Irsyadi, Yani (2022) Plagiarism and Similarity Checker: Automatic Identification of Plastic Waste by HSV Colour. Fakultas Teknik Universitas Sriwijaya. (Unpublished)
Text
11 2022_Book_Human-CenteredTechnologyForABetterTomorrow-IY-01.pdf - Other Download (419kB) |
Abstract
People don’t enjoy living without plastic nowadays. It happens because, in almost every industry, plastic has become a commonly used material. However, at present, it causes the waste of plastic to increase. The process needs to be recycled to reduce the contamination of plastic waste. The manual recycling method has a high possibility of human error, therefore, this automatic system is designed to minimize human error. This research applies Artificial Neural Network (ANN) with three types of plastic to construct an automatic framework to classify and categorized plastic waste. This study also used HSV color space with six input characteristics (RHSV, GHSV, BHSV, mean2, entropy, and variance). The database analysis collected by the training and testing process focused on the implementation of an automatic identification and classification method for plastic bottles, and the rate of the percentage of progress achieved from the training process is 65.3%. The research process’s percentage effectiveness is 57%.
Item Type: | Other |
---|---|
Subjects: | #3 Repository of Lecturer Academic Credit Systems (TPAK) > Results of Ithenticate Plagiarism and Similarity Checker |
Divisions: | 03-Faculty of Engineering > 21201-Mechanical Engineering (S1) |
Depositing User: | Mr. Irsyadi Yani, S.T., M.Eng., Ph.D. |
Date Deposited: | 28 Apr 2023 23:14 |
Last Modified: | 28 Apr 2023 23:14 |
URI: | http://repository.unsri.ac.id/id/eprint/97998 |
Actions (login required)
View Item |