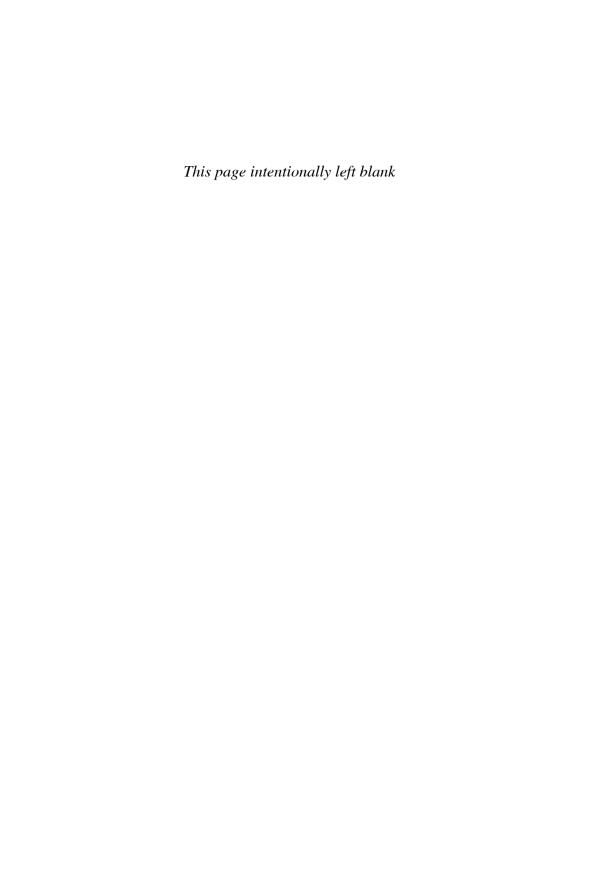


The Nine Pillars of Technologies for Industry 4.0

Edited by Wai Yie Leong, Joon Huang Chuah and Boon Tuan Tee



The Nine Pillars of Technologies for Industry 4.0

Other volumes in this series:

Volume 9	Phase Noise in Signal Sources W.P. Robins
Volume 12	Spread Spectrum in Communications R. Skaug and J.F. Hjelmstad
Volume 13	Advanced Signal Processing D.J. Creasey (Editor)
Volume 19	Telecommunications Traffic, Tariffs and Costs R.E. Farr
Volume 20	An Introduction to Satellite Communications D.I. Dalgleish
Volume 26	Common-Channel Signalling R.J. Manterfield
Volume 28	Very Small Aperture Terminals (VSATs) J.L. Everett (Editor)
Volume 29	ATM: The broadband telecommunications solution L.G. Cuthbert and
	J.C. Sapanel
Volume 31	Data Communications and Networks, 3rd Edition R.L. Brewster (Editor)
Volume 32	Analogue Optical Fibre Communications B. Wilson, Z. Ghassemlooy and
	I.Z. Darwazeĥ (Editors)
Volume 33	Modern Personal Radio Systems R.C.V. Macario (Editor)
Volume 34	Digital Broadcasting P. Dambacher
Volume 35	Principles of Performance Engineering for Telecommunication and
	Information Systems M. Ghanbari, C.J. Hughes, M.C. Sinclair and J.P. Eade
Volume 36	Telecommunication Networks, 2nd Edition J.E. Flood (Editor)
Volume 37	Optical Communication Receiver Design S.B. Alexander
Volume 38	Satellite Communication Systems, 3rd Edition B.G. Evans (Editor)
Volume 40	Spread Spectrum in Mobile Communication O. Berg, T. Berg, J.F. Hjelmstad
	S. Haavik and R. Skaug
Volume 41	World Telecommunications Economics J.J. Wheatley
Volume 43	Telecommunications Signalling R.J. Manterfield
Volume 44	Digital Signal Filtering, Analysis and Restoration J. Jan
Volume 45	Radio Spectrum Management, 2nd Edition D.J. Withers
Volume 46	Intelligent Networks: Principles and applications J.R. Anderson
Volume 47	Local Access Network Technologies P. France
Volume 48	Telecommunications Quality of Service Management A.P. Oodan (Editor)
Volume 49	Standard Codecs: Image compression to advanced video coding
	M. Ghanbari
Volume 50	Telecommunications Regulation J. Buckley
Volume 51	Security for Mobility C. Mitchell (Editor)
Volume 52	Understanding Telecommunications Networks A. Valdar
Volume 53	Video Compression Systems: From first principles to concatenated codec
	A. Bock
Volume 54	Standard Codecs: Image compression to advanced video coding, 3rd
	Edition M. Ghanbari
Volume 59	Dynamic Ad Hoc Networks H. Rashvand and H. Chao (Editors)
Volume 60	Understanding Telecommunications Business A. Valdar and I. Morfett
Volume 65	Advances in Body-Centric Wireless Communication: Applications and
	state-of-the-art Q.H. Abbasi, M.U. Rehman, K. Qaraqe and A. Alomainy
	(Editors)
Volume 67	Managing the Internet of Things: Architectures, theories and application
	J. Huang and K. Hua (Editors)
Volume 68	Advanced Relay Technologies in Next Generation Wireless
	Communications I. Krikidis and G. Zheng
Volume 69	5G Wireless Technologies A. Alexiou (Editor)
Volume 70	Cloud and Fog Computing in 5G Mobile Networks E. Markakis, G. Mastorakis
	C.X. Mavromoustakis and E. Pallis (Editors)
Volume 71	Understanding Telecommunications Networks, 2nd Edition A. Valdar
Volume 72	Introduction to Digital Wireless Communications Hong-Chuan Yang
Volume 73	Network as a Service for Next Generation Internet Q. Duan and S. Wang
Valum - 74	(Editors)
Volume 74	Access, Fronthaul and Backhaul Networks for 5G & Beyond M.A. Imran,
Volume 76	S.A.R. Zaidi and M.Z. Shakir (Editors) Trusted Communications with Physical Layer Security for 5C and Revenue
Volume 76	Trusted Communications with Physical Layer Security for 5G and Beyond
	T.Q. Duong, X. Zhou and H.V. Poor (Editors)

Volume 77	Network Design, Modelling and Performance Evaluation Q. Vien
Volume 78	Principles and Applications of Free Space Optical Communications
	A.K. Majumdar, Z. Ghassemlooy, A.A.B. Raj (Editors)
Volume 79	Satellite Communications in the 5G Era S.K. Sharma, S. Chatzinotas and
	D. Arapoglou
Volume 80	Transceiver and System Design for Digital Communications, 5th Edition
	Scott R. Bullock
Volume 81	Applications of Machine Learning in Wireless Communications R. He and
	Z. Ding (Editors)
Volume 83	Microstrip and Printed Antenna Design, 3rd Edition R. Bancroft
Volume 84	Low Electromagnetic Emission Wireless Network Technologies: 5G and
	beyond M.A. Imran, F. Héliot and Y.A. Sambo (Editors)
Volume 86	Advances in Communications Satellite Systems Proceedings of the 36th
	International Communications Satellite Systems Conference (ICSSC-2018)
	I. Otung, T. Butash and P. Garland (Editors)
Volume 89	Information and Communication Technologies for Humanitarian Services
	M.N. Islam (Editor)
Volume 92	Flexible and Cognitive Radio Access Technologies for 5G and Beyond
	H. Arslan and E. Basar (Editors)
Volume 93	Antennas and Propagation for 5G and Beyond Q. Abbasi, S.F. Jilani,
	A. Alomainy and M.A. Imran (Editors)
Volume 95	ISDN applications in Education and Training R Mason and P.D. Bacsich

The Nine Pillars of Technologies for Industry 4.0

Edited by Wai Yie Leong, Joon Huang Chuah and Boon Tuan Tee Published by The Institution of Engineering and Technology, London, United Kingdom

The Institution of Engineering and Technology is registered as a Charity in England & Wales (no. 211014) and Scotland (no. SC038698).

© The Institution of Engineering and Technology 2021

First published 2020

This publication is copyright under the Berne Convention and the Universal Copyright Convention. All rights reserved. Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may be reproduced, stored or transmitted, in any form or by any means, only with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publisher at the undermentioned address:

The Institution of Engineering and Technology Michael Faraday House Six Hills Way, Stevenage Herts, SG1 2AY, United Kingdom

www.theiet.org

While the authors and publisher believe that the information and guidance given in this work are correct, all parties must rely upon their own skill and judgement when making use of them. Neither the authors nor publisher assumes any liability to anyone for any loss or damage caused by any error or omission in the work, whether such an error or omission is the result of negligence or any other cause. Any and all such liability is disclaimed.

The moral rights of the authors to be identified as authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

British Library Cataloguing in Publication Data

A catalogue record for this product is available from the British Library

ISBN 978-1-83953-005-0 (hardback) ISBN 978-1-83953-006-7 (PDF)

Typeset in India by MPS Limited Printed in the UK by CPI Group (UK) Ltd, Croydon

Contents

	About the editor Foreword		
1	The Nine Pillars of technology for Industry 4.0 Joon Huang Chuah	1	
	1.1 Introduction 1.2 The Nine Pillars 1.2.1 Autonomous robots 1.2.2 Simulation 1.2.3 Horizontal and vertical system integration 1.2.4 Industrial internet of things 1.2.5 Cybersecurity 1.2.6 Cloud computing 1.2.7 Additive manufacturing 1.2.8 Augmented reality 1.2.9 Big data and data analytics 1.3 Conclusions References	1 2 3 7 10 11 13 14 16 17 18 19 20	
2	Industry 4.0: the next frontier and its technological impacts, the role of global standardisation and sustainable development Alex Looi Tink Huey	23	
	 2.1 Global standardisation in Industry 4.0 2.1.1 Technological impacts of Industry 4.0 2.2 Industry 4.0 and sustainable development References 	23 25 30 32	
3	Industrial revolution 4.0 – big data and big data analytics for smart manufacturing Yu Seng Cheng, Joon Huang Chuah and Yizhou Wang	35	
	 3.1 Smart manufacturing and cyber-physical system 3.2 Overview of big data 3.2.1 Data-driven smart manufacturing 3.2.2 Data lifecycle 	35 38 41 44	

	7771		.11	C . 1	1 .	^	T 1 .	10
V111	Tho	nino	nillare	of techno	logies	tor	Industry	4 II
V 111	IIIC	IIIII	pillars	oj icciino	iogics	JUI.	inausii y	τ . υ

	3.3	Big data analytics	48
		3.3.1 Text analytics	48
		3.3.2 Audio analytics	51
		3.3.3 Video analytics	52
		3.3.4 Social analytics	52
		3.3.5 Predictive analytics	54
		3.3.6 Big data advanced analytics for smart manufacturing	56
	Refe	erences	57
4	Vir	tual and augmented reality in Industry 4.0	61
	Mol	hankumar Palaniswamy, Leong Wai Yie and Bhakti Yudho Suprapto	
	4.1	Industry 4.0	61
		4.1.1 Augmented reality and virtual reality	64
	4.2	AR and VR in Industry 4.0	65
	4.3	Conclusion	73
	Refe	erences	73
5		per security: trends and challenges toward Industry 4.0 in Tuan Tee and Lim Soon Chong Johnson	79
	5.1	Introduction	81
	5.2	Recent trends	81
		5.2.1 Web servers	81
		5.2.2 Cloud computing	81
		5.2.3 Advanced persistent threat	81
		5.2.4 Smart mobile phones	82
		5.2.5 New internet protocol	82
		5.2.6 Code encryption	82
		5.2.7 Social engineering	82
		5.2.8 Social media exploits	83
		5.2.9 Bad universal serial bus (USB) attack	83
		5.2.10 Air-gapped system attack	83
	5.3	Cyber security solution technologies	84
		5.3.1 Vulnerability scanners	84
		5.3.2 Intrusion prevention system	84
		5.3.3 Intrusion detection system	85
	5.4	Challenges	85
		5.4.1 User privacy	85
		5.4.2 Cyber security risk management	87
		5.4.3 Digital forensics	88
	5.5	Conclusions	89
	Refe	erences	89

6	Moh		T In smart Industries 4.0 i, Noor Zaman Jhanjhi, Ibrahim Abaker Targio Hashe Hajibejay	91 em and
	6.1	Introduction		91
	0.1		ernet of Things means what?	91
			urney of IoT to IIoT to Industry 4.0	92
			ference between IoT and IIoT?	93
	6.2		of IoT in smart industrial 4.0	93
	٠		te-of-the-art industrial Internet of Things	96
			plications of IIoT for smart industries 4.0	98
	6.3		of IIoT for smart industries 4.0	101
		6.3.1 Au	tomotive navigation system	102
			oply-chain management and optimization	102
			set tracking and optimisation	102
		6.3.4 Dri	ving enterprise transformation	102
		6.3.5 Con	nnecting the form to the Cloud	103
	6.4	The curren	t uses and limitations of IIoT in smart industry 4.0	103
		6.4.1 Con	nnectivity	103
			tonomous power	103
		6.4.3 IoT	hardware	103
		6.4.4 Sec	•	104
	6.5		arch issues and challenges of smart industries 4.0	104
			eroperability	105
			g IIoT data analytics	105
		6.5.3 Dat	· · · · · · · · · · · · · · · · · · ·	106
		6.5.4 Dat		106
		6.5.5 Vis		107
			vacy issues	107
			estment issues	108
			vitised business models	108
			ections of IIoT in smart industries 4.0	109
		Conclusion		111
		nowledgeme	ent	112
	Refe	rences		112
7			he 4th Industrial Revolution nd Wen-Shyan Chua	117
			•	117
	7.1	Introduction		117
	7.2	Types of s		117
			nulation of a physical system eractive simulation	118
	7.3		f simulation	126 131
	1.3		dictive maintenance	131
		7.3.1 Pre		131

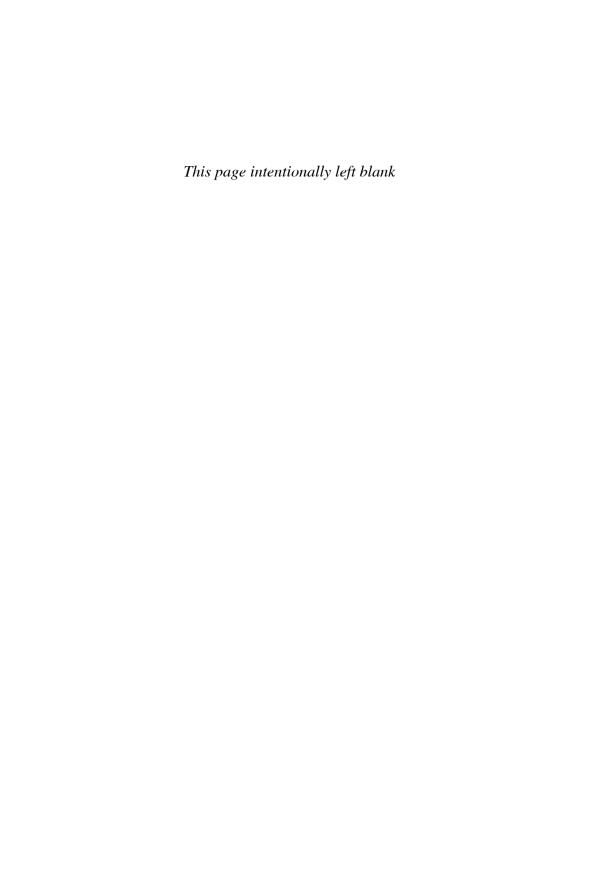
X	The nine	pillars oj	^c technologies	for Industry 4.0

	7.3.3 Design, development, and training References		133 134
8	8 The role of artificial intelligence in developm Rahulraj Singh Kler and Joon Huang Chuah	nent of smart cities	137
	8.1 Industry 4.0 and smart cities		137
	8.2 Artificial intelligence		139
	8.2.1 Machine vision and object recogni	tion	141
	8.2.2 Natural language processing		146
	8.2.3 Cognitive computing		148
	8.3 Role of AI in smart cities		149
	8.3.1 Safety and surveillance		149
	8.3.2 Healthcare		154
	8.3.3 Big data		159
	8.3.4 Transportation and infrastructure		162
	8.3.5 Energy planning and management		166
	8.4 Opportunities and risks		168
	References		170
9			177
	Yaser Sabzehmeidani		
	9.1 Industry 4.0 and industrial robots		177
	9.2 Smart factories		180
	9.2.1 Efficiency and productivity		181
	9.2.2 Safety and security		182
	9.2.3 Flexibility		183
	9.2.4 Connectivity		184
	9.3 Internet of Things		184
	9.4 Artificial intelligence		186
	9.5 Smart materials and 3D printing		188
	References		190
10	10 Integration revolution: building trust with te	echnology	193
	Ishaan Gera and Seema Singh		
	10.1 Introduction		193
	10.2 Objectives and methodology		195
	10.3 Evolution of the blockchain		195
	10.3.1 Closed and open systems		197
	10.4 Trust economies		198
	10.4.1 Production		199
	10.4.2 Organisation		200
	10.4.3 Services		202
	10.4.4 Finance		203

	Contents	X
	10.4.5 Governance	206
10.5	Utilising the blockchain	208
	Conclusion	211
	rences	213
1 Syste	em integration for Industry 4.0	215
	basi Peter Essien, Uduakobong-Aniebiat Okon, and e Asuqùo Frank	
11.1	Introduction	215
11.2	Application of system integration in VLS database	
	replication design	216
11.3	1	216
	11.3.1 Root of replication	216
11.4	Virtual learning system replication policy	224
	11.4.1 Testing of experiment II (transition and analysis)	
	replication testing	225
	11.4.2 Configuration on master at command prompt	226
	11.4.3 Configuration on slave at command prompt	226
	11.4.4 Hardware and software requirement for replication	226
11.5	Conclusion	229
Refe	rences	230
	itive manufacturing toward Industry 4.0	233
Puva	nasvaran A. Perumal and Kalvin Paran Untol	
12.1	AM in various industries	233
	12.1.1 Automotive industries and suppliers	234
	12.1.2 Aerospace industries	235
	12.1.3 Toy industry	235
	12.1.4 Consumer goods	235
	12.1.5 Foundry and casting	236
	12.1.6 Medical	236
	12.1.7 Architecture and landscaping	237
12.2	Different materials used in AM	237
	12.2.1 Plastics	238
	12.2.2 Metals	239
	12.2.3 Ceramics	239
	12.2.4 Composites	240
12.3	Global evolution of AM	240
	12.3.1 Early stages	241
	12.3.2 Growth stages	241
	12.3.3 Maturity stages	241
12.4	Future direction of AM	242
12.5	Conclusion	242
	rences	243

13		_	ting in Industrial Revolution 4.0 Palaniswamy and Leong Wai Yie	245		
	13.1	Cloud	computing	245		
			Benefits of cloud computing	246		
			Types of cloud computing	247		
			Types of cloud services	248		
	13.2	Fog con	mputing	248		
	13.3	Edge co	omputing	248		
	13.4	Security	y and privacy issues	249		
	13.5	Cloud	computing in Industrial Revolution 4.0	251		
	13.6	Cloud o	computing in the communication sector	254		
	13.7	Cloud o	computing in healthcare sector	255		
	13.8	Scholar	ly articles in cloud computing	255		
	13.9	Conclu	sion	257		
	Refer	ences		258		
14	-	,	y in Industry 4.0 context: background, issues,	263		
	and future directions					
	-		Shaiful Jahari Hashim, Sharifah Mumtazah Syed Ahmad, Hashim and Muhammad Akmal Chaudary			
	14.1 Introduction: background and motivation					
	14.2	I4.0 cyl	bersecurity characterizations	265		
			Cybersecurity vulnerabilities	265		
		14.2.2	Cybersecurity threats	266		
			Cybersecurity risks	267		
			Cybersecurity countermeasures	269		
	14.3		curity principles	270		
			Confidentiality	270		
		14.3.2	Integrity	270		
			Availability	273		
		14.3.4	Authenticity	273		
		14.3.5	Nonrepudiation	273		
		14.3.6	Privacy	274		
	14.4	I4.0 sys	stem components	274		
		14.4.1	Cloud computing	275		
		14.4.2	Big data	276		
		14.4.3	Interoperability and transparency	276		
		14.4.4	Blockchain (distributed ledgers)	278		
		14.4.5	Software-defined network	279		
		14.4.6	Multi-factor authentication	280		
	14.5	Open is	ssues	283		
		14.5.1	Fog computing issues	283		
		14.5.2	Big data issues	283		
		14.5.3	Interoperability issues	285		

			Contents	xiii
		14.5.4	GraphQL issues	285
			Blockchain issues	286
			SDN issues	286
			Kerberos issues	287
			Two-factor authentication issues	291
			Three-factor authentication issues	293
	14.6		directions	295
			Directions to the developer/designer	295
			Directions to researchers	295
			Directions to industries/factories	297
		Conclu	sion	298
	Refere	ences		298
15			ta acquisition monitoring system for solar	
		voltaic	•	309
		_	Sarban Singh, Muhammad Izzat bin Nurdin, iew and Tan Chee Fai	
	15.1	System	design and development	310
		15.1.1	Conceptual TC sensors placement, system design,	
			integration and installation	310
		15.1.2	Hardware: sensors system design, integration and	
			installation	311
	15.2	Softwar	re design and development	315
		15.2.1	Embedded software design integration – Raspberry	
			Pi Zero Wireless hardware system and website	316
		15.2.2	Embedded software design	316
	15.3	Results	and discussion	318
		15.3.1	Hardware system design and developmen	318
		15.3.2	Embedded software design and development	321
		15.3.3	Cloud/database monitoring system	322
		15.3.4	IoT-based data acquisition monitoring system	
			webpage – localhost	327
	15.4	Conclu	sion	331
	Ackno	owledge	ment	331
16			hings (IoT) application for the development of building	
			ergy management system ee and Md Eirfan Safwan Md Jasman	333
	16.1	Introdu		333
	16.2	Buildin	g indoor environment	334
	16.3	Buildin	g energy management	336
	16.4	IoT app	proach for data and information collection	337
		16.4.1	Indoor environment monitoring	337
		16.4.2	Energy performance assessment	342
	16.5	Conclu	sion	344
	Refere	ences		345

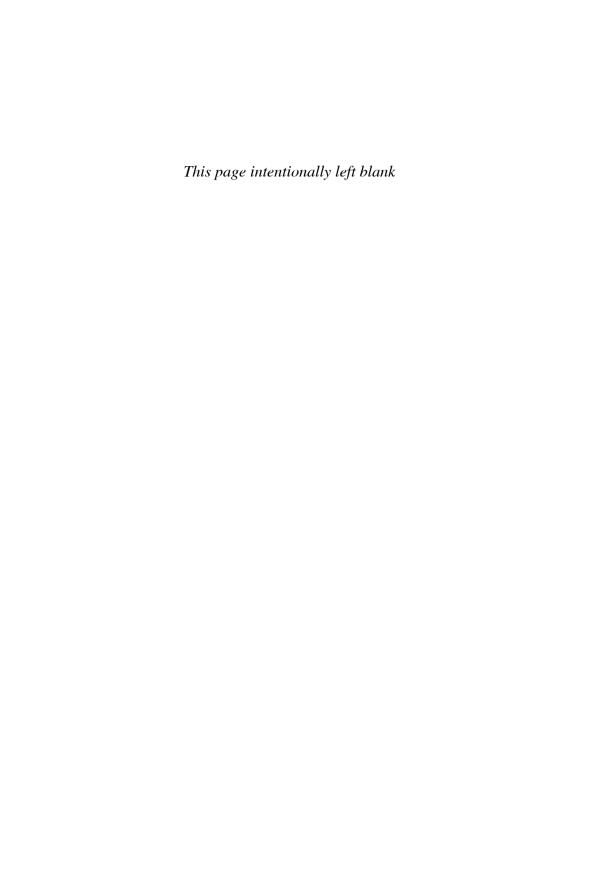

17		ult diagnosis system for building air conditioning	347			
		Tan, CheeFai Tan, Ranjit Singh Sarban Singh and	371			
	Matthias Rauterberg					
	17.1 Introduction					
		erall system description	350			
		2.1 Literature review	351			
		2.2 Knowledge acquisition	351			
		2.3 Design	351			
		2.4 Testing and validation	353			
		2.5 Maintenance	353			
	•	tem development	353			
		3.1 Development of the KBS	354			
		3.2 Create a rule	357			
		3.3 Goal	357			
		3.4 User interface	359			
		3.5 KAL view debugger window	362			
		3.6 Find and replace window	363			
		3.7 Rule window	364			
		nmary	366			
	References	3	366			
18	_	n integration in manufacturing Industry 4.0	369			
	Puvanasva	ıran A. Perumal				
	18.1 Gre	en	369			
	18.2 Lea	n green	370			
		gration of lean and green	371			
		n green needs	371			
		n green benefits	373			
		n green disadvantages	375			
		ments integrate lean green	376			
		n green tools	377			
		Production Preparation Process (3P)	378			
		n enterprise supplier networks	379			
		n green application	382			
		n green standards	382			
		pter summary	385			
	References		385			
19	Lean gove	ernment in improving public sector performance				
		dustry 4.0	387			
		ıran A. Perumal				
		nle develonment system	387			

			Contents	XV
	19.2	Lean implementation in public sector		388
		Performance measurement in improving public sector		390
		Problems of lean implementation in public sector		392
	19.5	Conclusion		394
	Refer	ences		395
20		dominancy in service Industry 4.0 nasvaran A. Perumal		399
	20.1	Definition		399
	20.2	Transformation in lean services		400
	20.3	Eight wastes of lean		401
	20.4	Lean tools in service industry		404
	20.5	Critical elements in lean service		404
		20.5.1 Leadership and management		404
		20.5.2 Customer focus		404
		20.5.3 Empowering employment		405
		20.5.4 Quality		405
		20.5.5 Challenges in lean services		407
	20.6	Application of lean in services		407
		20.6.1 Lean hotel		407
		20.6.2 Lean in hospital		411
		20.6.3 Lean construction		413
		20.6.4 Lean office		418
	20.7	Lean in service versus lean in manufacturing		424
		20.7.1 Lean manufacturing		427
	20.8	Chapter summary		428
	Refer	ences		428
21		study: security system for solar panel theft based on		
		m integration of GPS tracking and face recognition us	ing	421
		<mark>learning</mark> ti Yudho Suprapto, Meydie Tri Malindo, Muhammad Iqba	ıl	431
		g Tri Putra, Suci Dwijayanti and Leong Wai Yie		
	21.1	Introduction		431
	21.2	Method		432
		21.2.1 Face recognition using deep learning		432
		21.2.2 GPS tracking		434
	21.3	Results and discussion		434
		21.3.1 Deep learning model for face recognition system	m	434
		21.3.2 Offline test		440
		21.3.3 Online test		440
		21.3.4 GPS tracking test		442
		21.3.5 GPS tracking: communication system		444
		21.3.6 GPS tracking: real-time system test		446

xvi	The nine pillars of technologies for Industry 4.0

	21.4	Conclusion	452
	Refere	ences	452
22	Proje	ect Dragonfly	455
	•	•	
	_		155
	22.1		
		* *	
	22.2	- · ·	
	22.2		
		*	
	22.2	1 *	
	22.3		
		troduction 455 2.1.1 Overview 455 2.1.2 Air quality 456 2.1.3 Water quality 456 2.2.1 IoT concept 456 2.2.1 IoT concept 456 2.2.2 Air quality 457 2.3.1 Overview 467 2.3.2 System setup 468 2.3.3 Quadcopter 468 2.3.4 Hardware modules 468 2.4.1 Dragonfly 473 2.4.2 Project Dragonfly Software 473 2.4.2 Project Dragonfly Software 476 2.5 Air ground-robin through load adjusted-load informed 481 2.5 Air duality 648 2.6 Air ground-robin 481 2.7 Air duality 648 2.8 Air duality 648 2.8 Air duality 648 2.9 Air duality 648 2.0 Air du	
	22.4	Results	
		· · · · · · · · · · · · · · · · · · ·	
		Conclusion	
	Refere	ences	476
23	_	· ·	
	_	*	481
		· · · · · · · · · · · · · · · · · · ·	
	Peace	e Asuquo Frank	
	23.1	Introduction	481
	23.2	Application of LBAM 4.0	482
	23.3	= =	483
		23.3.1 Methodology	483
	23.4	Experimentation	487
		23.4.1 Hardware and software requirement for load balance	
			487
	23.5	Algorithm description	488
		23.5.1 Round-robin algorithm	488
			488
	23.6	•	
		•	
		· · · · · · · · · · · · · · · · · · ·	491
			492
	23.7		
	23.7 23.8	23.6.2 Implementation (program extract PHP)	
		23.6.2 Implementation (program extract PHP) Recommendation Conclusion	496

		Conto	ents	xvii
24		network review and challenges Siang Hoh, Bi-Lynn Ong, Wai Yie Leong and Si-Kee Yoon		499
		, , ,		
	24.1	5G network overview		499
		24.1.1 5G network use cases		500
	242	24.1.2 5G network architecture		502
	24.2	5G network deployment		504
		24.2.1 Deployment options for NSA and SA24.2.2 Spectrum of 5G network		504 507
		24.2.3 Spectrum of 3G network 24.2.3 5G technology and technical regulations		510
	24.3	•		514
	24.3	24.3.1 Small cell deployment challenges		515
		24.3.2 Fibre backhaul network deployment challenges		516
		24.3.3 5G user privacy challenges		517
	24.4	Summary		518
		rences		518
25	Indu	stry 4.0 and SMEs		521
	Habte	om Mebrahtu		
	25.1	Introduction		521
	25.2	Opportunities and challenges of adopting Industry 4.0 by SM	ſΕs	523
		25.2.1 Opportunities		523
		25.2.2 Challenges		524
	25.3	Readiness of SMEs to adopt Industry 4.0		525
		25.3.1 PwC Industry 4.0 self-assessment tool		525
		25.3.2 SoRF Smart Factory assessment tool		527
		25.3.3 WMG Industry 4.0 assessment tool		528
	25.4	Helping SMEs to adopt Industry 4.0		531
		25.4.1 GrowIn 4.0		532
		25.4.2 Industry 4.0 readiness/awareness tool		533
		25.4.3 Benefits identification		534
	25.5	Summary		538
	Refer	rences		539
Inc	dex			541



About the editors

Wai Yie Leong is the Chairperson of The Institution of Engineering and Technology (Malaysia Local Network) and Vice President of The Institution of Engineers, Malaysia (IEM). She specializes in sensing and wireless communications and medical signal processing research including wireless sensor networks, wireless communications, and brain signal processing for signal conditioning and classification in various EEG-based mental tasks. She received the Women Engineer of the Year award in 2018, the IEM Presidential of Excellence Award in 2016, and ASEAN Meritorious Award in Science and Technology 2017. She holds a Ph.D. in Electrical Engineering from The University of Queensland, Australia.

Joon Huang Chuah lectures at the Department of Electrical Engineering, University of Malaya, Malaysia and is the Head of VLSI and Image Processing (VIP) Research Group. He specialises in artificial intelligence, image processing and integrated circuit design. He is the Principal Journal Editor of the Institution of Engineers, Malaysia. He received his B.Eng. from the Universiti Teknologi Malaysia, M.Eng. from the National University of Singapore, MPhil in Technology Policy from the Cambridge Judge Business School, and PhD from the University of Cambridge.

Boon Tuan Tee is an Associate Professor at the Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka, Malaysia. His research focuses on energy management system and green technology. He is a Professional Technologist (Green Technology) registered under Malaysia Board of Technologists. His other professional certifications include Certified Energy Manager under ASEAN Energy Management System (AEMAS) and Certified Professional in Measurement & Verification from Malaysia Greentech. He has been a member of the IET since 2015. He holds a Ph.D. degree in Engineering from University of Cambridge, UK.

Foreword

Industry 4.0 refers to the current trend of automation and data exchange in manufacturing technologies, also called Intelligent or Smart Manufacturing. There is an increasing number of organizations and countries where Industry 4.0 is becoming adopted including the United Kingdom (Industry 4.0 and the work around 4IR), the United States, Japan, China and the European Union. Several research organizations, with a leading role for the Fraunhofer Institute, are pushing a reference architecture model for secure data sharing based on standardized communication interfaces. The nine pillars of technology that are supporting this transition include: the internet of things (IoT), cloud computing, autonomous and robotics systems, big data analytics, augmented reality, cybersecurity, simulation, system integration and additive manufacturing. A key role is played by Industrial IoT with its many components (platforms, gateways, devices) but many more technologies play a role in this process including cloud, fog and edge computing, advanced data analytics, innovative data exchange models, artificial intelligence, machine learning, mobile and data communication and network technologies, as well as robotics, sensors and actuators. Over the IoT, cyber-physical systems communicate and cooperate with each other and with humans in real-time both internally and across organizational services in the value chain. Within smart factories, cyber-physical systems monitor physical processes, create a virtual copy of the physical world and make decentralized decisions. The aim of this edited book is to focus on the nine pillars of technology including innovative research, challenges, strategies and case studies.

Advances in science and technology continuously support the development of industrialization all over the world. The First Industrial Revolution used water and steam power to mechanize production, the Second used electric power to create mass production and the Third used automation for the manufacturing line. Now a Fourth Industrial Revolution, the digital revolution, is characterized by a fusion of technologies that is blurring the lines between the physical, digital and biological spheres. There are three reasons why today's transformations represent not merely a prolongation of the Third Industrial Revolution but rather the arrival of a Fourth and distinct one: velocity, scope and systems impact. The speed of current breakthroughs has no historical precedent. When compared with previous industrial revolutions, the Fourth is evolving at an exponential rather than a linear pace. Moreover, it is disrupting almost every industry in every country. And, the breadth and depth of these changes herald the transformation of entire systems of production, management and governance. The design principles of Industry 4.0 such as virtualization, interoperability, decentralization, service-oriented approaches,

real-time capabilities and modularity all play a key role in the radical changes facing industry. In this book series, we describe the advantages of intelligent manufacturing systems and discuss how they will benefit the manufacturing industry by increasing productivity, competitiveness and profitability. (Benefits: enhanced productivity through optimization and automation, real-time, better quality products, sustainability, personalization and customization for consumers, and improved scalability and agility.)

In this book series, the nine pillars of technology that are supporting this transformation have been introduced: the IoT, cloud computing, autonomous and robotics systems, big data analytics, augmented reality, cybersecurity, simulation, system integration and additive manufacturing.

Technologies and Industry 4.0 are about reducing complexity and processes and add value. However, while business processes are changing rapidly, industries and manufacturers are struggling to exploit the full potential of digitization. From both a strategic and technological perspective, the Industry 4.0 roadmap visualizes every further step on the route towards an entirely digital enterprise. Many case studies have been discussed in this book series, which aims to benefit and create impact to industry players, scientists, academicians, researchers and manufacturers.

Chapter 21

Case study: security system for solar panel theft based on system integration of GPS tracking and face recognition using deep learning

Bhakti Yudho Suprapto¹, Meydie Tri Malindo¹, Muhammad Iqbal Agung Tri Putra¹, Suci Dwijayanti¹ and Leong Wai Yie²

Security system is important to protect the objects, including solar panel modules. In this study, an integrated system that combines image processing and object tracking is proposed as a security system of solar panel. Face recognition using deep learning is used to detect unknown face. Then, the stolen object can be tracked using Global Positioning System (GPS) that works using General Packet Radio Service and Global System for Mobile communication system. The results show that the integrated security system is able to find the suspect and track the stolen object. Using the combination of FaceNet and deep belief network, unknown face can be recognized with an accuracy of 94.4% and 87.5% for offline and online testing, respectively. Meanwhile, the GPS tracking system is able to track the coordinate data of the stolen object with an error of 2.5 m and the average sending time is 4.64 s. The duration of sending and receiving data is affected by the signal strength. The proposed method works well in real-time manner and they can be monitored through a website for both recorded unknown face and coordinate data location.

21.1 Introduction

Solar power plant is one of the alternative energies which is utilized in many applications in our daily life. Nevertheless, the price of solar panel is relatively high and so it might be stolen. Thus, a security system is needed for the solar panel system.

Most of the security systems considered only one aspect such as the suspect or the position of the stolen object. One of the methods to detect the suspected thief is using image processing approach. Face recognition is often applied for security system because of its high accuracy compared to other biometrics [1]. Thus,

¹Department of Electrical Engineering, Universitas Sriwijaya, Palembang, Indonesia

²Faculty of Engineering and IT, Mahsa University, Kuala Lumpur, Malaysia

surveillance system can be developed using a security system based on face recognition. Nurhopipah and Harjoko [2] developed a monitoring system using closed circuit television (CCTV) that can detect motion and face and then recognize the face. Another research by Wati and Abadianto [3] developed a home security system based on face recognition. However, this system could not work in real time, especially for unknown face that might be the suspected person. In addition, the system did not have any central storage to save the detected face.

Another aspect in a security system is to track the position of the stolen object. Many research have been done to tracking the position using Global Positioning System (GPS). GPS module and Global System for Mobile Communication (GSM) have been used to track the stolen item using the study by Liu *et al.* [4] and Salim and Idrees [5] who proposed security system based on GPS and General Packet Radio Service (GPRS). Singh *et al.* [6] developed an object tracking system using GPS with communication media of GPRS and Short Message Service (SMS), and Shinde and Mane [7] utilized GPRS and GPS to track the location of the object through website or smartphone. However, it did not have backup communication system when there is no GPRS signal [5,7]. On the other hand, no central storage may allow users to save the input data received from GPS manually [4,6].

Based on the problem mentioned earlier, it is important to make one system for securing the object. Hence, this study proposed an integrated system that combines the face recognition for finding the suspect who stole the solar panel module and tracking system to find the current position of the stolen object. This chapter is organized as follows: Section 21.2 describes the proposed method to recognize unknown face and to track the data coordinate of stolen object. Results and discussion are presented in Section 21.3. Finally, this chapter is concluded in Section 21.4.

21.2 Method

In this study, the proposed method is designed as the combination of face recognition and tracking system. CCTV or webcam is attached close to the solar panel. When an unknown person approaches the solar panel, his/her image will be captured by CCTV or webcam and this image will be recognized using deep learning. If the person is unrecognized, then the image will be sent and stored to online database that can be utilized to track the identity of the thief. In the meantime, the position of the stolen solar panel will be tracked using GPS. The detailed process of the proposed method will be described in the following subsections.

21.2.1 Face recognition using deep learning

The face of an unknown person will be a key in the proposed security system in finding a suspected person. The flowchart of the working process of face recognition can be seen in Figure 21.1.

As shown in the flowchart, the first stage is initialization and it is followed by face detection. Here, the system detects the face using Viola Jones algorithm [8]. The next stage is face detection that is utilized whether the face is detected. If the face is

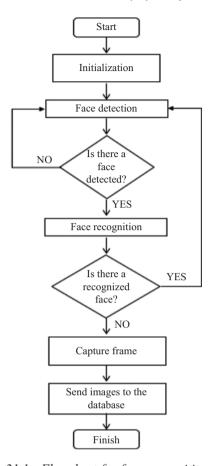


Figure 21.1 Flowchart for face recognition system

detected, the system may continue with the following stage to recognize the face. In this process, the face feature is extracted using embedding Facenet algorithm [9] and the recognition process is performed by deep belief network (DBN). The recognized face will be determined from the confidence value above 80%. The confidence value below 80% is determined as unknown individual who will be captured and sent to the database.

Data used in this research are obtained from different conditions, namely bright and dark. In addition, the object must not cover his or her face. Data used in the training process consist of two people, hereafter called as operator. This training data are obtained from video CCTV. Then, to test the system, eight new faces are utilized.

In obtaining the model, 4,000 images of operators are used where 3,000 images for training and 1,000 images for testing data. FaceNet is used to extract face features to obtain 128 domain points, which is called face embedding. These embedding files are used as the input for DBN. The obtained model is then tested in two conditions, namely offline and online. In the offline test, system is tested for recognized and unrecognized

faces coming from images and videos. Nine unrecognized faces are utilized to test the system in both bright and dark. In the online test, the system may recognize the faces in real time and the unknown faces are sent to the database for both bright and dark.

The training process of the proposed method is shown in Figure 21.2. The first stage is to resize the image into 96×96 to comply with the input for the purpose of embedding process for FaceNet.

Architecture of FaceNet used in this study is model inception_blocks_v2 in the structure as shown in Table 21.1. Instead of using artificial neural network (ANN) for classification stage, this study utilizes a generative model DBN that consists of restricted Boltzmann machines (RBMs) [10]. DBN does not have any connection in intra layer. Parameters for training network of DBN used in this study can be seen in Table 21.2.

21.2.2 GPS tracking

Face recognition in the previous subsection may be helpful to capture a suspect who stole the solar panel. In the meantime, the stolen object may have been moved to different position. Hence, the security system integrates the face recognition system with GPS tracking to track the position of stolen object.

In this study, the proposed GPS tracking uses the combination of GPRS and GSM as communication system to send the location of the stolen solar panel from Internet network and SMS, respectively. This security system works in parallel with face recognition system. The proposed process of tracking is shown in Figure 21.3.

As shown in Figure 21.3, the system will determine the coordinate location of solar panel using GPS sensor that is aimed as a receiver from GPS satellite to receive and process data to obtain accurate coordinate. When the location is obtained, coordinate data are sent to the database using GPRS or GSM through an SMS. Location and position movement of the stolen solar panel will be tracked in real time and shown in the website. This security system also has website and android application as an interface to track the position and location of the solar panel module. Figures 21.4 and 21.5 represent the website interface and android application, respectively .

While sending the data location, Internet might be interrupted and it will depend on the strength of signal. Hence, this proposed tracking system is also provided to read SMS that is sent to the smartphone.

21.3 Results and discussion

This proposed security system integrates two systems: face recognition to capture the suspect and GPS tracking to track the location of the suspect and the stolen solar panel. In the experiment, both systems will be examined.

21.3.1 Deep learning model for face recognition system

Data used for training consist of two people in two conditions during the day and night as shown in Figure 21.6. Total data for training and testing are 4,000 images.

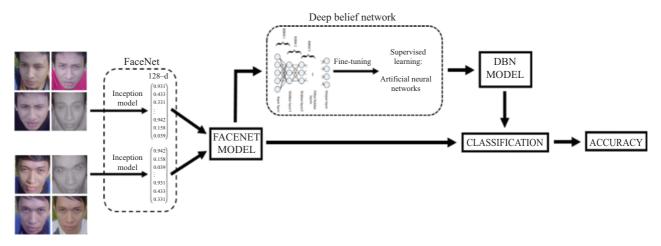


Figure 21.2 Training process

Table 21.1 Inception blocks V2 architecture

ZeroPadding
$\frac{1}{\text{Conv}(7 \times 7 \times 3.2) + \text{norm}}$
ZeroPadding + max pool
Conv $(1 \times 1 \times 3.1)$ + norm
ZeroPadding
Conv $(3 \times 3 \times 3.1)$ +norm
ZeroPadding + max pool
Inception (1a)
Inception (1b)
Inception (1c)
Inception (2a)
Inception (2b)
Inception (3a)
Inception (3b)
Average pool
Flatten
L2

Table 21.2 Parameter training network DBN

Parameter	Parameter values		
Hidden layer structure Jumlah epoch RBM	[3,000, 4,500, 3,000] 10		
Learning rate RBM	0.001		
Jumlah epoch ANN	3,000		
Learning rate ANN	0.01		
Batch size	32		
Dropout	0.2		

After obtaining the face feature through FaceNet using the structure as shown in Table 21.1, the features are used as the input to DBN. Parameter structure for DBN is shown in Table 21.2. As DBN is a combination of RBMs, such RBMs reconstruct the input and minimize the reconstruction error. Output of the first hidden layer will be the input for the visible layer in the second RBM and so on. The graph of reconstruction error for RBMs can be seen in Figure 21.7.

As shown in Figure 21.7, the reconstruction error is small for the last RBM. This may indicate that RBM has formed a model that can detect the pattern of the data. This process is performed in an unsupervised manner. The next stage in the training process is performed in a supervised manner which is the same as ANN [11] and its training loss can be seen in Figure 21.8. This training loss decreases significantly in 356th epoch which may indicate that the training process needs relatively high computation time. However, this model is robust to detect the testing data which is not included in training process coming from the operator.

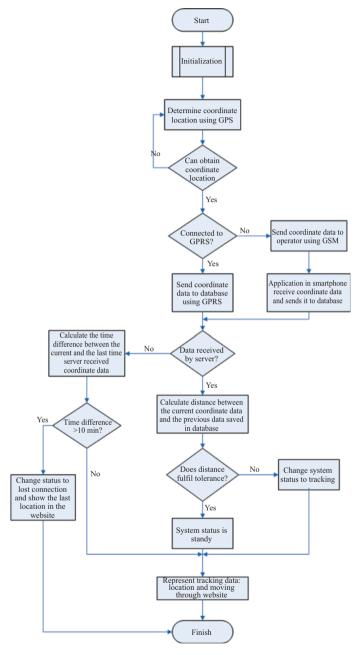


Figure 21.3 Flowchart tracking system using GPS

Figure 21.4 Website interface

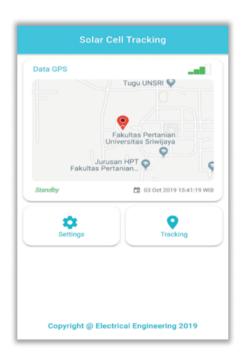


Figure 21.5 Android application interface

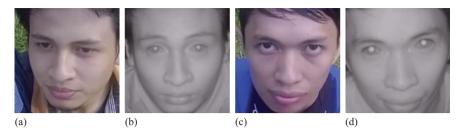


Figure 21.6 Sample of known face (2 operators) used in training, bright 1 (a), dark 1 (b), bright 2 (c), and dark 2 (d)

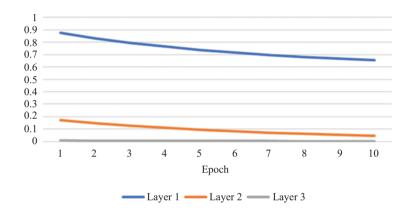


Figure 21.7 RBM reconstruction error

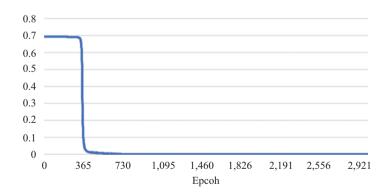


Figure 21.8 Training loss of ANN

21.3.2 Offline test

Offline test is divided into known face (operator) and unknown face (suspect). To detect unknown face, the system must represent the confidence probability based on the model of FaceNet and DBN which have been trained earlier. Here, the confidence probability below 90% may imply unknown face. Higher confidence probability is chosen because the aim of this face recognition is performed as a security system.

For known face, the system has an accuracy of 96.4%. It may recognize 964 images of operators from 1,000 images that are not included in the training process. This result shows that the system is good enough to recognize the known face.

Later, the system is tested using unknown images that are totally new data. These images come from nine different individuals for both image and video. The results of testing using image can been seen in Table 21.3.

As shown in Table 21.3, the proposed system is able to recognize unknown face for each person. The error still occurs in the first unknown image that is recognized as operator. There might be some factors that cause it such as light intensity and the feature of unknown face may have similar characteristics as the operators' faces used in the training.

Next, the test was also performed in the video for unknown faces. Videos for nine unknown faces were recorded using CCTV and webcam to see the performance of the deep learning model in two different cameras. The results can be seen in Table 21.4.

From Table 21.4, the system can work well for moving images (video) using CCTV and webcam. Accuracy of recognizing unknown face is 94.44% for video. However, for the night where lighting is limited, CCTV gives better accuracy than

No.	Face image	Lighting condition	Recognition	Prediction (confidence)
1	Unknown 1	Bright	False	Operator 1 (100%)
		Dark	False	Operator 1 (99.91%)
2	Unknown 2	Bright	True	Operator 1 (83.16%)
		Dark	True	Operator 2 (56.12%)
3	Unknown 3	Bright	True	Operator 1 (67.55%)
		Dark	True	Operator 1 (84.85%)
4	Unknown 4	Bright	True	Operator 1 (66.23%)
		Dark	True	Operator 2 (75.55%)
5	Unknown 5	Bright	True	Operator 1 (73.38%)
		Dark	True	Operator 2 (52.2%)
6	Unknown 6	Bright	True	Operator 1 (52.94%)
		Dark	True	Operator 1 (61.35%)
7	Unknown 7	Bright	True	Operator 1 (72.43%)
		Dark	True	Operator 2 (78.45%)
8	Unknown 8	Bright	True	Operator 2 (82.94%)
		Dark	True	Operator 2 (79.99%)
9	Unknown 9	Bright	True	Operator 2 (81.95%)
		Dark	True	Operator 1 (50.96%)

Table 21.3 Results of offline test for unknown face

Table 21.4 Offline test using video for unknown faces

Face image	Camera	Lighting condition	Capture	Probability (confidence) (%)
Unknown 1	CCTV	Bright	Fail	100
		Dark	Success	77.88
	Webcam	Bright	Fail	100
		Dark	Success	85.27
Unknown 2	CCTV	Bright	Success	70.02
		Dark	Success	64.93
	Webcam	Bright	Success	50.88
		Dark	Success	66.96
Unknown 3	CCTV	Bright	Success	82.77
		Dark	Success	87.84
	Webcam	Bright	Success	81.19
		Dark	Success	74.29
Unknown 4	CCTV	Bright	Success	83.88
		Dark	Success	74.81
	Webcam	Bright	Success	54.65
		Dark	Success	55.39
Unknown 5	CCTV	Bright	Success	73.19
		Dark	Success	79.8
	Webcam	Bright	Success	69.84
		Dark	Success	63.61
Unknown 6	CCTV	Bright	Success	83.74
		Dark	Success	52.9
	Webcam	Bright	Success	73.97
		Dark	Success	73.65
Unknown 7	CCTV	Bright	Success	67.93
		Dark	Success	73.95
	Webcam	Bright	Success	72.79
		Dark	Success	87.74
Unknown 8	CCTV	Bright	Success	50.53
		Dark	Success	63.55
	Webcam	Bright	Success	86.13
		Dark	Success	83.26
Unknown 9	CCTV	Bright	Success	67.65
		Dark	Success	84.11
	Webcam	Bright	Success	55.18
		Dark	Success	85.78

webcam because it has infrared which is helpful in capturing the face compared with webcam as shown in Figure 21.9.

21.3.3 Online test

As the proposed security system will work in real time, the online test should be performed. As shown in Figure 21.9, the face captured using CCTV gives better result than webcam. However, CCTB brand used in the experiment has difficulty in making connection to Python used in face recognition system. Hence, during the online test, webcam is utilized to capture image in video format.

Figure 21.9 Captured image for unknown face, using CCTV (a) and webcam (b)

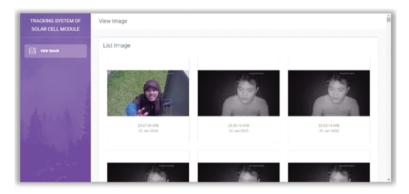


Figure 21.10 Website interface for storing the unknown face captured by the face recognition system

In the online test, using face recognition system that has been trained by deep learning earlier, the unknown detected face will be captured and sent to website as shown in Figure 21.10. Here, website has a role as the database which presents unknown faces captured by the system. Results of online test can be seen in Table 21.5.

As shown in Table 21.5, the system can detect unknown face and send it to the database. This can be helpful for the operators to monitor solar panel, especially when the solar panel is stolen. This security system based on face recognition works well in the day when the light is bright. Nevertheless, in the night, the system experiences difficulty in detecting and recognizing the face because the face image is not clear. Overall, the proposed system is able to recognize unknown face with an accuracy of 87.5% for real-time condition.

21.3.4 GPS tracking test

As an integrated security system, the GPS tracking system may work when the stolen solar panel has moved from its original position. The face recognition may be helpful

Thief	Upload in	mage
	Bright (day light)	Dark (night)
Unknown 1	Success	Success
Unknown 2	Success	Success
Unknown 3	Success	Success
Unknown 4	Success	Success
Unknown 5	Fail	Success
Unknown 6	Success	Success
Unknown 7	Success	Success
Unknown 8	Success	Success

Table 21.5 Results of online test

Table 21.6 Initial coordinate data of solar panel

Smartphone data		Sensor (GPS data
Latitude	Longitude	Latitude -3.21521°	Longitude
-3.21525°	104.64857°		104.64859°

for the operator to find the suspect who stole the solar panel. However, the solar panel that has been stolen needs to be tracked so that its position can be found.

In the first experiment for testing the accuracy of GPS system, the solar panel is placed in the initial position and the coordinate for this initial position can be seen in Table 21.6.

As shown in Table 21.6, the coordinate GPS sensor has good accuracy as the difference between the coordinate from smartphone which is obtained from Google Maps is 0.00004 and 0.00003 for latitude and longitude, respectively. Then, the solar panel module box is moved to different locations of 1, 10, 50, 100, 150, 200 m away from the initial location. The results of coordinate changes can be seen in Table 21.7. As shown in the table, the first data have coordinates of -3.21523° and 104.64860° for latitude and longitude, respectively, when the GPS sensor is moved for 1 m. Hence, we can find the distance from two coordinates (see Table 21.6 for initial coordinate and the data in Table 21.7) using Haversine equation [12] as follows.

$$\Delta lat = lat2 - lat1$$

$$\Delta lng = lng2 - lng1$$

$$a = \sin^2 \left(\frac{\Delta lat}{2}\right) + \cos (lat1) \times \cos (lat2) \times \sin^2 \left(\frac{\Delta lng}{2}\right)$$

$$d = 2 \times R \times \arcsin (\sqrt{a})$$

Smartphone data		Sensor GPS data		Distance (m)		
Latitude	Longitude	Latitude	Longitude	Smartphone	Sensor	Actual
-3.21523°	104.64860°	-3.21523°	104.64860°	4.01	2.49	1
-3.21509°	104.64858°	-3.21515°	104.64862°	17.85	7.47	10
-3.21477°	104.64860°	-3.21477°	104.64860°	53.54	48.99	50
-3.21433°	104.64860°	-3.21432°	104.64860°	102.47	99.08	100
-3.21391°	104.64860°	-3.21387°	104.64860°	149.21	149.17	150
-3.21345°	104.64870°	-3.21342°	104.64860°	200.90	199.26	200

Table 21.7 Coordinate data after moving the position of GPS sensor

where d is the distance in meter, R is the radius of earth at the equator which is 6,378,137 m, and Δ lat, Δ lng, lat1, lat2, lng1, and lng2 are in radian.

From Table 21.7, the difference between actual data and GPS sensor as well as smartphone is large enough for the first three data. This difference becomes smaller for the fourth to sixth data. The difference is about 2.53 m which is suitable with the specification of the sensor in this research with the error of about ± 2.5 m [13].

GPS tracking: communication system

The proposed tracking system must have good communication system. Thus, the success of sending data and time while sending data is important. In this study, GPRS will be utilized as communication data system for Internet network and GSM is a backup system for SMS.

The initial position is shown by red bullet in Figure 21.11. This figure represents the moving lane of solar panel box. The aim is to get the coordinate data and time for sending the data from initial to the current position.

Results for communicating system using GPRS after moving object 16 times can be seen in Table 21.8. As shown in the table, the time need for sending and receiving the coordinate data is around 2-4 s with the average of 2.38 s. And the time to send the moving object from one location to other is about 17-22 s. Meanwhile, server may receive the data in about 18-21 s. The average time is 19.53 and 19.40 s for sending and receiving, respectively. Table 21.8 also shows the signal strength with the unit of received signal strength indicator (RSSI) [14] where the higher is the better signal strength.

In addition, this study also performed experiment for different speeds while the object is moving from one to another position. The speed varies from 20 to 60 km/h as shown in Tables 21.9 and 21.10.

We can see from Table 21.10 that the duration for sending the data is the same as Table 21.9 which is 2 s. Time delay for sending and receiving the data is 19 and 18.75 s, respectively. This means that the speed of moving object may not influence GPRS in sending and receiving the data. Using GPRS, the tracking system needs 2.38 s for receiving coordinate data and 19.4 s for receiving them. This process of sending and receiving data may depend on the signal strength.

Figure 21.11 Moving lane of solar panel box to test communication system

Table 21.8 Results of communication system using G	7PRS	7PR	'R	R
--	------	-----	----	---

Sending time	Receiving time	Sending time	Time	differences	Signal
(WIB)	(WIB)	duration (s)	Sent (s)		strength
13:38:57	13:38:59	2	0	0	17
13:39:16	13:39:18	2	19	19	17
13:39:35	13:39:37	2	19	19	18
13:39:54	13:39:56	2	19	19	21
13:40:13	13:40:15	2	19	19	19
13:40:32	13:40:34	2	19	19	19
13:40:51	13:40:53	2	19	19	14
13:41:10	13:41:12	2	19	19	16
13:41:28	13:41:31	3	18	19	15
13:41:48	13:41:51	3	20	20	14
13:42:08	13:42:12	4	20	21	14
13:42:30	13:42:33	3	22	21	18
13:42:51	13:42:53	2	21	20	19
13:43:10	13:43:13	3	21	20	23
13:43:30	13:43:32	2	20	19	29
13:43:48	13:43:50	2	18	18	31
Average		2.38	19.53	19.40	19

As communication data also utilizes GSM, the testing of sending and receiving coordinate data is also performed in this study. The results can be seen in Table 21.11.

Table 21.11 shows that the duration of sending data using GSM is longer than using GPRS. The average time is 4.87 s which is twice that of GPRS. It might happen because GSM has two stages in sending data. First, the system sends the coordinate data through SMS to smartphone and later, application in smartphone reads SMS and sends the coordinate data to database using Internet connection. Figure 21.12 shows the SMS sent to the smartphone.

Sending time (WIB)	Receiving time (WIB)	Sending time duration (s)	Time	Signal	
			Sent (s)	Received (s)	strength
11:14:02	11:14:04	2	0	0	18
11:14:21	11:14:23	2	19	19	16
11:14:40	11:14:42	2	19	19	15
11:14:59	11:15:01	2	19	19	16
11:15:18	11:15:20	2	19	19	15
Average		2	19	19	16

Table 21.9 Results of communication system using GPRS (20 km/h)

Table 21.10 Results of communication system using GPRS (60 km/h)

Sending time	Receiving time	Sending time	Time	differences	Signal
(WIB)	(WIB)	duration (s)	Sent (s)	Received (s)	strength
11:35:05	11:35:07	2	0	0	25
11:35:24	11:35:26	2	19	19	18
11:35:42	11:35:44	2	18	18	21
11:36:01	11:36:03	2	19	19	17
11:36:20	11:36:22	2	19	19	16
Average		2	18.75	18.75	19.4

As shown in Figure 21.12, there are some information sent in this SMS. The sequences information is as follows: the sending time, signal strength, status, type of communication, latitude and longitude. As seen in Table 21.11, GSM needs 18.71 and 18.57 s time delay for sending and receiving the coordinate data, respectively. This may imply that the time delay for sending and receiving may not be influenced by the type of communication data and the speed of moving object. It may be affected by the feedback response given by SIM808. From Tables 21.8 to 21.11, the time delay for sending each data is almost equal to about 19 s. Hence, communication using GSM can be utilized as a backup system when signal strength is low or Internet is unavailable.

GPS tracking: real-time system test

The purpose of GPS tracking in the security system of solar panel is to track the position of the stolen solar panel box in a real-time manner. The initial coordinates for this real-time test is shown in Table 21.12.

When the initial position has been saved in the database, the system will have "standby" status automatically as shown in Figure 21.13. The object will not be moved for 10 min to distinguish whether the position is moving or not. Table 21.12

Table 21.11 Results of communication system using Opin	<i>Table 21.11</i>	Results	of	communication	svstem	using	GSM
--	--------------------	---------	----	---------------	--------	-------	-----

Sending time (WIB)	Receiving time (WIB)	Sending time	Time	Signal	
		duration (s)	Sent (s)	Received (s)	strength
14:11:29	14:11:35	6	0	0	18
14:11:51	14:11:56	5	22	21	16
14:12:09	14:12:14	5	18	18	21
14:12:27	14:12:32	5	18	18	18
14:12:45	14:12:50	5	18	18	28
14:13:06	14:13:11	5	21	21	21
14:13:24	14:13:29	5	18	18	18
14:13:42	14:13:46	4	18	17	16
14:13:59	14:14:04	5	17	18	16
14:14:17	14:14:22	5	18	18	19
14:14:35	14:14:40	5	18	18	14
14:14:53	14:14:57	4	18	17	14
14:15:10	14:15:15	5	17	18	20
14:15:30	14:15:35	5	20	20	26
14:15:51	14:15:55	4	21	20	29
Average		4.87	18.71	18.57s	19.6

Figure 21.12 Coordinate data from GSM communication system through SMS

Table 21.12 Coordinate data for initial position to test the real-time GPS system

•	Coordinate		Signal		Status
	Latitude	Longitude	strength		
Initial position	-3.21737°	104.64520°	15	Standby	
After 10 min without moving the object	-3.21737°	104.64520°	20	Standby	

Figure 21.13 System interface in standby mode

Figure 21.14 System interface in tracking mode

shows that the coordinate data do not change for 10 min when the object is not moving. Thus, the system is able to distinguish the standby mode.

Later, the object is moved to new position as shown in Figure 21.14 and the coordinate data can be seen in Table 21.13. As shown in Figure 21.14, pin location colored blue represents the initial position of solar panel module and the red represents the final location of it. From this figure, we can see that the proposed system

<i>Table 21.13</i>	Coordinate a	data for 1	real-time	GPS tracking	system
--------------------	--------------	------------	-----------	--------------	--------

No.	Sending time	Coor	dinate	Signal	Communication	
	(WIB)	Latitude	Longitude	strength	type	
1	14:54:56	-3.21726°	104.6446°	15	GPRS	
2	14:55:12	-3.2173°	104.644°	20	GPRS	
3	14:55:28	-3.21784°	104.64388°	18	GPRS	
4	14:55:44	-3.21913°	104.64376°	24	GPRS	
5	14:56:00	-3.2201°	104.64378°	17	GPRS	
6	14:56:15	-3.22041°	104.6442°	15	GPRS	
7	14:56:31	-3.22039°	104.6454°	15	GPRS	
8	14:56:47	-3.22044°	104.6465°	17	GPRS	
9	14:57:03	-3.22001°	104.64682°	13	GPRS	
10	14:57:19	-3.21947°	104.6468°	13	GPRS	
11	14:57:36	-3.21956°	104.6475°	11	GPRS	
12	14:57:53	-3.21952°	104.6483°	10	GPRS	
13	14:58:09	-3.21950°	104.64900°	9	GSM	
14	14:58:25	-3.21954°	104.64970°	9	GSM	
15	14:58:41	-3.21921°	104.6504°	12	GPRS	
16	14:58:57	-3.21823°	104.65059°	12	GPRS	
17	14:59:35	-3.21729°	104.6508°	21	GPRS	
18	14:59:51	-3.21735°	104.6514°	19	GPRS	
19	15:00:08	-3.21733°	104.6526°	18	GPRS	
20	15:00:24	-3.21729°	104.6534°	23	GPRS	
21	15:00:42	-3.21734°	104.6548°	22	GPRS	
22	15:00:59	-3.21731°	104.656°	18	GPRS	
23	15:01:16	-3.21731°	104.657°	19	GPRS	
24	15:01:34	-3.21729°	104.6585°	19	GPRS	
25	15:01:52	-3.21808°	104.65902°	19	GPRS	
26	15:02:10	-3.21853°	104.65939°	19	GSM	
27	15:02:26	-3.21897°	104.6593°	24	GPRS	
28	15:02:42	-3.21898°	104.6593°	23	GPRS	

may recognize the position of the solar panel from standby to moving. Figure 21.14 also shows that the tracking system is able to draw the lane that is passed by the solar panel box. In Table 21.13, data of 28 coordinates represent different communication systems. It is in GSM mode for three times (13th, 14th, and 26th data). The system will automatically move to GSM when the system cannot send the data using Internet or there is an error as well as disturbance while sending the data which may cause failure. In the 13th and 14th data, the signal strength is 9 which is considered low and hence the system uses GSM directly. Meanwhile, in the 26th data, the signal strength is 19 which is good enough but there might be failure or error while sending the data.

Figure 21.15 shows the visualization of coordinate data as shown in Table 21.13. The red and gray colors represent the data sending by GPRS and GSM, respectively. The details of sending time can be seen in Table 21.14.

Figure 21.15 Visualization of coordinate data and the signal strength in real-time test of tracking system

From Table 21.14, the average sending time is 4.64 s. This time duration may be affected by the strength of the signal. In this experiment, the signal strength is 16.93 so the system needs lesser time in sending the coordinate data.

Lastly, the experiment is also performed for a condition when the system cannot connect to the satellite or when there is no GPRS or GSM connection. Figure 21.16 shows the interface when the system cannot be connected to the server.

As shown in Figure 21.16, the interface is quite different with Figure 21.14. Status system has changed to a lost connection and there is a circle around the red pin. The radius represented by this condition is set to be 100 m. This may indicate the last location of the solar panel box. This condition may occur after 10 mins that the system cannot send data to the server.

From the results and discussions earlier, we can see that the face recognition system and tracking system work together as integrated security system. The security system is able to capture the unknown face who is suspected to be harmful to the solar panel module. The face recognition developed using deep learning can distinguish the known and unknown faces. On the other hand, the tracking system that is aimed to track the position of the stolen solar panel box works well using GPS technology based on GPRS and GSM. The tracking system can recognize the solar panel module position whether it stays still or move to a new location. Those both face recognition and tracking system can be monitored through an interface based on website. Thus, this security system can be applied in real-time condition. In addition, the tracking system is able to manage the lost connection status by giving the information of the last location in radius of 100 m after 10 min when the system cannot send new coordinate data.

Table 21.14 Data for communication system in real-time test of tracking system	<i>Table 21.14</i>	Data for	communication	system in	real-time	test of tracki	ng system
--	--------------------	----------	---------------	-----------	-----------	----------------	-----------

Sending time (WIB)	Receiving time	Sending time	Time	Signal	
	(WIB)	duration (s)	Sent (s)	Received (s)	strength
14:54:56	14:55:02	6	0	0	15
14:55:12	14:55:18	6	16	16	20
14:55:28	14:55:34	6	16	16	18
14:55:44	14:55:50	6	16	16	24
14:56:00	14:56:06	6	16	16	17
14:56:15	14:56:21	6	15	15	15
14:56:31	14:56:37	6	16	16	15
14:56:47	14:56:53	6	16	16	17
14:57:03	14:57:06	3	16	13	13
14:57:19	14:57:22	3	16	16	13
14:57:36	14:57:40	4	17	18	11
14:57:53	14:57:56	3	17	16	10
14:58:09	14:58:14	5	16	18	9
14:58:25	14:58:30	5	16	16	9
14:58:41	14:58:44	3	16	14	12
14:58:57	14:59:05	8	16	21	12
14:59:35	14:59:38	3	38	33	21
14:59:51	14:59:55	4	16	17	19
15:00:08	15:00:11	3	17	16	18
15:00:24	15:00:28	4	16	17	23
15:00:42	15:00:45	3	18	17	22
15:00:59	15:01:03	4	17	18	18
15:01:16	15:01:20	4	17	17	19
15:01:34	15:01:39	5	18	19	19
15:01:52	15:01:55	3	18	16	19
15:02:10	15:02:17	7	18	22	19
15:02:26	15:02:31	5	16	14	24
15:02:42	15:02:45	3	16	14	23
Average		4.64	17.26	17.15	16.93

Figure 21.16 Interface for system response when the solar panel box has lost connection to the server

21.4 Conclusion

This study proposed an integrated system for a security system to find and track the stolen good. The first level of security system is face recognition system that may recognize unknown face using FaceNet as the feature extraction and DBN for the classifier. This system is integrated to the database. From the experiment performed in offline and online manner, the system is able to recognize unknown face with an accuracy of 94.4% for offline and 87.5% for online or in real-time condition. The unknown face recognized by the system is captured and sent to the database may be helpful to find the suspect who stole the object. Meanwhile, the stolen object position needs to be tracked. This tracking is performed in the second level of security system once the object has been stolen. The tracking system utilizes GPS integrated to the database using GPRS and GSM as communication system. The error of GPS sensor is about 2.5 m with the sending time duration of 4.64 s. The system can also track the coordinate location well using both GPRS and GSM and this is affected by the strength of the signal.

The proposed security system could be useful for the security system as it combines the technology of face recognition and GPS tracking.

References

- [1] P. Kumar, M. Agarwal, and S. Nagar, "A Survey on Face Recognition System— A Challenge," *Int. J. Adv. Res. Comput. Commun. Eng.*, vol. 2, no. 5, pp. 2167–2171, 2013.
- [2] A. Nurhopipah and A. Harjoko, "Motion Detection and Face Recognition for CCTV Surveillance System," *IJCCS (Indonesian J. Comput. Cybern. Syst. Yogyakarta, Indones.)*, vol. 12, no. 2, pp. 107–118, 2018.
- [3] D. A. R. Wati and D. Abadianto, "Design of Face Detection and Recognition System for Smart Home Security Application," 2017 2nd Int. Conf. Inf. Technol. Inf. Syst. Electr. Eng., pp. 342–347, 2017.
- [4] Z. Liu, A. Zhang, and S. Li, "Vehicle Anti-Theft Tracking System Based on Internet of Things," in *Proceedings of 2013 IEEE International Conference on Vehicular Electronics and Safety, ICVES 2013*, 2013.
- [5] K. A. Salim and I. M. Idrees, "Design and Implementation of Web-Based GPS–GPRS Vehicle Tracking System," *IJCSET Dec*, vol. 3, no. 3, pp. 5343–5345, 2013.
- [6] P. Singh, T. Sethi, B. B. Biswal, and S. K. Pattanayak, "A Smart Anti-Theft System for Vehicle Security," *Int. J. Mater. Mech. Manuf.*, vol. 3, no. 4, pp. 249–254, 2015.
- [7] P. A. Shinde and Y. B. Mane, "Advanced Vehicle Monitoring and Tracking System Based on Raspberry Pi," *Proc. 2015 IEEE 9th Int. Conf. Intell. Syst. Control. ISCO 2015*, 2015.

- [8] P. Viola and M. J. Jones, "Robust Real-time Object Detection," 2nd Int. Work. Stat. Comput. Theor. Vis.—Model. Learn. Comput. Sampling. Vancouver, Canada, vol. 57, pp. 1–30, 2001.
- [9] F. Schroff, D. Kalenichenko, and J. Philbin, "FaceNet: A Unified Embedding for Face Recognition and Clustering," 2015 IEEE Conf. Comput. Vis. Pattern Recognit., pp. 815–823, 2015
- [10] I. Goodfellow, Y. Bengio, and A. Courville, *Deep Learning*, vol. 1. London, England: Nature Publishing Group, 2016.
- [11] G. E. Hinton, "Deep Belief Networks," *Scholarpedia*, vol. 4, no. 5, p. 5947, 2009.
- [12] I. Setyorini and D. Ramayanti, "Finding Nearest Mosque Using Haversine Formula on Android Platform," *J. Online Inform.*, vol. 4, no. 1, p. 57, 2019.
- [13] S. W. Sun, X. Wang, X. Xiao, L. Teng, X. Zhang, and H. Yang, *SIM808 Hardware Design*. Shanghai: Shanghai SIMCom Wireless Solutions Ltd., 2015.
- [14] SIMCom, *SIM800 Series AT Command Manual*, vol. 1. Shanghai: Shanghai SIMCom Wireless Solutions Ltd., 2015.