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ABSTRACT 

A road vehicle accident may produce three types of insurance claim namely third party 
bodily injury (TPBI), own damage (OD) and third party property damage (TPPD). If there is 
more than one claim type, the independent assumption between insurance claim types 
can lead to over- or underestimated claims. This study proposes the application of 
trivariate copula from Archimedean family, namely Clayton, Frank and Gumbel, with 
regression marginals, namely Gamma and inverse Gaussian, to model dependencies 
among claim types in the Malaysian motor insurance claim costs data. The results of AIC 
and BIC from independent models indicate that Gamma regression is better than inverse 
Gaussian regression for all claim types. The results of AIC, BIC, plot of empirical versus 
fitted copula and plot of intermediate variable distribution versus intermediate variable from 
dependent models imply that Frank copula is the best model for accommodating 
dependences among insurance claim types. The simulation results imply that independent 
models for both TPBI and TPPD claims produce larger number of risk classes with 
overestimated claims.

Keywords: Dependence; trivariate copula; claim cost; claim type; SPLUS program. 

Mathematics Subject Classification: 62J12, 62G99 

Computing Classification System: I.4

1. INTRODUCTION 

In actuarial practices, premium rating requires four basic elements agreed by most actuaries; to 
calculate fair premium rates so that high risk insureds pay higher premiums and vice versa, to provide 
sufficient funds for paying claims and expenses, to ensure safe contingency margins, and to produce 
reasonable returns. The second, third and fourth elements can be fulfilled by determining premium 
rates at overall levels, taking into account economic and other external factors such as inflations and 
government legislations, and involving only minimal statistical analysis. However, the first element 
requires the determination of premium rates at relative levels which involves risk classification 
procedures.  

The purpose of risk classification is to divide insured risks into similar or homogeneous classes. The 
common methods studied by actuarial researchers can be written as regression models where the 
independent variables are risk or rating factors such as vehicle type, vehicle age, or insured’s driving 
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experience, and the dependent variable is either claim frequency (number of claims per exposure), or 
claim severity (average claim cost per claim), or loss ratio (claim cost per premium amount). This 
study focuses on risk classification of claim severity which is applied to motor insurance data. 

In insurance practices, claim costs may give rise to multiple types. For the case of motor insurance 
experience, a vehicle crash may produces three types of dependent claims such as Third Party Bodily 
Injury (TPBI), Own Damage (OD) and Third Party Property Damage (TPPD). If there is more than one 
claim type, independent assumption among claim types may produce either over- or underestimated 
costs. Therefore, a copula model, which expresses the joint distribution of two or more random 
variables by separating the joint distribution into marginal distributions of individual variables and 
interdependent probability of individual variables, can be applied to model dependencies in claims 
data.

A copula model, which is a modeling tool in multivariate distributions, has become an increasingly 
popular approach for modeling dependences between multivariate random variables in many 
research areas.  As examples, copula models were applied in financial studies for modeling asset 
allocations, credit scorings and default risks (Li 2000, Cherubini &Luciano 2001, Melchiori 2003, 
Micocci & Masala 2003), in biomedical researches for modeling correlated event times and competing 
risks (Meester & MacKay 1994, Andersen 2005). Further studies and applications of copula models 
can be found in (Genest & MacKay 1986, Frees & Valdez 1998). 

Resti et al (2010) employed bivariate copula for estimating dependences in claim cost data, as well as 
Resti et al (2012). This article proposes trivariate copula from Archimedean family. In particular, we 
consider three types of Archimedean family copula, namely Frank, Clayton and Gumbel, for modeling 
claim cost dependencies and two types of regression models, namely Gamma and inverse Gaussian, 
for modeling claim cost marginals. The copula models are applied to the Malaysian motor insurance 

data.

2. MATERIALS AND METHODS  

2.1. Fitting Marginal Regression Model 

Most studies of claim cost modeling show that the claim cost distributions have positive ranges and 
are positively skewed. Based on these properties, Gamma and inverse Gaussian regression models 
have been fitted and several examples can be found in (McCullagh & Nelder 1989, Renshaw 1996, 
Ismail & Jemain 2006, Cheong et al. 2008). 

Consider an insurance data with n risk classes, ,,,1 ni ��   and three claim types, .3,2,1�j  Let ijC

be the random variable for claim severity (average claim cost per claim) in the i th risk class and j th
claim type where the claim cost is represented by both paid and case estimates of outstanding, 
already adjusted and trended for inflation. For an easier illustration, we drop subscript j  which 

indicates the j th claim type. If iC  is the random variable for claim severity and follows gamma 

regression model, the pdf is, 

11( , ) exp ,
( )

i
i i i

i i

cf c c
�

� ��� �
� � �

�� � � �
� �� 	 � 	
 � � � �

      0ic
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with mean ( )i iE C ��  and variance 1 2 2 2( )i i iVar C � � � ��� � , where 2�� ��   denotes the scale 

parameter. If iC  is modeled as inverse Gaussian regression, the pdf is, 

3

1 1( , ) exp ,
22

i i
i i

i ii

cf c
cc

�� �
� �� �

� �� ��
� �� 	� �� 	� �� �

        0ic

with mean ( )i iE C ��  and variance 2 3( )i iVar C � �� , where �  denotes the scale parameter. The 

covariates for both regression models can be included via a log link exp exp( )i k ik
k

x� �� �
� �� 	

� �
� T

ix � ,

where �  is the vector of regression parameters and ix  the vector of explanatory variables. From the 

density function, log likelihoods for Gamma and inverse Gaussian regressions respectively are, 

1
log ( , ) ( 1) log( ) log( ( )) log( ) log( )

n
i

i i
i i

cL c �� � � � � � �
��

� �
� � � 
 � � �� �

� �
��                  

and 
2

1

1 3 1log ( , ) log( ) log(2 ) log( )
2 2 2

n
i i

i
i i i

cL c
c

�� � �
���

� �� ��
� �� � � � � � 	
� �� �� �

��

and the maximum likelihood estimates of �  and �  (or � ) can be obtained by maximizing the log 

likelihoods.

2.3. Fitting Trivariate Copula 

Consider the cdf of a trivarate distribution, .F  The idea of Sklar’s Theorem for a trivariate distribution 

is to represent F  in two parts; marginal df, jF , and copula df, ,H  which describes dependences 

between individual variables. Both jF  and H  can be connected in a trivariate df, 

1 2 3 1 1 2 2 3 3 1 2 3( , , ) ( ( ), ( ), ( )) ( , , )F c c c H F c F c F c H u u u� �

where 21,UU  and 3U are standard uniform random variables. By differentiation, the density is, 

3
1 2 3

1 2 3 1 2 3 1 1 2 2 3 3
1 2 3

( , , )( , , ) ( , , ) ( ) ( ) ( )F c c cf c c c h u u u f c f c f c
c c c

�
� �

� � �

where jf is the marginal density and h  the copula density. 

This article proposes the application of Frank, Clayton and Gumbel copula, which belong to the 
Archimedean family, for modeling dependences among several claim types. For a trivariate case, an 
Archimedean copula can be constructed through a generator, � ,

1
1 2 3 1 2 3( , , ) ( ( ) ( ) ( ))H u u u u u u� � � ��� � �

where 1��  is the inverse generator. A generator uniquely determines an Archimedean copula. The 

generator and inverse generator of Clayton, Frank and Gumbel copula with space parameter, � ,

respectively are ( ) 1Cl u u �� �� � ,
1

1( ) ( 1)Cl u u ��
�� � � ,

1( ) ln
u

Fr
eu
e

�

��
�

�

� ��
� � 	

� �
,

1 1( ) ln(1 [ 1])u
Fr u e e��

�
� � � � � , ( ) [ ln( )]Gu u u �� � �  and 

1
1( ) exp ( )Gu u u ��

�� � �
� �� �

� �
.
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From equation above, the density of a trivariate Clayton copula is, 

       
3

1 2 3
1 2 3

1 2 3

( , , )( , , ) H u u uh u u u
u u u

�
�

� � �

1 3
2 ( 1)

1 2 3 1 2 3(1 3 2 )( ) ( 2)i i i i i iu u u u u u� � � � �� �
� �� �� 	� � � � � � �� � � � � �

The trivariate Frank and Gumbel copula can also be derived in a similar manner. 

2.4. Maximum Likelihood Estimation 

Consider a dataset of insurance claims where the costs are divided into three types. Assume that the 

three types of claim costs are 21 , ii CC  and 3iC , and each claim type is modeled by Gamma 

regression with pdf. Assume that the dependencies among 21 , ii CC  and 3iC  are fitted through a 

trivariate Clayton copula with density (12). In addition, let 2 3( , , )� T T T T
1� � � �   be the vector of 

regression parameters where 2,��1  and 3�  are regression vectors from 21 , ii CC  and 3iC ,

( )� T
1 2 3� � ,� ,� the vector of scale parameters where 21 �,� and 3�  are scale parameters from 

claim costs  21 , ii CC  and 3iC , and �  the Clayton copula parameter. The maximum likelihood 

estimates can be obtained by maximizing the likelihood function of the density, 

1 2 3( , , ) ( , , ; , , )i i i
i

L f c c c� ���� � � �

1 1 1 2 2 2 3 3 3 1 2 3[ ( ; , ) ( ; , ) ( ; , ) ( , , ; )]i i i Cl i i i
i
f c f c f c h u u u� � � ��� � � �

or the log likelihood, 

1 1 1 2 2 2 3 3 3 1 2 3
1 1 1 1
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n n n n
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�

The maximum likelihood estimates for trivariate Frank and Gumbel copula can also be obtained in a 
similar manner. 

In our study, the trivariate copula models are fitted using SPLUS program with optimization procedure 
(nlm or optim functions). To provide better convergence, the estimates of regression models from the 
independent assumption are used as initial values. The variance of parameters can be estimated 
using diagonal elements of the inverse of negative Hessian matrix. For the case of a Clayton copula 
with gamma regression marginals, the elements of Hessian matrix contain the second derivatives of 
log likelihood in (13) with their corresponding parameters. 

International Journal of Applied Mathematics and Statistics

58



2.5. Goodness of Fit Measures 

Several goodness of fit measures can be used for the Archimedean family copula such as log 
likelihood, Akaike Information Criteria (AIC), Schwartz Bayesian Information Criterion (BIC), plot of 

empirical copula, eH , versus fitted copula, sH , and plot of intermediate variable distribution, ( )K z ,

versus intermediate variable, z . Let n  be the number of observations, m  the number of estimated 

parameters and � the log likelihood. The AIC and BIC can be calculated respectively as 

mAIC 22 ��� �  and 2 ln( )BIC m n� � �� . For the plot of eH  versus sH , the empirical copula 

can be defined as, 

1 3
1 3 1 3

1

1( , , ) , ,
1 1

n
i i

e i i i i
i

R RH u u u u
n n n�

� �� � �� 	� �� �
�I� �

where 1 3, , (0,1)i iu u ��  and (.)I  denotes the indicator function, while 31 ,, ii RR �  respectively 

denote the ranks of .,, 31 ii cc �  For the plot of ( )K z  versus z , let 1 2 3( , , )i i i iZ F C C C�  be the 

intermediate variable of 21 , ii CC  and 3iC  which is defined as, 

1 2 3 1 1 2 2 3 3number{( , , ) until ( , , )}
( 1)

i i i j i j i j i
i

C C C C C C C C C
Z

n
   

�
�

where ji ! . The df, ( ) ( )K z P Z z� � , for Clayton, Frank and Gumbel copula respectively are [22], 

(1 )( )Cl
z zK z

��
�

� �
�  , 

1 1( ) log
1

z z

Fr z

e eK z z
e e

� �

� ��

� �

� �

� � � �� �
� �� 	 � 	�� � � �

and
( log( ))( )Gu
z zK z �

�
�

�  . 

A better copula model is indicated by a larger log likelihood, and a smaller AIC and BIC. For the plots 

of eH  versus sH   and ( )K z  versus z , a better model is indicated by a closer distance between the 

points and the diagonal line. The closeness of the points 1 2( , , , )nb b b�  with the diagonal line for eH

versus sH  plot can be measured using a quadratic distance, 
1 2

2

1

( , ) ( ( ) ( ))
n

d e s e i s i
i

q H H H b H b
�

� �� �� �� �
�

A similar way can also be used to calculate dq  for ( )K z  versus z  plot. 

2.6. Simulation Procedure 

Assuming the claim types are independent, the predicted claim costs can be simulated separately for 

each claim type using Gamma or inverse Gaussian regression models. Let lijc , ,,,2,1 sl ��  be the 

simulated claim cost for the ith risk class and jth claim type, where s  is the number of iterations.  The 

claim cost can be predicted as ��
l

lijij c
s

c 1~ .If the claim types are assumed dependent, the 

predicted claim costs can be simulated using the Archimedean family copula with regression 

marginals. Let 1 2 3( , , )li li lic c c , ,,,2,1 sl ��  be the simulated claim costs. The claim costs for all claim 

types are predicted as 1 2 3 1 2 3
1( , , ) ( , , )li li li li li li

l
c c c c c c

s
� �� � � .
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3. RESULTS AND DISCUSSIONS 

The data for private car insurance portfolios compiled from ten general insurance companies in 
Malaysia for 2000-2003 is considered. The sample data, which is supplied by Insurance Services 
Malaysia (ISM) Berhad, contains 1,009,175 policies with 117,586 (or 9.7%) claims. The claims can be 
categorized into three types namely Own Damage (OD), Third Party Property Damage (TPPD) and 
Third Party Bodily Injury (TPBI), while the rating factors are vehicle make, vehicle cubic capacity (cc) 
and vehicle age. Further information on the rating factors and classes are shown in Table 1.  

able 1 : Rating factors and classes 
Rating factors Rating classes 
Vehicle age 0-1 year 
 2-3 years 
 4-5 years 
 6-7 years 
 8+ years
Vehicle cubic capacity 0-1000 cc 
 1001-1300 cc
 1301-1500 cc
 1501-1800 cc
 1801+ cc
Vehicle make Local 
 Foreign 

The 3D scatterplots for TPBI, OD and TPPD claims (in log scale) are shown in Figure 1. It can be 
observed that the TPBI, OD and TPPD claims have a moderately strong trivariate relationship.  

Figure.1 Scatterplots (in log scale) for TPBI, OD, TPPD 

Figure 2. Claim severities (in log scale) for all claim types 

Figure 2 provides the line plots for TPBI, OD and TPPD claims (in log scale) which are plotted 
according to their respective risk classes. It can be seen that the bivariate dependences between 
TPBI-OD, TPBI-TPPD and OD-TPPD claims are similar in both low and high severities, indicating 
possible applications of Frank, Clayton or Gumbel copula from the Archimedean family that has a 

International Journal of Applied Mathematics and Statistics

60



single space parameter, � , for explaining the dependences among the three claim types. In 
particular, Clayton copula assumes stronger dependences among low severities and almost no 
dependence among high severities, whereas Gumbel copula assumes stronger dependences among 
high severities and almost no dependence among low severities. The Frank copula assumes 
symmetric dependence structures where both high and low severities exhibit approximately the same 
dependences. 

Table 2 : Independent models for claim severity 

Parameter TPBI OD TPPD 
 est. p-value est. p-value est. p-value 

Gamma regression model
Intercept 9.40 0.00 7.96 0.00 7.53 0.00 
0-1 yr -0.64 0.00 0.28 0.01 - - 
4-5 yr - - - - 0.26 0.06 
1501-1800 cc - - 0.51 0.00 - - 
1800+ cc - - 0.72 0.00 - - 
� foreign - - 0.54 0.00 0.24 0.04 
scale 2728.99 0.00 616.36 0.00 418.33 0.00 
Log Likelihood -495.93 -443.45 -411.05 
AIC 997.87 898.90 830.10 
BIC 1003.60 910.37 837.75 

Inverse Gaussian regression model 
Intercept 9.40 0.00 8.17 0.00 7.52 0.00 
0-1 yr -0.64 0.00 - - - - 
1501-1800 cc - - 0.41 0.00 - - 
1800+ cc - - 0.59 0.01 - - 
foreign - - 0.34 0.00 0.35 0.01 
�, scale 0.46 0.00 0.03 0.00 0.00 0.00 
Log Likelihood -506.51 -445.43 -412.49 
AIC 1019.03 900.86 830.59 
BIC 1024.76 910.42 838.32 

 
Table 2 shows the parameters and t-ratios for Gamma and inverse Gaussian regression models 
which are fitted under the assumption of independent claim types, i.e. TPBI, OD and TPPD claims are 
fitted separately to the regression models. The results indicate that different regression models have 
either the same or different significant factors. As an example, vehicle age 0-1 year is the only 
significant factor for both Gamma and inverse regression models in TPBI claims, whereas in TPPD 
claims, vehicle age 4-5 years is a significant factor for Gamma regression but not for inverse 

Gaussian regression. For each claim type, the fitted claim cost is calculated as 	
�

�
�
�

�
� �

k
ikki xc �expˆ ,

where k�   is the regression parameters and ikx  the explanatory variables with values of zero or one. 

As an example, the fitted TPBI claims for vehicles age 0-1 year from Gamma regression model is  

ˆ exp(9.40 0.64(1)) RM 6,374.ic � � � The results in Table 2 can also be used to compare the 

relative risk of each rating factor, and therefore, identifying low or high risk vehicles. As an example, 
the fitted TPBI claim for vehicles age 2+ years from Gamma regression model is 

ˆ exp(9.40 0.64(0)) RM 12,088,ic � � � indicating that new vehicles (age 0-1 year) have lower risks 

than older vehicles (age 2 years and above). The AIC and BIC for all claim types imply that Gamma 
regression is a better model than inverse Gaussian regression. Assuming that the claim types are 
dependent, the Archimedean family copula (Clayton, Frank and Gumbel) are then fitted to TPBI, OD 
and TPPD claims using Gamma regression as marginals. 
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Table 3 :  Dependent models for claim severity 

Claim 
types 

Parameters Clayton Copula Frank Copula Gumbel Copula 

est. p-value est. p-value est. p-value 
TPBI Intercept 9.37 0.00 9.38 0.00 9.43 0.00 

0-1 yr -0.34 0.00 -0.63 0.00 -0.73 0.00 
v, scale 3005.36 0.00 3047.32 0.00 2924.24 0.00 

OD Intercept 8.09 8.09 8.21 8.21 8.18 0.00 
0-1 yr 0.38 0.38 0.19 0.19 0.24 0.01 

1501-1800 cc 0.24 0.24 0.26 0.26 0.26 0.00 
1800+ cc 0.50 0.50 0.40 0.40 0.40 0.00 
foreign 0.50 0.50 0.35 0.35 0.35 0.00 
v, scale 675.59 0.00 773.11 0.00 773.11 0.00 

TPPD Intercept 7.59 0.00 7.57 0.00 7.57 0.00 
4-5 yr 0.20 0.04 0.19 0.19 0.23 0.01 
foreign 0.19 0.03 0.17 0.02 0.24 0.00 
v, scale 482.44 0.00 470.14 0.00 484.16 0.00 

� , copula 1.33 0.00 6.86 0.00 1.93 0.00 
Log likelihood -1322.14 -1314.99 -1322.57 

AIC 2672.29 2657.97 2673.15 
BIC 2699.06 2684.74 2699.91 

 
Table 3 provides the parameters and t-ratios for Clayton, Frank and Gumbel copula models. Based 
on the results, the following observations are obtained: 

i. Each copula model provides different parameter estimates. 

ii. All copula models produce significant copula parameters, i.e. the p-values for �  are 0.00. 
iii. Frank copula has the largest log likelihood compared to Clayton and Gumbel copula. 
iv. Frank copula has the smallest AIC and BIC compared to Clayton and Gumbel copula. 

The goodness-of-fit of the fitted copula can also be illustrated using the q-q plots of eH  versus sH

and ( )K z  versus z . The plots and  quadratic distance (qd) measures are shown in Table 4 and 

Figures 3-4 respectively.  

Table 4 : quadratic distance measures 

Copula eH  versus sH K(z) vs. z
Clayton 4.20 1.13 
Frank 1.31 0.68 

Gumbel 3.83 1.18 

The results indicate that Frank copula has the smallest dq  in both plots. Therefore, based on log 

likelihood, AIC, BIC, and dq  from both eH  versus sH  plot and ( )K z  versus z  plot, the best model 

for handling dependences among the three claim types is Frank copula. This result also indicates that 
there are symmetric dependences among TPBI, OD and TPPD claims at both low and high costs. 
The results in Table 3 can also be used to compare the relative risks of each rating factor, and 
therefore, identifying low or high risk vehicles. As an example, the fitted TPBI claim from Frank copula 

for vehicles age 0-1 year and 2+ years respectively are exp(9.38 0.63(1)) RM 6,311ic � � ��  and 

exp(9.38 0.63(0)) RM 11,849,ic � � ��  also indicating that new vehicles (age 0-1 year) have lower 

risks than older vehicles (age 2+ years). However, the difference between independent and 
dependent (Frank copula) models is that the low risk vehicles in dependent model have lower claims 

[exp(8.75)]    than independent model [exp(8.76)] . The high risk vehicles in dependent model also 

have lower claims [exp(9.38)]  than independent model exp[(9.40)] .
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Figure 3. Empirical vs. fitted Clayton, Frank and Gumbel copula 

Figure 4. K(z)  vs. z of Clayton, Frank and Gumbel copula 

The simulation results for independent and dependent (Frank copula) models are provided in Table 5. 
For each claim type, the independent model produces several classes of both over- and 
underestimated claims. As an example, consider the first rating class which consists of 0-1 year, 0-
1000 cc and local vehicles. Compared to the dependent model, the independent model produces 
overestimated TPBI claims with difference and ratio of RM139 and 1.02 respectively, but 
underestimated OD claims with difference and ratio of -RM611 and 0.86 respectively. As for TPPD 
claims, the independent model also produces underestimated claim with –RM82 difference and 0.96 
ratio. In general, both TPBI and TPPD claims produce more classes of overestimated claims (44 TPBI 
and 37 TPPD rating classes) than underestimated claims (6 TPBI and 13 TPPD rating classes). On 
the contrary, OD claims produce almost equal number of classes for under- and overestimated claims 
(23 underestimated and 22 overestimated rating classes). 

4. CONCLUSION 

In real practices, independent assumptions between motor insurance claim types may not be true for 
all cases as an incidence of vehicle crash may resulted in more than one claim types and an incurred 
claim from one type may has an impact on the incurrence of a claim from another type. This article 
proposes the trivariate copula from Archimedean family, namely Clayton, Frank and Gumbel, for 
estimating dependences among claim types. The independent models are investigated by fitting 
Gamma and inverse Gaussian regression models separately to all claim types. The resulting 
parameters are then used as initial values for estimating the dependent copula models. Based on the 
results of AIC and BIC of independent model, Gamma regression is better than inverse Gaussian 
regression for all claim types. Therefore, Gamma regressions are used as marginals for fitting Clayton, 
Frank and Gumbel copula in the dependent models. Based on the results of AIC, BIC, plot of 
empirical versus fitted copula, and plot of K(z) versus z, Frank copula is the best model for 
accommodating dependences among claim types. This result also indicates the existence of 
symmetric dependences in both low and high claims among claim types for the Malaysian motor 
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insurance data. The simulation results imply that both TPBI and TPPD claims produce more classes 
of overestimated claims, whereas OD claims produce almost equal number of classes for under- and 
overestimated claims. For future study, a similar approach can be applied to other lines of insurance 
or any other costs data (besides insurance) with covariates, as long as information on marginal data 
and their related covariates are available. Further applications can also be performed to other copula 
functions for modeling the dependences, or other regression models for modeling the marginals.
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Table 5. Simulated Claim Costs 

Independent Model (IM) Dependent Model (DM) Difference (IM-DM) Ratio (IM/DM) 
TPBI OD TPPD TPBI OD TPPD TPBI OD TPPD TPBI OD TPPD

6415 3830 1864 6276 4441 1946 139 -611 -82 1.02 0.86 0.96
6299 6517 2357 6261 6299 2292 38 218 65 1.01 1.03 1.03
6318 3820 1845 6344 4445 1948 -26 -625 -103 1.00 0.86 0.95
6401 6488 2356 6234 6318 2302 167 170 54 1.03 1.03 1.02
6405 3784 1868 6313 4447 1935 92 -663 -67 1.01 0.85 0.97
6347 6473 2361 6279 6292 2314 68 181 47 1.01 1.03 1.02
6328 6313 1861 6308 5752 1951 20 561 -90 1.00 1.10 0.95
6388 10844 2377 6242 8193 2305 146 2651 72 1.02 1.32 1.03
6345 7777 1858 6286 6617 1941 59 1160 -83 1.01 1.18 0.96
6425 13317 2390 6371 9425 2290 54 3892 100 1.01 1.41 1.04

12152 2853 1869 11824 3664 1923 328 -811 -54 1.03 0.78 0.97
12045 4959 2370 11827 5237 2302 218 -278 68 1.02 0.95 1.03
12068 2863 1852 11840 3683 1944 228 -820 -92 1.02 0.78 0.95
12170 4902 2363 11689 5233 2269 481 -331 94 1.04 0.94 1.04
12070 2893 1862 11779 3669 1951 291 -776 -89 1.02 0.79 0.95
12090 4898 2386 11876 5212 2303 214 -314 83 1.02 0.94 1.04
12097 4754 1855 11828 4802 1947 269 -48 -92 1.02 0.99 0.95
12008 8174 2372 11945 6747 2296 63 1427 76 1.01 1.21 1.03
12109 5921 1859 11797 5486 1952 312 435 -93 1.03 1.08 0.95
12198 10093 2361 11712 7765 2307 486 2328 54 1.04 1.30 1.02
12087 2858 2406 11786 3678 2352 301 -820 54 1.03 0.78 1.02
12121 4917 3057 11926 5237 2771 195 -320 286 1.02 0.94 1.10
12042 2837 2411 11929 3689 2338 113 -852 73 1.01 0.77 1.03
12095 4932 3090 11898 5230 2793 197 -298 297 1.02 0.94 1.11
11997 2854 2409 11814 3697 2367 183 -843 42 1.02 0.77 1.02
11996 4922 3075 11885 5216 2782 111 -294 293 1.01 0.94 1.11
12199 4776 2414 11760 4783 2346 439 -7 68 1.04 1.00 1.03
12140 8216 3068 11781 6777 2778 359 1439 290 1.03 1.21 1.10
12156 5879 2411 11789 5486 2340 367 393 71 1.03 1.07 1.03
12133 10079 3084 11855 7770 2787 278 2309 297 1.02 1.30 1.11
12185 2873 1867 11899 3669 1941 286 -796 -74 1.02 0.78 0.96
12014 4934 2369 11733 5205 2301 281 -271 68 1.02 0.95 1.03
12146 2849 1864 11941 3676 1944 205 -827 -80 1.02 0.78 0.96
12112 4932 2382 11809 5211 2315 303 -279 67 1.03 0.95 1.03
12013 2855 1860 11831 3660 1938 182 -805 -78 1.02 0.78 0.96
12019 4914 2373 11948 5196 2321 71 -282 52 1.01 0.95 1.02
12080 4757 1854 12149 4641 146 -69 116 1708 0.99 1.02 12.70
12132 8200 2375 11948 7252 165 184 948 2210 1.02 1.13 14.39
12087 5864 1850 12162 5379 83 -75 485 1767 0.99 1.09 22.29
12136 10094 2378 12087 8343 394 49 1751 1984 1.00 1.21 6.04
12018 2856 1874 12108 3343 82 -90 -487 1792 0.99 0.85 22.85
12215 4884 2365 12015 5235 97 200 -351 2268 1.02 0.93 24.38
12029 2881 1872 12020 3375 572 9 -494 1300 1.00 0.85 3.27
12196 4918 2378 12055 5203 230 141 -285 2148 1.01 0.95 10.34
12061 2871 1857 12075 3329 1081 -14 -458 776 1.00 0.86 1.72
12105 4934 2367 12159 5235 323 -54 -301 2044 1.00 0.94 7.33
12077 4777 1854 12180 4670 155 -103 107 1699 0.99 1.02 11.96
11988 8174 2371 12177 7284 344 -189 890 2027 0.98 1.12 6.89
12088 5850 1868 12130 5388 28 -42 462 1840 1.00 1.09 66.71
11972 10046 2383 12140 8317 880 -168 1729 1503 0.99 1.21 2.71
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