131212332211 iiiiiiiiiiiiiiii cpcpcpcpcpcpcpfr  .
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3. RESULT AND DISCUSSION 

The copula models are fitted to the Malaysian motor insurance claims experience. The database,
which is supplied by Insurance Services Malaysia (ISM) Berhad, provides information on the private 
car insurance portfolios of ten general insurance companies in 2000-2003. The sample data contains 
572,627 policies with 52,522 claims which can be categorized into three types; the Own Damage 
(OD), the Third Party Property Damage (TPPD) and the Third Party Bodily Injury (TPBI). Four rating 
factors are considered, and they are the scope of coverage, the vehicle make, the vehicle cubic 
capacity and the vehicle age. The rating factors and the rating classes are shown in Table 2.  

Table 2: Rating factors and rating classes 
No Rating factors Rating classes 
1 Coverage Comprehensive 

Non-comprehensive
2 Vehicle make Local 

Foreign 
3 Vehicle cubic capacity (cc) 0-1000 cc 

1001-1300 cc 
1301-1500 cc 
1501-1800 cc 
1801+ cc 

4 Vehicle age 0-1 year 
2-3 year 
4-5 year 
6-7 year 
8+ year 

The result of fitting the negative binomial regression model to the claim frequencies is shown in Table 
3, whereas the result of fitting the multinomial logit regression model to the claim types is shown in 
Table 4. Based on the results in Table 3, all rating factors (scope of coverage, vehicle make, vehicle 
cc and vehicle age) are significant. In particular, the risk of claim frequency is higher for 
comprehensive coverage, local vehicle, vehicle with cubic capacity greater than 1300, and vehicle 
aging more than one year. The results in Table 4 indicate that the TPBI-OD-TPPD claim has the 
largest probability, whereas the OD claim has the smallest. Therefore, the OD claim is used as the 
base level.
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Table 3: Negative Binomial regression model for claim frequency 

Regression parameter Negative binomial 
 est. s.e. p-value
Intercept -9.53 0.28 0.00 
Non-comprehensive -0.88 0.27 0.00 
Foreign -1.02 0.24 0.00 
0-1000 cc -2.46 0.34 0.00 
1001-1300 cc -2.09 0.31 0.00 
0-1 yr -0.79 0.27 0.00 

Table 4: Multinomial logit regression model for claim type 

Combination Type Intercept 
est. s.e. p-value

1 TPBI 2.03 0.08 0.00 
3 TPPD 1.39 0.06 0.00 
4 TPBI-OD 2.18 0.08 0.00 
5 TPBI-TPPD 2.59 0.10 0.00 
6 OD-TPPD 1.70 0.07 0.00 
7 OD-TPPD-TPBI 2.77 0.11 0.00 

The trivariate normal and t copulas with unstructured correlation matrix are fitted to the claim 
severities, and the results are shown in Table 5. The estimates obtained from fitting the marginal 
claim severities are used as initial values for estimating the parameters in the copula model. The log 
likelihood indicates that the t copula is an improvement over the normal copula, whereas the normal 
copula is better than the independent model. 

Based on the log likelihood, the AIC and the BIC, the t copula is the best model for accommodating 
the dependence between the TPBI, the OD and the TPPD claim severities. The significant rating 
factors for the TPBI claims are the scope of coverage (non-comprehensive), the vehicle cc (0-1000cc, 
1001-1300cc) and the vehicle age (0-1yr), the significant rating factors for the OD claims are the 
scope of coverage (non-comprehensive) and the vehicle cc (0-1000cc, 1001-1300cc, 1801+cc), 
whereas the significant rating factors for the TPPD claims are the scope of coverage (non-
comprehensive), the vehicle cc (0-1000cc, 1001-1300cc) and the vehicle age (2-3yr). Based on the t
copula model, the risk of severity is higher for comprehensive coverage and vehicle with cubic 
capacity below 1000. For the TPBI claim, the severity is higher for vehicle aging more than one year, 
whereas for the TPPD claim, the severity is higher for vehicle aging 2-3 years.  
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Table 5: Normal and t copulas for claim severity 
Claim type Parameter Normal copula t copula  

est. (s.e.) est. (s.e.) 
TPBI Intercept 8.16 (0.30) 8.02 (0.12) 

Non-comprehensive -0.86 (0.55) -0.80 (0.16) 
0-1000 cc 1.28 (0.53) 1.46 (0.20) 
1001-1300 cc 1.10 (0.24) 1.26 (0.23) 
0-1 yr -0.85 (0.27) -1.04 (0.14) 
Scale 0.64 (0.21) 0.49 (0.05) 

OD Intercept 7.61 (0.28) 7.42 (0.07) 
Non-comprehensive                     -1.32 (0.15) -0.59 (0.06) 
0-1000 cc 1.33 (0.36) 1.12 (0.10) 
1001-1300 cc 1.07 (0.33) 0.79 (0.09) 
1801+  cc   0.53 (0.32) 0.23 (0.16) 
Scale 0.67 (0.84) 0.46 (0.00) 

TPPD Intercept 7.01 (0.16) 6.54 (0.10) 
Non-comprehensive -0.77 (0.19) -0.57 (0.12) 
0-1000 cc 0.84 (0.15) 1.11 (0.10) 
1001-1300 cc 0.86 (0.24) 1.05 (0.21) 
2-3yr 0.35 (0.16) 0.40 (0.22) 
Scale 0.25 (1.42) 0.19 (0.14) 

Copula parameter 12 =0.68 12 =0.63 

13 =0.46 13 =0.45 

23 =0.32 23 =0.37 

Log-likelihood -146.16 -101.90 
AIC 316.32 227.80 
BIC 347.58 259.06 

4. CONCLUSION 

This paper accommodates the dependence between the claim severities using the normal copula and 
the t-copula. In particular, the copula models are fitted to the Malaysian motor insurance claims 
experience based on the data supplied by Insurance Services Malaysia (ISM) Berhad, which provides 
information on the private car insurance portfolios of ten general insurance companies in 2000-2003.  

The main advantage of using the copula model is that each marginal distribution can be specified 
independently based on the distribution of the individual variable and then joined by the copula which 
considers the dependence of the variables. The results of fitting the independent regression models 
and the copula models indicate that the dependence of claim severities is significant. Based on the 
log likelihood, the AIC and the BIC, the t copula is the best model for accommodating the dependence 
between the TPBI, the OD and the TPPD claim severities. 
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