Journal of Information Security and Applications 58 (2021) 102804

Contents lists available at ScienceDirect

INFORMATION

AND APPLICATIONS

Journal of Information Security and Applications

L

journal homepage: www.elsevier.com/locate/jisa

Check for

Attack classification of an intrusion detection system using deep learning and &=
hyperparameter optimization

Yesi Novaria Kunang ¢, Siti Nurmaini >, Deris Stiawan ¢, Bhakti Yudho Suprapto ¢

2 Doctoral Engineering Department, Faculty of Engineering, Universitas Sriwijaya, Palembang, Indonesia

b Intelligent System Research Group, Faculty of Computer Science, Universitas Sriwijaya, Palembang, Indonesia

¢ Computer Networking & Information Systems, Faculty of Computer Science, Universitas Sriwijaya, Palembang, Indonesia
d Electrical Engineering Department, Faculty of Engineering, Universitas Srwijaya, Palembang, Indonesia

¢ Faculty of Computer Science, Universitas Bina Darma, Palembang, Indonesia

ARTICLE INFO ABSTRACT

Keywords:

Intrusion detection system
Deep learning
Hyperparameter optimization
Multiclass classification

A network intrusion detection system (NIDS) is a solution that mitigates the threat of attacks on a network. The
success of a NIDS depends on the success of its algorithm and the performance of its method in recognizing
attacks. We propose a deep learning intrusion detection system (IDS) using a pretraining approach with
deep autoencoder (PTDAE) combined with a deep neural network (DNN). Models were developed using
hyperparameter optimization procedures. This research provides an alternative solution to deep learning
structure models through an automatic hyperparameter optimization process that combines grid search and
random search techniques. The automated hyperparameter optimization process helps determine the value of
hyperparameters and the best categorical hyperparameter configuration to improve detection performance.
The proposed model was tested on the NSL-KDD, and CSE-CIC-ID2018 datasets. In the pretraining phase, we
present the results of applying our technique to three feature extraction methods: deep autoencoder (DAE),
autoencoder (AE), and stack autoencoder (SAE). The best results are obtained for the DAE method. These
performance results also successfully outperform previous approaches in terms of performance metrics in
multiclass classification.

1. Introduction A predictive analytics solution called deep learning (DL) is required

to overcome the disadvantages of ML methods in an IDS with big data.

The development of Internet of Thing (IoT) network technology
has had an impact on the growing number of devices and intelli-
gent applications connected to it [1]. This also increases the risk
of cyberattacks [2,3]. Consequently, the development of mechanisms
for application security and infrastructure has become an important
issue [4,5]. Overcoming the threat of attacks to a network requires a
security system that can detect attacks, known as an intrusion detection
system (IDS).

Researchers have been developing IDSs that can be used on various
heterogeneous IoT network platforms [6]. To minimize false alarms
in an IDS, some researchers have used machine learning (ML) [7,8].
Using the ML approach, an IDS more accurately recognize attacks
based on the features of each attack [8]. Unfortunately, with the
complexity of networks such as the IoT, traditional ML algorithms
have limitations when processing an increasing volume of data [7,9-
12]. Moreover, ML’s feature-learning process performs poorly when
attempting to extract meaningful information from big data [13,14].

* Corresponding author.
E-mail address: sitinurmaini@gmail.com (S. Nurmaini).

https://doi.org/10.1016/j.jisa.2021.102804

2214-2126/© 2021 Elsevier Ltd. All rights reserved.

Deep learning involves the development of artificial neural network
algorithms that use many hidden layers to extract meaningful infor-
mation representations from big data. With optimal processing and
utilization of a graphics processor, DL demonstrates high performance
in the big data domain [13]. It has the advantage of extracting large
numbers of data features [11]. With such potential, the DL technique
is suitable for attack detection and classification in networks as var-
ied as those in the IoT. Unfortunately, it is not easy to achieve the
best DL architecture modeling. The complexity of the IDS model with
deep learning necessitates a hyperparameter tuning process from DL
architectures to improve system performance [14].

The hyperparameter tuning process becomes a challenge for a net-
work IDS when it is used for a deep structured model such as deep
neural networks (DNNs). This process involves many parameter values
called hyperparameters, which should be specified when building and
training models. The hyperparameters, such as the number of layer

http://www.elsevier.com/locate/jisa
http://www.elsevier.com/locate/jisa
mailto:sitinurmaini@gmail.com
https://doi.org/10.1016/j.jisa.2021.102804
https://doi.org/10.1016/j.jisa.2021.102804
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jisa.2021.102804&domain=pdf

Y.N. Kunang et al.

networks, the number of nodes per layer, and the activation function
used. Furthermore, the optimization method has additional parameters
that must be specified, such as the learning rate value. One method of
finding the hyperparameters is manually, where a set of parameters is
first tested, and new parameters are used to see whether the perfor-
mance of the optimization method improves [15-18]. The traditional
manual tuning process is time-consuming and requires a domain expert
to accelerate the process. This necessitates automating hyperparameter
tuning to accelerate the hyperparameter optimization (HPO) process.
Automating the HPO process is essential to reducing human effort [14]
and increasing the performance of ML and DL algorithms [19].

The HPO process can automatically be performed by dividing the
range of each parameter by the same value, and then the computer
performs a combination of values known as grid terms [19]. However,
the weakness of the grid search is the process of tuning, which is
time-consuming when hyperparameters are added, as the number of
combinations of parameters increases exponentially [14]. To overcome
this, grid search must be combined with random search [14,20]. This
combination attempts several random parameter combinations, pro-
viding better detection result especially if some hyperparameters offer
better performance than other parameters [21,22].

This research provides an alternative solution to selecting DL struc-
ture models by automatically performing the HPO process through a
combination of grid search and random search techniques. The HPO
process searches the expected hyperparameter candidate values most
likely to increase the classification of the DL algorithm model in the
IDS. The approach involves the regulation of various deep structured
models with an autoencoder (AE) and a DNN model and the use of
an optimization method to select the numerical hyperparameter values
and the best categorical hyperparameter configurations. With uniform
probability distributions, the process is repeated to obtain the best
IDS model by observing the best detection rate performance in attack
classification. The automatic HPO tuning process is done in detail
for numeric and categorical parameters, such as kernel initial and
various variant ReLU activation functions. This approach has never
been performed by other researchers on the DNN deep learning model
with DAE features extraction.

2. Related work

This section discusses state of the art in the use of DL in IDSs and
the use of HPO in deep structured models.

Deep Learning (DL) has shown more accurate performance than
other ML technique on big datasets [23-25]. It can extract complex
abstractions of high-level data representations from large volumes of
unsupervised data [11,26]. The use of unsupervised or semi-supervised
feature learning and hierarchical feature extraction in DL replaces
manual feature engineering. With DL’s many advantages, many studies
have used it to improve classification performance, including detection
and classification of attacks against IDSs. Recent studies using DL
techniques such as deep belief networks [27], DNNs [28,29], and deep
Boltzmann machines [30] have shown significant improvements to
classification performance.

Some research has attempted to improve the performance of detec-
tion and classification attacks by modifying DL network architectures.
Some researchers use AE variants for a model’s learning features [16,
31-37]. In [31], a stacked autoencoder (SAE) was used by stacking
multiple layers of AEs with variations of two and three hidden layers
and by using softmax as a classifier. The research attempted to set the
parameters of the number of neurons in the hidden layer and used
a variety of different activation functions. In another study [34], a
deep autoencoder (DAE) was combined with the deep feed-forward
neural network to classify attacks using default hyperparameters. A
DAE was combined with Naive Bayes in another study [35] to detect
attacks by varying the number of neurons and layers in the DAE.
Non-symmetric deep autoencoders (NDAEs) combined with random

Journal of Information Security and Applications 58 (2021) 102804

forest [36] used varying combinations of neurons and layers in the AE
structure to detect attacks. Some studies [31,34-37] have demonstrated
increased performance in attack detection and classification. Unfor-
tunately, DL model structures are selected according to the number
of layers and the number of neurons in each layer, while in detail
performing hyperparameter tuning could improve DL performance [14,
38].

Two studies used the recurrent neural network (RNN) model [18]
and feed-forward neural network (FNN) model combined with a con-
volutional neural network (CNN) [39] for the IDS, respectively. Both
studies varied only the number of neurons in the hidden layer and
various learning rate values to improve the model’s performance. An-
other study [40] used a restricted Boltzmann machine (RBM) model
using hyperparameter tuning of an IDS on the balanced dataset. The
RBM training process was conducted on the ISCX dataset with a bal-
anced number of normal and anomaly records. The model then tuned
hyperparameters, including learning rate value, epoch, and mini-batch
size by comparing the contrastive divergence and persistent contrastive
divergence algorithms on the RBM model. The RBM model uses only
two layers and may still be evaluated with deep restricted Boltz-
mann machine (DRBM) techniques to improve performance. Also, the
process of tuning hyperparameters was performed manually by indi-
vidually testing the impact of parameters on the model instead of
simultaneously.

Self-taught learning through a DL approach was used for an IDS
in another study [16]. The proposed method used feature learning
and dimension reduction with a sparse autoencoder (SAE). The SAE
model performed hyperparameter tuning for decay, momentum, and
learning rate with a manual technique. After the pretraining stage,
the next phase was classification using the support vector machine
algorithm to detect and classify attacks. The model used the SAE with
only one hidden layer. The accuracy in multi-class classification was
only 80.48%, and the recall value was only 68.28%.

Recent research in the field of botnet attack detection uses an
artificial neural network with HPO [41]. The model was developed
using the multilayer perceptron. In the study, it was used to perform
a hyperparameter tuning process with a grid search optimization tech-
nique. The tuned hyperparameters included the number of nodes in the
hidden layer and the alpha value in the L2 regularization parameter.
The model was tested on the CSE-CIC-IDS2018 dataset, resulting in im-
proved performance in binary classification compared to performance
with the default parameter values. Hyperparameter tuning optimization
was limited to only two parameters. Unfortunately, the composition
structure of the training and testing data was not explained. Another
study conducted detailed experiments on a DNN by selecting a topology
(the number of hidden layers and neurons) and varying the learning
rate value [42].

Another study [33] combined DAE with DNN to evaluate the per-
formance of the algorithm on the NSL-KDD dataset. The results show
acceptable performance in the overall detection of probe, root to lo-
cal (R2L), denial of service (DoS), and user to root (U2R) attacks,
reaching 99.3% for data training. The results showed improved results
from previous research on the detection rate and speed of detection.
However, the weakness of the presented models was that they only use
KDDTrain+ dataset. Models were not tested with NSL-KDD data testing,
which has more complex data (some attacks are not present in the
training data), making it more realistic. The DL architecture consisted
of only one hidden layer, which allowed analyzing the effect of adding
layers to the IDS model. However, the hyperparameter values, such
as learning rate on the DL architecture, were selected manually rather
than tuned automatically.

Some of this research in the field of IDS can be developed further
by setting the DL architecture parameter to improve its performance,
especially for the DNN architecture. Hyperparameter tuning and op-
timization of DNNs is a fundamental factor in producing competitive
performance results [43]. Hyperparameter optimization itself is an

Y.N. Kunang et al.

automatic process built on ML and DL models. The method of tuning
hyperparameters improves the performance of ML and DL algorithms
compared to the default parameters in libraries [19,44]. Related to
HPO, [45] used the Bayesian method for adaptive HPO that models
the function of loss and performance of multiple datasets. The random
search was used in [43], revealing that a random search technique
used on a DNN model can reduce errors and execution time. A random
search method can improve the performance of HPO algorithms.

The Deep Reinforcement Learning paradigm (DRL) was used in IDS
research [46]. The author made some improvements to the classic DRL.
They replaced the environment in traditional DRL with a sampling
function of training intrusion data that generates rewards based on
error detection during the training phase. With Double Deep Q-Network
(DDQN) algorithm and some of the adjustments in DRL parameters
successfully improve detection results for binary classification in the
NSL-KDD dataset and multi-class classification in the AWID dataset.

3. Proposed method and design

This section describes the computational architecture and methods
adopted for the proposed framework. The developed deep structured
model is a hybrid model using a DAE for pretraining and DNN for the
process of attack identification. The flow process model for detection
and classifications of attacks is shown in Fig. 1, consisting of three
stages. The first stage begins with the process of preparing and pre-
processing data. The second stage continues the development of the
deep structured learning model with HPO to obtain the best model
that produces the best detection performance. The end phase is the
evaluation of classifiers to obtain the best model. The hyperparameter
values of the DL algorithm significantly affect the outcome. The HPO
algorithm was used to process the tuning hyperparameters, such as the
number of hidden layers or number of neurons in each layer, learning
rate, batch size, activation function, and kernel initializers.

Grid search and random search options were used to optimize
the hyperparameter values. Grid search performs a complete search
against the full set of hyperparameters. Due to a large number of
hyperparameters to be tuned, meaning the number of model combina-
tions of hyperparameters is also large, the automatic HPO process was
combined with random search with a reduced probability technique to
create combinations of parameters, with no specific order or criteria.
This process repeats a random number of grid combinations and records
the model that obtains the highest validation rate. Finally, one model
with the best hyperparameter valued, producing the best level of
detection performance was obtained. To evaluate the proposed model,
we used the NSL-KDD and CSE-CIC-IDS2018 datasets.

3.1. Deep learning model

Our proposed network IDS used the pretraining process with DAE
as feature extraction and fine-tuning phase using DNN architecture, as
shown in Fig. 1. A DAE performs the feature extraction process with
encoding and decoding. The bottleneck layer (middle layer) with a
smaller dimension for the dataset input feature is a feature represen-
tation that has been extracted. The result of the extracted feature in
the form of encoding structure, along with the weight and bias values
are transferred to the DNN structure for the fine-tuning process.

In the DAE structure, the data going into the input layer are from
the result of the preprocessing dataset (X). The DAE outputs produce
the same data X (resemble X data). The structure and data in the
decoding layer are not forwarded to the DNN model. The DNN model
trains data binary attack classification and multiclass classification. The
hyperparameter tuning process produces the best model by observing
the detection rate of the attack classification.

Journal of Information Security and Applications 58 (2021) 102804

3.1.1. Deep autoencoder model

One focus of this research was to develop an effective IDS by
extracting features from raw data to data in a better representation
of low-dimensional features. The feature extraction process aims to
increase the efficiency and effectiveness of the detection and classifica-
tion of binary (normal or anomaly) and multiclass classification attacks
in the NSL-KDD and CSE-CIC-IDS2018 dataset.

A DAE is an AE with more than one hidden layer (Fig. 1). The
addition of hidden layers in a DAE allows the AE to learn more complex
patterns of data mathematically. On an AE with a single hidden layer,
the process of mapping from layer inputs to hidden layers is the
encoding phase. The mapping of the hidden layer to the output layer is
the decoding phase. In a DAE with many hidden layers are additional
encoder and decoder pairs. In Fig. 1, the DAE structure consists of five
hidden layers (composed of three pairs of encoders and decoders). The
DAE stage begins with the phase during which the first encoder (E1)
encodes input X, the second encoder (E2) encodes the output from EI1,
and the third encoder (E3) encodes the output from E2. The encoding
phase on the middle layer can be written as Z = E3(E2(E1(X))).

In a single hidden layer, AE vector encoder h is notated as 4 =
f(W.X +b), where W is a weight matrix, b is a bias vector, and X is an
input vector. The vector encoding function in forward propagation for
hidden layer 1 becomes Eq. (1)

pi+D = f(W(I).hU) + b(l)), [¢))

so that the encoding phase of each layer can be written as E1 =
FWDO X 46Dy E2 = fWP).E14+bP;and Z = E3 = f(WD).E24b3.

The decoding phase is executed in the opposite direction of the
encoding phase: The first decoder will be the last to be decoded.
The final reconstruction phase of decoding vector output is X =
DI1(D2(D3(E3(E2(E1(X)))))). For an AE with a single hidden layer X =
FWT.h+b'), the decode function for DAE becomes: D3 = f(W®)T.Z+
'Yy D2 = F(WOY . D3+b6@'); X = D1 = f(WDYT . D2+ b1, where
f() is a node activation function used on each layer. The activation
function f(.) on neural network neurons is a mathematical operation
applied to the output signal used to enable or disable neurons. The
activation function maps the output value into the desired range, such
as between 0 and 1 or —1 and 1 (depending on the activation function
used).

The cost function of the DAE is the distance function between input
and reconstructed X Cost, also called a loss, can be calculated with
mean squared error loss for the activation function:

T b, &) = 3 ¥ - & @

The input data are normalized to between 0 and 1, and then the
reconstruction process on the output layer can be conducted with
a nonlinear sigmoid function. For input, a binary number or input
with a range between 0 and 1 can be used for binary cross-entropy
as a loss function [47,48]. For overall training of m data, J(w,b) =
mlzlf';l J(w, b,x',%"). The minimal loss value is calculated using the
following equation:

J(w, b) = % Z[x" log(2) + (1 — x") log(1 — %)) 3)
i=1

Backpropagation updates the weight and bias values of each node
in each layer to reduce the cost. The best cost for the most minimal
loss value is close to zero. After the AE training process, the data on
the layer bottleneck (Z) are a representation of the data in the low-
dimensional encoding process. The encoding structure (Z) is forwarded
as input to the DNN classifier, called transfer learning. Transfer learning
transfers the Z-encoding structure to the AE and the weight and bias
values to the classifier.

The feature extraction model with AE is a pre-training process that
proceeds to the training and learning process of the classifier model.
With the transfer learning process, HPO with an AE affects the learning

Y.N. Kunang et al.

Journal of Information Security and Applications 58 (2021) 102804

Deep Learning

Dataset Preprocessing [
NSL-KDD, I —
CSE-CIC-IDS2018 i
| Features
! | Encodin,
Training ‘ Features
Scaling.

| 122 & 80 features >X
| 5&15 features label >Y

Raw data

(43 features,
80 features)

v

« DDoS attacks-LOICHTTP

Output Layer 5 Classes
Bottleneck eNormal b
5 «Probe pors

|
|
|
b
P
: .
- Dol feRaL i
(00.00) | |& |~
gy e
E]
b
Co
|
|
|
|
|

i Encoder

Fig. 1. Proposed deep learning architecture.

process of the classifier model. Optimizing the IDS must also optimize
the hyperparameter value of the AE model. Thus, on the model feature
extraction with AE, the hyperparameter tuning process was performed
for the number of layers, the number of neurons from each layer,
activation function, learning rate, kernel initialization, and function
loss. Metrics for the AE were obtained by observing the loss value of
the AE model.

3.1.2. Deep neural network model

An attack detection model was developed using a DNN algorithm
as a classifier. The encoding process results from the automatic feature
extraction of the AE model from the training data to the input of
classifier, as shown in Fig. 1. Input from the DNN architecture is output
Z, generated from the AE process in the form of training input data X.
Another layer is added to the DNN result from output y (a label that can
consist of five attack classes or binary classes on the NSL-KDD dataset).
Then, the process of retraining is conducted using the weight and bias
values of the AE as pretraining values, to learn the output y. The output
$ can be written as

y=fWORO 10y = f D), @

where / + 1 = the last layer.

As for the AE structure function, f(.) is the activation function.
Among other activation functions, the rectified linear unit (ReLU)
function has advantages [15,49]. In this study, we evaluated the use
of several variants of ReLU activation functions such as SELU, PReLU,
ELU, and leaky ReLU for the hidden layer. In the output layer, we used
the sigmoid activation function for the binary classifier and softmax
activation for the multiclass classifier (five classes of attack).

The initial parameter was specified before training the DNN.W (),
W@, w® and D, p@, p® values were obtained from the DAE encod-
ing process. The weight parameter needed to be initialized randomly
as a small value [e.g., distributed around zero; n(0,0.1)]. The resulting
output y approaches the actual value y. For the output nodes, the
difference between the network activation j and the actual target
value) is calculated. In the hidden unit, the error value is calculated
based on the average weight of the error nodes that use h! as inputs.
The loss function and activation function, for binary classification,
use the binary cross-entropy and sigmoid functions, while for multi-
class classification, we use the categorical cross-entropy and softmax
functions [50].

3.2. Experimental design

The experiment process ran on a computer platform with specifi-
cations including an Intel Core i7-7700HQ at 2.8 GHz, 4 cores, 32
GB of RAM, NVIDIA GTX 1060 with 6 GB GDDR5 graphics memory,
and operating system Windows 10. The DL structure was developed
using the Python programming language with computation utilizing the
TensorFlow-GPU library with Keras neural network library. To evaluate
the performance of the HPO tuning process, the Talos library [51]
was used by applying a random search technique on a combined
hyperparameter list.

To verify the capabilities of the proposed model in this work used
two datasets, the NSL-KDD dataset, and the CSE-CIC-IDS2018 dataset.
NSL-KDD dataset is selected as a benchmark of several previous studies
in IDS. For the second dataset, we use the new real dataset CSE-CIC-
IDS2018 dataset, which is closer to the current payload network and
represents the detection of more recent attacks. In evaluating the per-
formance of DL with various autoencoder feature extraction methods on
both datasets, we use all of the features in network connection record
categorizing a class attack into its categories.

3.2.1. NSL-KDD dataset

The NSL-KDD dataset was used to perform a benchmark test of
an IDS that was developed over several previous studies. The NSL-
KDD dataset itself was recommended by Tavalaee et al. to replace
KDD Cup 99 [52]. The dataset comprises the KDDTrain+ training data
and KDDTest+ testing data. KDDTrain+ consists of 22 attack types
and normal packet data types, while KDDTest+ added 37 attack types
grouped into four attacks, as shown in Table 1. NSL-KDD+* is an NSL-
KDD dataset without new types of attacks (by eliminating 17 new types
of attacks). This dataset consists of 41 features and 1 class label. The
composition of attacks, divided into Denial of Service (DoS) attacks,
probe attacks, Remote to Local (R2L) attacks, and User to Root (U2R)
attacks, is shown in Table 1.

3.2.2. CSE-CIC-IDS2018 dataset

The Communications Security Establishment (CSE) and the Cana-
dian Institute for Cybersecurity (CIC) develops the CSE-CIC-IDS2018
dataset to meet the needs of the attack detection benchmark dataset
that represents traffic composition and attack on the current modern
network [53]. This dataset consists of 80 features, including labels.
Most of the features are statistical traffic information based on flow,
which is degenerated and extracted with CICFlowMeter. Detailed sce-
nario and extracted traffic features process are explained in [53,54].

Y.N. Kunang et al.

Table 1

NSL-KDD dataset composition.
Attacks Category ~ KDDTrain+ KDDTest+ KDDTest+*
Normal 67,343 53.46% 9711 43.08% 9711 51.67%
DoS 45,927 36.46% 7458 33.08% 5741 30.55%
Probe 11,656 9.25% 2421 10.74% 2199 11.70%
R2L 995 0.79% 2754 12.22% 1106 5.88%
U2R 52 0.04% 200 0.89% 37 0.19%
Total 125,973 100% 22,544 100.00% 18,794 100.00%

The features of this dataset significantly different from the NSL-KDD
dataset. Almost the overall features are continuous data except for the
dst_ports, protocols, timestamps, and labels.

This dataset consists of six different intrusion scenarios, Brute-
Force, Botnet, DoS, Web attacks, DDoS, and infiltration, with a total
of 14 types of intrusions. The total number of records in this dataset
is 16,232,943. The benign traffic encompasses 13,484,708 records
(83.07% of the data), while the remainder is malicious records. In
this work, we use 10% data for training data and 2.5% for testing
data. With an imbalance of the amount of malicious and benign in
the data, then for benign data, only used data about 7.5% of benign
data. In the malicious attack data, we used composition based on a
comparison of the amount of data. For attack data with a little amount
of data (<2000), we fetched entire data. Others vary between 35%—
75% depending on the amount of data. So the composition of benign
and malicious data is set close to 50:50 for both testing and training
data. The structure of the training and testing data used are shown in
Table 2.

3.2.3. Data preparation and preprocessing

The preparation and preprocessing stages are shown in the flow
process in Fig. 1. This begins with selecting a dataset and converting
the categorical data into numerical data, called feature encoding. It
continues by transforming feature data within a given scale to obtain
high-value features, not dominating features. After preprocessing, data
are ready for the training and testing processes.

In the preparation process of the NSL-KDD dataset, the label/class
field must be grouped by attack type as in Table 1. For attack detection,
the Class column is divided into two classes: normal and anomaly. For
classifying attacks, the Class column is mapped into four categories:
DoS, probe, R2L, and U2R. In the initial stage of this preprocessing,
the dataset consists of 42 features. The features in the NSL-KDD dataset
comprise three types: nominal, binary, and numeric. Machine learning
and DL algorithms cannot process nominal data directly. The proposed
model uses all features, including non-numeric data. For this, the non-
numeric data features of the dataset must be converted into numeric
data (specifically, the protocol type, service, and flag features).

Feature mapping must be performed to convert categorical data into
numeric data. This process is called feature encoding. There are two ap-
proaches to mapping categorical values into numerical values: one-hot
encoding [55] and ordinal encoding [29]. In One-hot encoding, for each
level of the categorical variable are mapped into a dummy variable in
binary formed [55,56]. The ordinal encoding uses all features, and data
of non-numeric features on the dataset are converted into numeric data.
In the initial research, one-hot encoding provided better classification
results than ordinal coding [15]. Therefore, this research used one-hot
encoding. This coding technique is essential because several studies on
IDS used ordinal encoding [29,36], which maps features to 41 features.

There are three nominal features in the NSL-KDD dataset: proto-
col_type, service, and flag. For example, the protocol_type feature has
three categorical values, namely transmission control protocol (TCP),
user datagram protocol (UDP), and internet control message protocol
(ICMP). With one-hot encoding, three numeric features replace the
original protocol_type: protocol_type_tcp, protocol_type_udp, and pro-
tocol_type_icmp. The binary value for each new feature shows which

Journal of Information Security and Applications 58 (2021) 102804

type of protocol it is. Of the three new columns generated from proto-
col_type, only one is worth 1 for each instance. For example, the list of
protocol_type features for four instances [TCP, UDP, ICMP, UDP] is [[1,
0, 0,01, [0, 1, 0, 1], [0, O, 1, O]] in the form of one-hot encoding. With
one-hot encoding, the service feature is mapped into 70 new features,
the flag feature to 11 new features. Thus, 41 features of the dataset are
mapped to 122 features, and the multi-class labels are mapped into five
label features.

In the CSE-CIC-IDS2018 dataset consisting of 80 features, we use
the 79 features by eliminating the timestamp features. Most data types
in this dataset are continuous data. Preprocessing data is also done by
performing a feature encoding for feature protocol and feature labels.
For feature protocol mapped to 3 instances, namely TCP, UDP, and
hop-by-hop IPv6 (HOPOPT). Feature encoding generates 80 features as
input data and 15 features as multiclass labels.

The feature scaling process will convert the range of values from the
full features into a predefined range. The method of scaling features
is required for features that have large values, not for dominating
other features. Some ways to do feature scaling for ML include stan-
dardization, scaling, and normalization. Initial testing was performed
using Z-score normalization and min-max scaling with range [0.1] and
[-1.1]. Min—-max scaling with range [0.1] delivers the best results in

the AE process. The next step used min—-max scaling, as in (5).
xorm Xij— min().czyj) ®)
max(x. ;) —min(x. ;)

where i = 1,...,m and m = amount of training or testing data; j = 1,
...,n and n = number of features; *i/ is variable value ¥ of the attribute
Jj; Yi4 is the value of the — — j feature; min(x. ;) is the smallest value

of the column feature; and max(x. ;) is the largest value of the column
feature. Scaling maps features in the range of [0-1].

3.2.4. Metric evaluation

Based on the performance metric ontology [57], confusion matrix
helps represent the classification results as true or false values [58,59].
A true positive (TP) value means the IDS has successfully detected
an attack. A false positive (FP) means normal behavior is incorrectly
classified as an attack by the IDS. A true negative (TN) means normal
behavior is successfully labeled as normal by the IDS. A false negative
(FN) means an attack has not been detected by the IDS and is classified
as normal. The confusion matrix is used to calculate some of the
performance metric values.

For performance testing of the network anomaly IDS, most studies
have adopted common metrics such as accuracy (ACC), detection rate
(DR), false alarm rate (FAR), precision, and F1-score [60-62].

3.2.5. Hyperparameter optimization

Fig. 2 shows the HPO process for obtaining the best result from the
proposed DL models using a DNN. The hyperparameter tuning process
is indispensable to testing results that show overfitting values, as in
the case of the NSL-KDD dataset. The detection rate of data training
results in the best value. The hyperparameter values to be evaluated to
obtain the best model are the number of neurons and layers, the value
of the learning rate, initialization weights, activation function, and loss
function. The hyperparameter values used for parameter tuning are
shown in Table 3.

The number of neurons in each layer affects the system’s com-
plexity. A higher number of neurons tends to increase training time
and response time [63]. The number of neurons in each layer in the
multilayer model controls capacity. Adding layers helps the learning
process due to the complex data representation in the automated fea-
ture engineering. The addition of layers improves accuracy, depending
on the complexity of the dataset [64,65].

The value of the learning rate a that we used is between 0 and 1,
which is less than 1 and higher than the 10~6. The default value for
a learning rate of 0.01 for a standard multilayer network [66]. The

Y.N. Kunang et al. Journal of Information Security and Applications 58 (2021) 102804

Deep Learning
Pre-Processing Pr_e-Lea_rning Sl by
Step 0 : Drmensrpnaf -Deep Neural Network e
normalization Reduction { osed)
F e ~ (Autoencoder) oo ; T
g = -binary/)
| Data 1 Hyperparameter Hyperparameter :
: P -Min-Max Scaler -number of layers Hyperparameter A -multiclass 4
C— (0-1,-1- 1) -number of -learning rate .
-Zscore neurons -Activation Function
Normalization -activation function -Loss Function
-loss function -Kernel Initializer i

— 1 7

config — Hyperparameter Optimization Strategy

v

1st Configuration ——» ME_I‘-r_iC
2nd Configuration —— 5 -Sensitivity
- Accurscy
n Configuration —! aliseos
Fig. 2. Intrusion detection system optimization.
Table 2
CSE-CIC-IDS2018 dataset composition.
Category Attack Types Size Train Test
Benign / 13,484,708 83.070% 803,025 49.590% 201,238 49.709%
DoS DDOS attack-HOIC 686,012 4.226% 192,098 11.863% 48,006 11.858%
DDoS attacks-LOIC-HTTP 576,191 3.550% 161,447 9.970% 40,219 9.935%
DDOS attack-LOIC-UDP 1,730 0.011% 1,362 0.084% 368 0.091%
Botnet Bot 286,191 1.763% 85,842 5.301% 21,479 5.306%
Brute Force FTP-BruteForce 193,360 1.191% 58,055 3.585% 14,452 3.570%
SSH-Bruteforce 187,589 1.156% 56,332 3.479% 14,013 3.461%
Infilteration Infilteration 161,934 0.998% 48,347 2.986% 11,892 2.937%
DoS DoS attacks-Hulk 461,912 2.846% 138,459 8.550% 34,758 8.586%
DoS attacks-SlowHTTPTest 139,890 0.862% 41,974 2.592% 10,484 2.590%
DoS attacks-GoldenEye 41,508 0.256% 25,008 1.544% 6,123 1.512%
DoS attacks-Slowloris 10,990 0.068% 6,612 0.408% 1,630 0.403%
Web Attacks Brute Force -Web 611 0.004% 496 0.031% 115 0.028%
Brute Force -XSS 230 0.001% 187 0.012% 43 0.011%
SQL Injection 87 0.001% 71 0.004% 16 0.004%
Total 16,232,943 100% 1,619,315 100% 404,836 100%
learning rate affects the precision of the neural network. The weight Table 3
and bias initialization values affect how quickly the network converges Optimized Hyperparameters.
(reaches the local minimum and global threshold). Some functions Hyperparameters List of Values
create an initialization weight for the hidden unit, resulting in a faster Number of hidden layer DAEs 1,357
iteration [49]. Usually, weight and bias values are filled with small Number of hidden layer nodes ;go, 9:10’120’ 75, 70, 60, 50, 40, 35, 30, 25,
an

random numbers, but in our experiment, we use some kernel initializers

) N Learning rate
function as in Table 3.

Kernel initialization

0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1
Uniform, lecun_uniform, normal, zero,
glorot_normal,

glorot-uniform, he_normal, he_uniform

32, 64, 256

RelLU, ELU, SELU, PReLU, Leaky ReLU

4. Results and discussion
Batch size

. Activation function
4.1. Hyperparameter importance

The automated HPO tuning process for the hyperparameters shown
in Table 4 was performed hierarchically using the Talos library based
on the number of hidden layers of the DAE model. One of the challenges

23,100 combinations of hyperparameter models. This dataset has a
huge dimension, so the training process took a long time. We slightly

of the HPO tuning process is testing the excessive number of models
resulting from the combination of hyperparameters. Therefore, we used
a random search with a permutation technique by reducing the number
of sample combinations automatically. The number of models from
combinations of hyperparameters is shown in Table 4, with as many as
32,445 models in NSL-KDD. Given the number of models that would be
attempted, we used grid downsampling by reducing the model with a
uniform random sampling 1952 models (6% of the combinations of all
models) in dataset NSL-KDD. The CSE-CIC-IDS2018 dataset generates

reduced the number of models that had a large learning rate value.
The combination of hyperparameters is reduced to only 5% of the
combination become about 1.067 models.

In the HPO process, we used 30 epoch in the DAE pre-training
process and 50 epoch for DNN fine-tuning process on the NSL-KDD
dataset. The loss function in the DAE process used binary cross-entropy
on the NSL-KDD dataset and the categorical cross-entropy for the
DNN process. Binary cross-entropy chosen because from 122 features
input consist of 90 data binary features and the remaining 32 discrete

Y.N. Kunang et al.

Table 4

Journal of Information Security and Applications 58 (2021) 102804

Number of models from the combination of hyperparameters in both datasets.

Number of DAE

hidden layers hidden layers combination models

Number of DNN Number of hyperparameter

Grid downsampling of hyperparameter
combinations models with uniform random

sampling
NSL-KDD CSE-CIC-IDS2018 NSL-KDD CSE-CIC-IDS2018
1 hidden layer 1 layer 2,625 2100 210 206
3 hidden layers 2 layers 5,040 5040 503 253
5 hidden layers 3 layers 11,340 7560 567 338
7 hidden layers 4 layers 13,440 8400 672 270

Total models 32,445 models

23,100 model

1952 models 1067 models

Feature Importance of hyperparameters
in NSL-KDD dataset

0 0.1 0.2 03 04 0.5 0.6 0.7 0.8 09

learning rate

hidden layer
third neuron I
second neuron i
batch size
first neuron
fourth neuron

second neuron' third neuron
0.016552 0.066468

batch size
0.001271

fourth neuron | first neuron
0.00007 0.000459

hidden layer | learning rate

W Score 0.074082 0.841097

Features Importance of hyperparameters
in CSE-CIC-CIDS2018 dataset

0 0.1 0.2 03 04 0.5 0.6 0.7 0.8

learning rate 1B

second neuron

hidden layer
batch size

third neuron

fourth neuron |

first neuron

batch size
0.0419

first neuron | fourth neuron | third neuron
0.000171 0.004356 0.008256

hidden layer |second neuron| learning rate

B Score 0.082933 0.126663 0.73572

Fig. 3. Impact of hyperparameters on the increasing value of the detection rate of the overall model. (a) hyperparameter features impact in the NSL-KDD dataset; (b) hyperparameter

features impact in CSE-CIC-IDS2018 dataset.

features that already normalized in the range of 0 and 1. In the CSE-
CIC-IDS2018 dataset, the DAE pre-training process uses 20 epoch and
30 epoch on DNN fine-tuning classification process. The loss function
used MSE on DAE and categorical cross-entropy on DNN. MSE is used
because from 80 input features, 77 features are continuous data. After
the best multi-class classification performed, we increase the number of
epoch to become 200 epoch on the fine-tuning process to improve the
precision and sensitivity, especially in attack classes that are difficult
to detect.

In this experiment, we focused on a variant of ReLU activation
because in previous research [15], this activation function in hidden
layers resulted in the best performance. HPO tuning was performed for
the activation functions ReLU, ELU, SELU, PReLU, and Leaky ReLU. For
optimization function using Adam optimization. The Adam optimiza-
tion function tuned only the value of learning rate a, while the decay
and parameters f1 and f2 used the default value because the learning
rate was the most crucial hyperparameter to be tuned [64], while the
epsilon and momentum parameters do not have a significant impact on
performance [64,67].

We analyzed a significant relative impact of each parameter against
the increase in the detection rate of the overall model in Fig. 3.
Fig. 3(a) describes the feature importance from all of 1952 models on
the NSL-KDD dataset measured from the base value. The base value
is taken from the base model with a standard parameter, 1 hidden
layer for AE with 60 nodes on the hidden layer. The base Model
was fine-tuning with DNN and the ReLU as an activation function.
The detection rate result from this base model is used as the base
value compared to the detection rate of the overall model. Using the
RandomForestRegressor of scikit learning library counts the impact of
each parameter against the rate detection value of the model. The cost
of the mean decrease detection rate for all normalized hyperparameters
shows how the parameter effect significantly reduces the detection
rate. The features importance becomes a benchmark of how essential
parameters are to the performance of the detection model. The more
unimportant a variable or parameter is, the less it affects the value of
accuracy.

For the NSL-KDD dataset, Figs. 3(a) shows that the learning rate
value dramatically affects the performance metric, followed by the
number of hidden layers in the deep structured model. The number
of neurons in the second and third layers gives the impact though not
significant. The second parameter that has a considerable effect is the
number of hidden layers. As for the batch size, it does not have a
substantial impact on improving the detection sensitivity for the NSL-
KDD dataset. The number of batch sizes was either 32, 64, or 256, and
Fig. 4(c) shows that this parameter was not as influential as a result of
detection performance. The batch size parameter was more impactful
on the speed of learning and the stability of the learning process.

Fig. 3(b) shows the impact of hyperparameter features in CSE-CIC-
IDS2018 from a total of 1067 tested models against the value of the
detection rate on the base model. The initial model used the AE model
with one hidden layer and 40 neurons in the middle layer. In DNN
classifier used ReLU as an activation function. The result shows the
most influential parameters on the increase and decrease in detection
rate is the learning rate value. The second factor is quite influential
is the number of neurons in the second hidden layer, as well as the
number of hidden layers. The impact sequence of hyperparameter’s
importance on these two datasets is slightly different, due to differences
in features in the raw data of each dataset. For NSL-KDD datasets
after preprocessing was dominated by binary data type, while the
CSE-CIC-IDS2018 dataset was dominated by continuous data type.

In Figs. 4(a), 5(a) shows the box plot chart of the learning rate in
NSL-KDD and CSE-CIC-IDS2018 datasets, respectively. In the NSL-KDD
dataset, the default value of 0.01 for the learning rate gives higher
performance than other costs. While in the CSE-CIC-IDS2018 dataset,
a smaller learning rate value provides better detection value. A higher
grade of the learning rate, such in both cases, 0.1, gives poor results
in performance. The performance tends to oscillate in a model with a
higher learning rate. Even in some cases, the loss value is not decreasing
at the beginning of the learning phase. The higher the value of learning
rate, the lower the accuracy. In reverse, the smaller the learning rate,
the higher the accuracy of the network, with as a consequence, the
training process was longer.

Y.N. Kunang et al. Journal of Information Security and Applications 58 (2021) 102804

Validation DetectRate as a function of Ir

Log-val DetectRate Improvement as a Function of hidden_layer

i

o o o° o
noa N @
o
o

&
bs

val_DetectRate

val_DetectRate

o o
Nw
o o
Now

°
=
2
-
-

o
o
o
o

wie o o - -moo}—ﬂ

1e:05 0.0001 0,001 001 3 1 2
Ir — . B hidden_layer
Validation Loss as a Function of batch_size

(@ o (b)

07

. 06 z

g os ‘] ,

g

Zos ' : '

]

s 03 . ' '
02 . ’
01 L} L] L}
00 = ? T

32 4 256
batch_size

()

Fig. 4. Effect of each hyperparameter value on rate detection of the overall model in NSL-KDD dataset: (a) effect of the learning rate; (b) effect of the number of hidden layers;
(c) effect of batch size amount.

Validation DetectRate as a function of Ir Log-val DetectRate Improvement as a Function of hidden_layer
10 100
T v —————y
' 1T e —
09 ¢
¢ + +
08 G ¢ ‘
& 3 090 +
¢ ' g : ' :
¥ i ¢
2o7 + 38, + N
o -
] § 085
3 1 ¢ ’ !
06 ' : ,
0.80 M ’ $
+
05 $ N s
075 . u +- T
. . . . 1 2 3 4
0.0001 0.001 001 01 hidden_layer

@ (b)

Validation Loss as a Function of batch_size

100
—_—
095
J
Y
8
5090 ‘
¥ '
g
=t +
§ 085 1 ‘ "
+
¢ + $
080 ’ M
+
. ‘
075 T T 4
32 4 256
batch_size

()

Fig. 5. Effect of each hyperparameter value on rate detection of the overall model in CSE-CIC-IDS2018: (a) effect of the learning rate; (b) effect of the number of hidden layers;
(c) effect of batch size amount.

The box plot chart of the number of hidden layers of the over- more layers can improve performance even though the value increases
all tested model in both of dataset can be seen in Figs. 4(b) and slightly by adding the number of hidden layers to two, three, and
5(b). According to the median of performance graph data generated, four layers. However, even though increasing the number of layers can

Y.N. Kunang et al.

Log-DetectRate Improvement as an effect of Kemel Initialization

- [ERC

+
+
0 + '
0

o
=Y

(] (]

| (] (] 4 + + ¢ (]

0.1 . * 0 . . * 0
0

normal gorot_uniform he_normal lecun_uniform gorot_normal

kernel_initializer

he_uniform lecun_normal

Journal of Information Security and Applications 58 (2021) 102804

Log-DetectRate Improvement as an effect of Keme Initialization

1.00

o
©
S

+
+

+
0

+

0.85

val_DetectRate

+

t
0.75

.
gorot_uniform lecun_uniform
kernel_initializer

normal gorot_normal he_normal kecun_normal he_uniform

Fig. 6. Impact of kernel initializers against the detection rate of the overall model (a) result in NSL-KDD dataset; (b) result in CSE-CIC-IDS2018 dataset.

Log-DetectRate Improvement as an Effect of Function Activation

08 Tj e : —
— [|
0.7 i _I_ _!_
$

° 0.6 0 /
© ‘
Z 05 [} t f { t
g : L L} 1]
gl 04 0
§ 03 L] L) + + ()

02 5 ‘

01 ‘ 0 ' ' ‘

:
0.0
ELU LeakyRelLU PReLU ReLU SELU

activation

()

val_DetectRate

Log-DetectRate Improvement as an Effect of Function Activation

1.00
——
095
0 1}
0 '
] ' ; 4
090 5 ! . !
+ t + +
" '
0.85 : . H ‘ :
B
N
0.80 4 & L \
; . !
H
075 !
ELU ReLU SELU PRelLU LeakyReLU

activation

(b)

Fig. 7. Impact of activation function against the detection rate of the overall model (a) result in NSL-KDD dataset; (b) result in CSE-CIC-IDS2018 dataset.

improve performance, it does not apply to high learning rate values
(0.1), which overall show low detection performance (sensitivity) for
all models. The lower quartile data range is also greater at a high
learning rate (0.1). The plot shows a correlation between the value of
the learning rate and the number of hidden layers. With the addition
of hidden layers, the optimization process becomes more complicated.
A higher number of hidden layers has a more complex surface error
compared to smaller models (the number of hidden layers is lower).
Therefore, for more complex models (the number of hidden layers is
higher), a lower learning rate is preferable.

The batch size parameter quite contributes to the increased detec-
tion rate on the CSE-CIC-IDS2018 dataset, whereas in the The NSL-KDD
dataset is not valid. The batch size value 256, in Fig. 5(c), is more
robust than the other batch size value. This effect is caused by the
amount of data from the CSE-CIC-CIDS2018 dataset is quite large
compared to the NSL-KDD dataset, so that a large batch size will give
more stable results. Whereas in the NSL-KDD dataset, the batch size
only affects the speed of convergence of the model and does not have
much effect on the resulting performance.

The categorical parameter, kernel initializer parameter and activa-
tion function for both datasets are shown in Figs. 6 and 7. The kernel
initializer only affects the convergence speed of the model, while the
resulting performance value is almost the same for the entire function.
However, on average, the box plot graphs of Fig. 6(a) show that
he_uniform and lecun_uniform as kernel initializers function provide a
better average value than other functions for NSL-KDD dataset. While in
the CSE-CIC-IDS2018 dataset, he_uniform and he_normal kernel initial-
izers provide more stable results. The function of He kernel initializers
shows a faster convergent model with an earlier reduction loss in the
ReLU activation function and its variant [49].

In the activation function, ELU gives an average value that is more
stable than other activation functions in both datasets. In general,
function activation ELU provides better performance in classifying.
It is possible because ELU is more robust to noise. ELUs have neg-
ative values which allow mean activation closer to zero, but with
lower computational complexity [68]. However, the ReLU function also
shows an average value in the upper quartile for both datasets. In

the CSE-CIC-CIDS2018 dataset, the activation Leaky ReLU and PReLU
functions appear more stable than ReLU. Leaky ReLU and PReLU have
an advantage about the same as the ELU activation function to over-
come the “dying ReLU” condition encountered in the ReLU activation
function when the gradient value is less than 0. Leaky ReLU and PReLU
adaptively learn the parameters of the rectifiers and improves accuracy
at a negligible extra computational cost [49].

4.2. Performance comparison

The HPO process was performed by testing 1962 models in NSL-
KDD and 1067 models in CSE-CIC-IDS2018. It was combining the
number of hidden layers, the number of nodes in each hidden layer,
activation function, kernel initialization, and learning rate value. The
learning performance evaluation can be shown in the learning curves
in Fig. 8. Curves 8(a) and 8(b) exhibit overfitting issues on the NSL-
KDD dataset. This case occurs because the model has to learn more
than is required for attacks classification in training data. Meanwhile,
on CSE-CIC-CIDS2018 in Fig. 8(c) and (d), deep learning models with
a combination of DAE for the feature extraction and DNN for classi-
fications show pretty good performance. The plot of learning curves
showing between training and testing curves does not happen overfit-
ting. The testing loss curve decrease to the point of stability and have a
small gap with the training loss. Although in 150 epoch curves slightly
oscillate. It occurred because the model is trained for long.

Tables 5 and 6 show the best deep structured models obtained
through HPO for the screening of multiclass attacks, five classes in the
NSL-KDD dataset and 15 classes in CSE-CIC-IDS2018 dataset, respec-
tively. Precision, recall, and F1-score parameter metrics are weighted
average values, which are the average value of metric weighting by
class frequency. The weighted average precision, recall, and F1-score
provide better overall performance estimation for imbalanced class data
frequencies [69]. The accuracy value in Tables 5 and 6 is the total
accuracy value of prediction items from all predicted data. The average
accuracy value of each class is less precise for multiclass problems,
especially for imbalanced datasets, because the majority class will
dominate the results [70,71].

Y.N. Kunang et al.

Training and Test DAE Loss NSL-KDD
0.200

=== Training Data
—— Test Data

0.175 1
0.150 1
0.125 4
0
2 0.100 A
0.075 4

0.050 4

0.025 4

0.000

40
(a) epoch

Training and Test Loss CSE-CIC-IDS2018

accuracy

Journal of Information Security and Applications 58 (2021) 102804

Training and Test Accuracy NSL-KDD

—— Training Data
Test Data

017

0.16

015

Loss

014

013

accuracy

1.0 L 4
mmmmm Training Data
— Test Data

0871 AN AAN WAty A A AN\ A NAN ==
0.6 1
0.4 4
0.2 4
0.0 T T T T T T T T T

0 25 50 75 100 125 150 175 200

epoch
(b)
Training and Test Accuracy CSE-CIC-IDS2018
0958 1A AN ne DL N Y | (
0.956 W ! | | "
\
0.954
0.952
0.950
0.948
0.946
~— Training Data

0.944 Test Data

0 5 s0 7 100 125 150 175 200

epoch
(@)

Fig. 8. Evaluation of training and testing data in (a) Optimization learning curves after 100 epoch in NSL-KDD dataset, (b) Performances Learning Curve in NSL-KDD for multi-class
classification. (c) Optimization learning curves after 200 epoch in CSE-CIC-IDS2018 dataset, (b) Performances Learning Curve for multi-class classification in CSE-CIC-IDS2018 dataset.

Table 5

The best performance values for the deep structured model with best hyperparameter values on test dataset KDDTest+ in NSL-KDD dataset.

Number of DNN Best hyperparameter Precision Recall Overall F1-Score
hidden layers (%) (%) Accuracy (%)
(%)
DAE structure batch size activation kernel learning
function initializer rate
1 layer 122-100-122 64 Leaky normal 0.01 84.54 82.35 82.35 81.27
ReLU
2 layers 122-100-20-100- 256 ReLU he_uniform 0.01 86.02 83.33 83.33 82.04
122
3 layers 122-75-60-30-60- 64 PReLU he_normal 0.01 84.43 83.05 83.05 82.03
75-122
4 layers 122-100-50-30- 32 eLU normal 0.0001 85.63 83.25 83.25 81.77
20-30-50-100-
122

The model produced the best performance with the structured
model 122-100-20-100-120 for DAE in the NSL-KDD dataset. The ac-
tivation function on the hidden layer used the ReLU and sigmoid
functions in the last layer and binary cross-entropy loss function,
whereas the initialization kernel used he_uniform (Table 5). The output
of the bottleneck layer became the input to the DNN with the structure
122-100-20-5, using the ReLU function on the hidden layer and softmax
on the last layer, kernel initialization using he_uniform, and function
loss using categorical cross-entropy and a learning rate is 0.01. Adding
the number of layers does not have a significant impact on the detection
rate of the IDS model. The ReLU activation function has the best effect
on the model with two hidden layers, while the ELU function has the
best effect on the model with four hidden layers.

The best learning rate value on models with one, two, and three
hidden layers of the DNN is a value of 0.01 in the NSL-KDD dataset. The
value of the learning rate is also highly related to the batch size number;
a small batch size value is suitable for low learning rate values [47]. A
small batch size (32) provides high performance with a small learning
rate (0.0001). A large batch size (256) provides the best results with a
high learning rate (0.01), as shown in Table 6.

10

In Table 6, the models on the CSE-CIC-IDS2018 dataset show a
slight increase in classifying performance by adding the number of
hidden layers to the DL model despite being insignificant. The best
learning rate value for a whole model with a different number of hidden
layers is 0.001 on this dataset. The Leaky ReLU activation function and
lecun_uniform kernel initializer function generate the best classifying
levels on the model with 2 and 4 hidden layers. The ReLU activation
function provides the best classification level on the 1 hidden layer and
3 hidden layer models. The result in Table 6 also shows a large batch
size value of 256 giving higher detection results to the model with more
hidden layers.

For multiclass classification, true positive rate (TPR), false-positive
rate (FPR) and accuracy are estimated for each class. The detailed
results are shown in Table 7 for NSL-KDD and Table 8 for CSE-CIC-
IDS2018. The results in Table 7 show the performance of the best
models in the KDDTrain+ as training data and KDDTest+ and KD-
DTest+* as testing data (in KDDTest+*, attack data that were not in the
training data were removed). This model was trained using KDDTrain+
data resulting in the weight-average precision value of 99.81%, recall
(sensitivity) of 99.81%, accuracy of 99.89%, and F1-score of 99.81%.

Y.N. Kunang et al.

Table 6

Journal of Information Security and Applications 58 (2021) 102804

The best performance values for the deep structured model with best hyperparameter values on testing dataset CSE-CIC-IDS2018 dataset.

Number of DNN Best hyperparameter Precision Recall Overall F1-Score
hidden layers (%) (%) Accuracy (%)
(%)
DAE structure batch size activation kernel learning
function initializer rate
1 layer 80-60-80 32 ReLU le- 0.001 95.28 95.70 95.70 94.95
cun_normal
2 layer 80-60-35-60-80 32 Leaky le- 0.001 95.26 95.70 95.70 95.00
ReLU cun_uniform
3 layer 80-60-30-25-30- 256 Relu he_normal 0.001 95.38 95.78 95.78 95.08
60-80
4 layer 80-70-40-30-25- 256 Leaky le- 0.001 95.38 95.79 95.79 95.11
30-40-70-80 ReLU cun_uniform
Table 7 Table 8
Best performance result for the multi-class IDS on the NSL-KDD dataset. Best performance result for the multiclass IDS on the CSE-CIC-IDS2018.
Class KDDTrain+ KDDTest+ KDDTest+* Class Training Data Testing data
TPR(%) FPR(%) Acc(%) TPR(%) FPR(%) Acc(%) TPR(%) FPR(%) Acc(%) TPR(%) FPR(%) Acc(%) TPR(%) FPR(%) Acc(%)
Normal 99.78 0.16 99.81 96.69 23.69 85.09 96.69 12.71 92.15 Benign 99.51 4.54 97.47 99.46 4.48 97.48
DoS 99.98 0.01 99.99 8394 1.98 93.36 99.36 0.77 99.27 Bot 99.98 0.00 100.00 99.97 0.00 100.00
Probe 99.79 0.09 99.90 85.17 2.03 96.60 100.00 1.51 98.58 Brute Force -Web 68.15 0.01 99.99 60.00 0.00 99.98
R2L 95.38 0.03 99.93 38.53 0.05 92.45 48.25 0.02 93.92 Brute Force -XSS 65.24 0.00 99.99 74.42 0.00 99.99
U2R 63.46 0.00 99.98 7.00 0.00 99.17 1892 0.01 99.84 DDOS attack-HOIC 100.00 0.00 100.00 100.00 0.00 100.00
DDOS attack-LOIC-UDP 99.85 0.01 99.99 100.00 0.01 99.99
DDoS attacks-LOIC-HTTP ~ 99.87 0.00 99.99 99.82 0.00 99.98
DoS attacks-GoldenEye 99.97 0.00 100.00 99.93 0.00 100.00
As for the KDDTest+ dataset, weight-averaged precision value was Dos attacllzs'H“lk 99.99 000 100.00 99.99 0.0 100.00
ce s Dos attacks-SlowHTTPTest 51.58 0.43 98.32 51.99 0.43 98.33
0, 0, 0, -
86.02 0/o, recall (sen51t1v1ty2 83.33%, accura.cy 90.09%, and F1-score DoS attacks.Slowloris 9998 0.00 100.00 10000 0.0 100.00
82.04%. For the KDDTest+* dataset, the precision, recall, accuracy and FTP-BruteForce 88.20 1.30 9832 8816 1.29 98.33
Fl-score values, respectively, amounted to 92.61%, 91.88%, 94.93%, Infilteration 23.69 0.25 97.48 23.84 027 97.50
and 91.01%. SQL Injection 4225 0.0 100.00 4375 0.00 100.00
SSH-Bruteforce 99.98 0.00 100.00 99.97 0.00 100.00

Table 7 also explains the metric values of each attack class to
reveal the ability of the model to detect each attack. Root to local
and U2R attacks are very difficult to detect. The results for each class
of attack shows the U2R class had low TPR or detection results for
training (63.46%) and for both data tests (7% and 18.92%). One of the
problematic factors making U2R difficult to detect is the lack of data for
the U2R class during the learning process, which was only 0.04% of the
total training data (Table 1). Details are shown in the confusion matrix
in Fig. 9: Due to the low volume of training data from 52 datasets after
the learning process, only 33 attacks were recognized, a detection rate
of only 63.46%. Sixteen U2R attacks were detected as normal packets
(30.7% of 52 data). This shows that the behavior of the data packet
of U2R attacks in the network is very close to normal behavior, so it
is difficult to detect. User to root attacks such as LoadModule, Perl,
ps, SQL, and buffer overflow attacks are deliberately modified to be
stealthy to network IDSs. Therefore, during the testing process, it can
only recognize 14 U2R attacks from 200 labels with a detection rate
of only 7% during data testing. In addition, 81.5% of new attacks (163
in 200 of the testing data) in the class of U2R that do not exist in the
training dataset. Its impact resulted, the IDS model failing to generalize
U2R attacks.

For the R2L attack class, the TPR for the training data was quite
high at 95.38%. However, for the testing data, KDDTest+ and KD-
DTes+*, TPR were only 38.53% and 48.25%, respectively. In addition
to the imbalanced dataset factor (only 0.79% of the total training
data), another factor was stealthy R2L attacks. More clearly seen in
Fig. 9, the confusion matrix, R2L attacks on both training data and
many testing data were detected as normal packages. Even for testing
data, approximately 60% of 2,754 of R2L attacks on testing data were
identified as normal packages. Another problematic factor in detecting
R2L attacks is the many subcategories of new attacks in the testing
data for class R2L (namely SendMail, snmpgetattack, snmpguess, worm,
xlock, and xsnoop) that are not present in the training data.

The proposed network-anomaly-based IDS model worked very well
in detecting DoS and probe attacks with detection rates respectively

11

of 99.98% and 99.79% for training data. For testing data KDDTest+,
the detection rate for the two attacks was 83.94% and 85.17%, respec-
tively, slightly reduced due to new subclasses of attack in the testing
data that are not in the training data. If the new subclasses of both
DoS and probe attacks are eliminated, then the detection rates of the
testing process are above 99%. It can be assumed that the proposed
model cannot recognize the attack pattern of each class in general.
This is because even if the attack is in one class, the attack pattern
can be very different from other attacks in its class. The attack sub-
class will not likely be recognized if the learning or training process is
not performed for this attack. For the data of stealthy attacks (attack
patterns resembling normal packets), such as U2R and R2L attacks,
the anomaly-based IDS models that work by detecting packets in the
network are less effective. Each modified attack for a stealthy attack
could trick the IDS on the network during the transport, encoding,
execution, action, and cleaning processes of the attack. Stealthy attacks
avoid unusual behaviors. The goal of a hidden attack is to mimic normal
traffic as much as possible. Attacks are usually spread over several
sessions and overtime to avoid an abnormal amount of traffic. They
often use basic services and prevent unusual commands that could
be detected as a normal package. Stealthy attacks more effectively
combine the network anomaly-based IDS with an intelligent host-based
IDS that works based on the log host [72].

The Overall results of the 15 class attacks classification on the CSE-
CIC-IDS2018 dataset show an accurate detection rate. With the addition
of the number of hidden layers in DAE and DNN network structure,
does not significantly improve performance. For the best test results
obtained for models with 4 hidden layers. The highest performance
gained by training models with 200 epoch achieved a weight-averaged
precision value of 95.38%, recall (sensitivity) of 95.79%, accuracy of
95.79%, and Fl-score of 95.11% for testing data. For details on the
performance of each attack can be seen in Table 8 and the confusion
matrix in Fig. 10.

Y.N. Kunang et al.

Confusion matrix

97 40 5 60000
0 0 0 50000
2 40000
2 probe{ 23 1 11632 0 0
3 30000
=
roLd % 0 0 249 1 20000
wrd 16 0 1 2 3 10000
T v T T T 0
> L3 2 N Q&
p (6(0 <& q\éc & 3
Predicted label
(a)

Journal of Information Security and Applications 58 (2021) 102804

Confusion matrix

normal 86 232 2 1
8000
DoS 58 0 0
- 6000
2
2 probe{ 158 199 2062 2 0
LY
E 4000
rR2L 4 1665 14 14 1061 0
2000
wrd 7 0 104 5 1
T T T T T 0
> $ & v S
p (&'o & Q@g Q& W
Predicted label

(b)

Fig. 9. Confusion matrix for classifying multiclass attacks: (a) training data KDDTrain+; (b) testing data KDDTest+.

Confusion matrix 700000

Bemqn 2 1 1 0o ¥V 4 1 & 5 0

Bt/ 17 8825 0o o o o o o0 o0 ©0 ©0 0 0 o0 0

BruteForceweb 124 0 38 23 o o 8 o0 o0 ©0 ©0 ©0 O 1 0 00000

BruteForce.xss| 0 0 %4 122 0 o 0o o0 o0 ©0 0 0 0 1 0

DDOSattackHoic{ © O 0 0 19208 0 0 O O O O O 0 0 0

500000

DDOSattackloicupp{ © © O 0 0 13§ 2 O0 ©0 O O 0 0 0 0

DDoSattackslOICHTTP{ @ © 0 0 0 166161248 0 o0 O 0 O 0 0 0

DoS attacks-Goldeneye { © © 0 0 0 0 0 25001 6 0 1 0 0 0 0O 200000

True label

DoSattacksHulk{ © 0 0 0 0 0 0 13 1384 0 0 0 0 0 0

DoSattacks-SlowHTTPTest] © © ©0 © 0 ©0 0 0 0 21649 0 20325 0 0 0

300000

DoSattacksSlowloris{ 1 0 © 0 0 0 0 0 ©0 0 &1 0 0 0 0

FiPBruteforce] © © 0 0 0 0 0 0 0 650 0 51205 0 0 0

Infikeration {6886 0 2 0 0 0 0 2 0 2 2 0 ms2 1 O

200000

SQL Injection

SHonteoce] © 0 0 0 o o o o 2 2 o 8 o o 5320
& o $ & & & &
PO F S SEY FEES S E 10000
A ¢ & & ¥ & o @'3 & & &
& & WSS TS E
& & & L Y P S &M@ <
J < é’ \ g L < & &
§ & & 5 &
& o

Predicted label

(a)

True label

Do attacks-SlowHTTPTest

200000

Confusion matrix 175000

2 2 A o o 8 1 1 o, im, o a0y 1 0

Bot{ 7 21472 0 0 0 0 0 o 0 [) o 0o o 0

BruteForceWeb] ¥ 0 6 9 0 0 1 o o o o o o o [} 150000

Brute Force -XSS
DDOSattackHoiC{ © 0 0 0O
125000

DDOS attack-LOiCuDP{ © O o o o
DDoS attacks-LOIC-HTTP{ 15 ¢ 0 0 0 59
DoS attacks-GoldenEye | 2 0 0 0 0 0 0 100000
Dos attacksHulk{ 0 0 o o o o 0 3
75000
DosS attacks-Slowloris

FTPBrutefoce{ © 0 0 0 0 0 0 o o
Infilteration

50000
SQL Injection

sSH.-Bruteforce | 1 o o o o o o0 o 1 1 071 o o0

&
%'99

25000

Predicted label

(b)

Fig. 10. Confusion matrix for classifying multiclass attacks: (a) training data in CSE-CIC-IDS2018; (b) testing data in CSE-CIC-IDS2018.

The IDS model using deep Autoencoder (PTDAE) combined with
a deep neural network (DNN) is very good at detecting attacks with
DDoS, DoS, Bot, and Brute Force categories. The detection rate of
these types of malicious attacks approaches 100%. For the Infiltration
category attack, the proposed IDS model less successfully recognizes
the attack, although the training process is upgraded to 200 epochs. The
IDS model can only detect 23.69% for this class attack. If viewed on the
confusion matrix, most of these infiltration attack packages are known
as benign packets. This infiltration attack includes a stealthy attack that
utilizes an internal network for illegal access. Hence infiltration attack
is hard to detect on the network IDS. Other malicious packets that
are difficult to detect on proposed models are web attack categories,
including Brute Force Web, brute force-XSS, and SQL injection. For this
category of attacks, the detection is quite low < 70%. The main factor of
the low detection rate is the lack of training data for this attack classes.

4.3. Comparison with other methods

This section provides a comparison of the DAE feature extraction in
the pre-training phase with other algorithms. The alternatives feature

extraction models are autoencoder (AE) and stack autoencoder (SAE).
The performance result is shown in Table 9 and Fig. 11. In other eval-
uation models, we use the network structure and best hyperparameter
of the DAE + DNN model to construct the SAE + DNN model. In the
CSE-CIC-IDS2018 best model has a DAE structure 80-70-40-30-25-30-
40-70-80. After the extracted, it will be transferred to DNN with a
network structure of 80-70-40-30-25-15. With the same DNN structure
that will extract feature with four levels SAE with the structure 80-70-
80, 70-40-70, 40-30-40, and 30-25-30. The result will get the same DNN
structure that is trained with the value of the same hyperparameter
as the PTDAE + DNN model. Our AE + DNN structure use network
AE with structure 80-25-80 for the feature extraction. DNN’s structure
is trained with the addition of a hidden layer number to 80-25-20-
20-20-15. The number of hidden layers in the DNN follows the [73]
approach.

A comparison of some of the methods of feature extraction demon-
strated the PTDAE model combine with DNN, resulting in a better
classifying multiclass performance compared to AE + DNN and SAE
+ DNN for both datasets. The detection rate performances of models
using SAE and DAE feature extraction almost identical, especially on

12

Y.N. Kunang et al.

Performances in NSL-KDD dataset
88.00%
86.00%
84.00%
82.00%
80.00%
78.00%

—

74.00% | ‘
1 |

Precision

76.00%

72.00%

Recall F1-score

WAE+DNN m SAE+DNN
(a)

DAE+DNN

Journal of Information Security and Applications 58 (2021) 102804

Performances in CSE-CIC-IDS dataset

96.00%
95.80%
95.60%
95.40%
95.20%
95.00%
94.80%
94.60%
94.40%
94.20%
94.00%

\
\

| \

(- |

|| \

[\

[\

[\

[=l I I

Precision

Recall Fl-score

mAE+DNN m SAE+DNN DAE+DNN

Fig. 11. Grafik Chart multiple techniques autoencoder feature extraction and DNN for multiclass classification.

Table 9
Test result from various techniques autoencoder feature extraction and DNN for
multiclass classification.

Algorithm Precision Recall F1-score Training Prediction
(%) (%) (%) time (s) time (s)

Multi-class Classification in NSL-KDD

AE+DNN 84.04 81.69 79.49 189.62 0.51

SAE+DNN 83.95 80.17 77.28 469.626 1.104

DAE+DNN 86.02 83.34 82.04 382.48 0.968

Multi-class Classification in CSE-CIC-IDS2018

AE+DNN 95.07 95.51 94.71 5608.79 11.685

SAE+DNN 95.35 95.77 95.07 4281.99 12.510

DAE+DNN 95.38 95.79 95.11 4162.30 12.582

Table 10

Comparison between the proposed model and state of the art Method NSL-KDDTest.

Method NSL-KDDTest
Precision Recall Overall F1-score
(%) (%) Accuracy (%)
(%)
Character level +CNN [74] 81.45 79.05 79.05 76.03
Feedforward Neural Network [39] - 80.30 80.30 -
RNN [18] 83.07 81.29 81.29 79.25
Cond. VAE [76] 81.59 80.10 80.10 79.08
DNN [42] 81.00 78.50 78.50 76.50
RNN with multilayered echo-state 81.89 80.41 80.41 79.23
machine (ML-ESM) [75]
Proposed (DAE+DNN) 86.02 83.33 83.33 82.04

the CSE-CIC-IDS2018 dataset that does not have overfitting. However,
the training time of SAE with the number of hidden layers for fewer
data like in the NSL-KDD dataset takes a little longer.

We also compare the results of our proposed model with recent
related studies that used various DL in the NSL-KDD dataset (Table 10).
Our proposed model is superior to all models in Table 10 with recall
(sensitivity) performance of 83.33% and overall accuracy of 83.33%.
Lin et al. [74], who used a CNN for a character-level IDS, achieved
only 79.05% for recall and accuracy for the KDDTest+ dataset. Zhu
et al. [39] developed network anomaly detection and identification
using a feedforward neural network model and CNN model with highest
accuracy of 80.3%. Yin et al. [18] used an RNN method with recall
rate and accuracy of 81.29%. Likewise, our results are compared to
Vinayakumar et al. [42] who used DNN methods, and Tchakoucht and
Ezziyyani [75], who developed an IDS with an RNN with multilayered
echo-state machine, achieving recall rate and accuracy, respectively, of
78.05% and 80.41%. However, compared to other models, our results
are still higher. For the Fl-score value, which is the weighted average
of precision and recall, our model remains superior to the others with
82.04%.

The enhancing detection sensitivity of data testing in proposed
PTDAE combined with DNN models due to the fit selection of hyperpa-
rameters and a more fitting structure of the DL model. By performing

13

the feature extraction in input data with DAE and a suitable com-
bination of activation functions, the value of learning rate, as well
as a kernel initializer and a fitting network structure can improve
the detection results in the test data. However, in the case of the
NSL-KDD dataset with a lot of controversies in overfitting problem,
it does not mean that the best learning performance in learning will
be better performance on data testing. Although models with more
number of hidden layers give result in better detection performance
during learning, do not apply when testing. So the best model here
prioritizes models that provide the most excellent results during testing.

The CSE-CIC-IDS2018 dataset does not provide standard datasets
for training and testing. Researchers use training and testing with their
own compositions that will significantly affect the overall outcome. It
is becoming a significant differentiator when comparing results with
other works, for example, when the structure of the unbalanced and
challenging prediction class of the original datasets could significantly
change using a different test set. But our results are overall good enough
with the detection rate of 95.79% for the overall 15 classes without the
change of data composition in imbalanced class as Lin et al. [77].

The main problem with the development of models using HPO is the
computational cost required to evaluate many models to get the right
hyperparameter composition. The Hyperparameter tuning with rein-
forcement learning (RL) approach with the ability of an agent that can
be explored hyperparameter selection policy can be an alternative [78].
Lopez-Martin et al. [46] use RL in the binary classification attack
system in the NSL-KDD dataset, demonstrating the excellence of RL that
only takes 290.50 s for training and 0.54 s for prediction. In contrast,
on our models using the HPO, It takes > 56 h to evaluate learning
in the entire of models and time prediction of 0.968 s. However,
the HPO approach that we used can further explain the impact of
hyperparameter selection when the loss function showing improved
performance compared to the RL method such as a puzzled.

Nevertheless, the results of the experiments conducted in models
that we proposed have not optimally detected some attacks class, such
as Infiltration attack. The lack of detection rate in this class attack
reflected the affecting of the raw data features of the dataset itself.
The features of raw data in the dataset used are less represents the
characteristics of these types of attacks. Adding features such as the
prediction feature, which is done by Yu et al. [79], can be considered
for IDS performance enhancement for the attack class in future work.

5. Conclusion

As a summary, this research gives some contributions to deep learn-
ing in the cybersecurity domain: (1) We proposed IDS model, using
DL and a DAE for the pretraining process and fine-tuning with DNN
through the process of HPO, improves the results of attack classification
in intrusion detection. (2) With the automatic tuning of HPO performed
can show the important parameters that have a significant impact
on the DL IDS model. (3) The result from the best models produced
provides values and functions that can be used as base values or
base functions in the development of deep learning models with other

Y.N. Kunang et al.

approaches and datasets. (4) The optimal feature extraction approach
to develop an effective DL IDS.

We provide automatic selecting hyperparameters and DL structure
models to increase the classification of DL IDS. Regarding the deep
structured model, the selection process of the number of hidden layers,
number of neurons, the value of learning rate, kernel initialization, ac-
tivation function, an optimization technique is complicated. Automatic
HPO techniques help determine the most appropriate combination of
hyperparameters to obtain the best performance. One of the factors that
should be considered in the HPO process is that when a higher number
of hyperparameters are optimized simultaneously, the process takes a
longer time. The random search in the hyperparameter combination
grid accelerates the process of obtaining the best model that provides
the best attack detection rate performance. From the HPO process
performed on the NSL-KDD dataset and the CSE-CIC-IDS2018 shows
the learning rate parameter is an essential parameter that significantly
impacts the deep learning IDS performance. Besides, the other influ-
ential parameters are the selection of deep learning structures, namely
the number of layers and neurons of the DL model.

In addition, we compare several methods in feature extraction with
different Autoencoder models (AE, SAE, and DAE) combined with the
DNN model. We considering, considering some features: (1) precision,
(2) recall, (3) F1-Score, (4) training and (5) prediction times, and
using two different intrusion detection datasets (NSL-KDD and CSE-
CI-IDS2018) to facilitate the generalization of the results. The best
DAE+DNN architecture of the intrusion detection model that we have
proposed produces better performance compared to some of the recent
related studies using various DL.

In the future, we plan to compare the DL IDS models with other
combinations of DL algorithms, various methods of feature extraction,
and other datasets. We will also evaluate techniques for improving
performance on the imbalanced attack dataset.

CRediT authorship contribution statement

Yesi Novaria Kunang: Software, Visualization, Investigation, Writ-
ing - original draft. Siti Nurmaini: Supervision, Conceptualization,
Methodology, Writing - review & editing. Deris Stiawan: Data cura-
tion, Validation, Writing - review & editing. Bhakti Yudho Suprapto:
Validation, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This research has received funding from Indonesia Ministry of Re-
search, Technology, and Higher Education (grant agreement
170/SP2H/LT/DRPM/2020). The authors would like to thank data
science research group, Universitas Bina Darma and University for
support and facilities.

References

[1]1 Habeeb RAA, Nasaruddin F, Gani A, Hashem IAT, Ahmed E, Imran M. Real-
time big data processing for anomaly detection: A survey. Int J Inf Manage
2019;45:289-307.

Diaz Lépez D, Blanco Uribe M, Santiago Cely C, Vega Torres A,
Moreno Guataquira N, Morén Castro S, et al. Shielding IoT against cyber-attacks:
An event-based approach using SIEM. Wirel Commun Mobile Comput 2018;2018.
Sicari S, Rizzardi A, Miorandi D, Coen-Porisini A. REATO: REActing TO Denial
of Service attacks in the Internet of Things. Comput Netw 2018;137:37-48.
Jang J, Jung 1Y, Park JH. An effective handling of secure data stream in IoT.
Appl Soft Comput 2018;68:811-20.

[2]

[3]

[4]

14

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Journal of Information Security and Applications 58 (2021) 102804

Stiawan D, Idris M, Malik RF, Nurmaini S, Alsharif N, Budiarto R, et al.
Investigating brute force attack patterns in IoT network. J Electr Comput Eng
2019;2019.

Fu Y, Yan Z, Cao J, Koné O, Cao X. An automata based intrusion detection
method for internet of things. Mob Inf Syst 2017;2017.

Mishra P, Varadharajan V, Tupakula U, Pilli ES. A detailed investigation and
analysis of using machine learning techniques for intrusion detection. IEEE
Commun Surv Tutor 2018;21(1):686-728.

Masduki BW, Ramli K, Saputra FA, Sugiarto D. Study on implementation of
machine learning methods combination for improving attacks detection accuracy
on intrusion detection system (IDS). In: 2015 International conference on quality
in research. IEEE; 2015, p. 56-64.

Mohammadi M, Al-Fuqaha A, Sorour S, Guizani M. Deep learning for IoT
big data and streaming analytics: A survey. IEEE Commun Surv Tutor
2018;20(4):2923-60.

Dong B, Wang X. Comparison deep learning method to traditional methods using
for network intrusion detection. In: 2016 8th IEEE international conference on
communication software and networks. IEEE; 2016, p. 581-5.

Xie J, Song Z, Li Y, Zhang Y, Yu H, Zhan J, et al. A survey on machine learning-
based mobile big data analysis: Challenges and applications. Wirel Commun
Mobile Comput 2018;2018.

L’heureux A, Grolinger K, Elyamany HF, Capretz MA. Machine learning with big
data: Challenges and approaches. IEEE Access 2017;5:7776-97.

Najafabadi MM, Villanustre F, Khoshgoftaar TM, Seliya N, Wald R,
Muharemagic E. Deep learning applications and challenges in big data analytics.
J Big Data 2015;2(1):1.

Feurer M, Hutter F. Hyperparameter optimization. In: Hutter F, Kotthoff L, Van-
schoren J, editors. Automated machine learning: methods, systems, challenges.
Springer International Publishing; 2019, p. 3-33. http://dx.doi.org/10.1007/978-
3-030-05318-5_1.

Kunang YN, Nurmaini S, Stiawan D, Zarkasi A, Jasmir F. Automatic features
extraction using autoencoder in intrusion detection system. In: 2018 international
conference on electrical engineering and computer science. IEEE; 2018, p.
219-24.

Al-Qatf M, Lasheng Y, Al-Habib M, Al-Sabahi K. Deep learning approach
combining sparse autoencoder with SVM for network intrusion detection. IEEE
Access 2018;6:52843-56.

Mohaimenuzzaman M, Abdallah ZS, Kamruzzaman J, Srinivasan B. Effect of
hyper-parameter optimization on the deep learning model proposed for dis-
tributed attack detection in internet of things environment. 2018, arXiv:1806.
07057.

Yin C, Zhu Y, Fei J, He X. A deep learning approach for intrusion detection
using recurrent neural networks. IEEE Access 2017;5:21954-61.

Melis G, Dyer C, Blunsom P. On the state of the art of evaluation in neural
language models. 2017, arXiv:1707.05589.

Bergstra J, Bengio Y. Random search for hyper-parameter optimization. J Mach
Learn Res 2012;13(Feb):281-305.

Bergstra J, Yamins D, Cox DD. Making a science of model search: Hyperpa-
rameter optimization in hundreds of dimensions for vision architectures. JMLR;
2013.

Hutter F, Hoos H, Leyton-Brown K. An efficient approach for assessing hyperpa-
rameter importance. In: International conference on machine learning. 2014. p.
754-62.

Al-Garadi MA, Mohamed A, Al-Ali A, Du X, Guizani M. A survey of machine
and deep learning methods for internet of things (IoT) security. 2018, arXiv:
1807.11023.

Xin Y, Kong L, Liu Z, Chen Y, Li Y, Zhu H, et al. Machine learning and deep
learning methods for cybersecurity. IEEE Access 2018;6:35365-81.

LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521(7553):436-44.
Li H, Ota K, Dong M. Learning IoT in edge: Deep learning for the Internet of
Things with edge computing. IEEE Netw. 2018;32(1):96-101.

Zhang Y, Li P, Wang X. Intrusion detection for IoT based on improved genetic
algorithm and deep belief network. IEEE Access 2019;7:31711-22.

Kang M-J, Kang J-W. Intrusion detection system using deep neural network for
in-vehicle network security. PLoS One 2016;11(6):e0155781.

Potluri S, Diedrich C. Accelerated deep neural networks for enhanced intrusion
detection system. In: 2016 IEEE 21st international conference on emerging
technologies and factory automation. IEEE; 2016, p. 1-8.

Dawoud A, Shahristani S, Raun C. Deep learning and software-defined networks:
towards secure Iot architecture. Internet Things 2018;3:82-9.

Thing VL. IEEE 802.11 network anomaly detection and attack classification: A
deep learning approach. In: 2017 IEEE wireless communications and networking
conference. IEEE; 2017, p. 1-6.

Lopez-Martin M, Carro B, Sanchez-Esguevillas A, Lloret J. Network traffic
classifier with convolutional and recurrent neural networks for Internet of Things.
IEEE Access 2017;5:18042-50.

Rezvy S, Petridis M, Lasebae A, Zebin T. Intrusion detection and classification
with autoencoded deep neural network. In: International conference on security
for information technology and communications. Springer; 2018, p. 142-56.

http://refhub.elsevier.com/S2214-2126(21)00043-0/sb1
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb1
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb1
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb1
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb1
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb2
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb2
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb2
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb2
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb2
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb3
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb3
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb3
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb4
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb4
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb4
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb5
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb5
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb5
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb5
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb5
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb6
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb6
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb6
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb7
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb7
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb7
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb7
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb7
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb8
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb8
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb8
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb8
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb8
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb8
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb8
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb9
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb9
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb9
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb9
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb9
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb10
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb10
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb10
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb10
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb10
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb11
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb11
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb11
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb11
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb11
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb12
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb12
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb12
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb13
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb13
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb13
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb13
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb13
http://dx.doi.org/10.1007/978-3-030-05318-5_1
http://dx.doi.org/10.1007/978-3-030-05318-5_1
http://dx.doi.org/10.1007/978-3-030-05318-5_1
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb15
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb15
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb15
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb15
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb15
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb15
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb15
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb16
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb16
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb16
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb16
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb16
http://arxiv.org/abs/1806.07057
http://arxiv.org/abs/1806.07057
http://arxiv.org/abs/1806.07057
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb18
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb18
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb18
http://arxiv.org/abs/1707.05589
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb20
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb20
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb20
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb21
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb21
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb21
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb21
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb21
http://arxiv.org/abs/1807.11023
http://arxiv.org/abs/1807.11023
http://arxiv.org/abs/1807.11023
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb24
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb24
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb24
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb25
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb26
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb26
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb26
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb27
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb27
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb27
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb28
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb28
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb28
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb29
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb29
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb29
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb29
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb29
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb30
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb30
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb30
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb31
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb31
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb31
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb31
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb31
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb32
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb32
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb32
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb32
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb32
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb33
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb33
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb33
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb33
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb33

Y.N. Kunang et al.

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Muna A-H, Moustafa N, Sitnikova E. Identification of malicious activities in
industrial internet of things based on deep learning models. J Inf Secur Appl
2018;41:1-11. http://dx.doi.org/10.1016/].jisa.2018.05.002.

Yousefi-Azar M, Varadharajan V, Hamey L, Tupakula U. Autoencoder-based
feature learning for cyber security applications. In: 2017 international joint
conference on neural networks. IEEE; 2017, p. 3854-61.

Shone N, Ngoc TN, Phai VD, Shi Q. A deep learning approach to network
intrusion detection. IEEE Transactions on Emerging Topics in Computational
Intelligence 2018;2(1):41-50.

Yu Y, Long J, Cai Z. Session-based network intrusion detection using a deep
learning architecture. In: International conference on modeling decisions for
artificial intelligence. Springer; 2017, p. 144-55.

Yoo Y. Hyperparameter optimization of deep neural network using univariate
dynamic encoding algorithm for searches. Knowl-Based Syst 2019;178:74-83.
Zhu M, Ye K, Xu C-Z. Network anomaly detection and identification based
on deep learning methods. In: International conference on cloud computing.
Springer; 2018, p. 219-34.

Aldwairi T, Perera D, Novotny MA. An evaluation of the performance of
Restricted Boltzmann machines as a model for anomaly network intrusion
detection. Comput Netw 2018;144:111-9.

Kanimozhi V, Jacob TP. Artificial intelligence based network intrusion detection
with hyper-parameter optimization tuning on the realistic cyber dataset CSE-
CIC-IDS2018 using cloud computing. In: 2019 international conference on
communication and signal processing. IEEE; 2019, p. 0033-6.

Vinayakumar R, Alazab M, Soman K, Poornachandran P, Al-Nemrat A, Venkatra-
man S. Deep learning approach for intelligent intrusion detection system. IEEE
Access 2019;7:41525-50.

Torres J, Gutiérrez-Avilés D, Troncoso A, Martinez-Alvarez F. Random hyper-
parameter search-based deep neural network for power consumption forecasting.
In: International work-conference on artificial neural networks. Springer; 2019,
p. 259-69.

Sanders S, Giraud-Carrier C. Informing the use of hyperparameter optimization
through metalearning. In: 2017 IEEE international conference on data mining.
IEEE; 2017, p. 1051-6.

Yao C, Cai D, Bu J, Chen G. Pre-training the deep generative models with
adaptive hyperparameter optimization. Neurocomputing 2017;247:144-55.
Lopez-Martin M, Carro B, Sanchez-Esguevillas A. Application of deep reinforce-
ment learning to intrusion detection for supervised problems. Expert Syst Appl
2020;141:112963.

Bengio Y. Practical recommendations for gradient-based training of deep
architectures. In: Neural networks: Tricks of the trade. Springer; 2012, p. 437-78.
Elbrahim L, Mohamed ZE. Improving error back propagation algorithm by using
cross entropy error function and adaptive learning rate. Int J Comput Appl
2017;61(8).

He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In: Proceedings of the IEEE international
conference on computer vision. 2015. p. 1026-34.

Kotu V, Deshpande B. Deep learning. In: Data science. Elsevier; 2019, p. 307-42.
http://dx.doi.org/10.1016/B978-0-12-814761-0.00010-1.

Talos. Introduction — Talos User Manual. URL https://autonomio.github.io/docs_
talos/.

Tavallaee M, Bagheri E, Lu W, Ghorbani AA. A detailed analysis of the KDD CUP
99 data set. In: 2009 IEEE symposium on computational intelligence for security
and defense applications. IEEE; 2009, p. 1-6.

University of New Bruncswick CIfC. A realistic cyber defense dataset
(CSE-CIC-IDS2018).

Sharafaldin I, Lashkari AH, Ghorbani AA. Toward generating a new intrusion
detection dataset and intrusion traffic characterization. In: ICISSP. 2018. p.
108-16.

15

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

Journal of Information Security and Applications 58 (2021) 102804

Potdar K, Pardawala TS, Pai CD. A comparative study of categorical vari-
able encoding techniques for neural network classifiers. Int J Comput Appl
2017;175(4):7-9.

Wang Z. Deep learning-based intrusion detection with adversaries. IEEE Access
2018;6:38367-84.

Japkowicz N, Shah M. Evaluating learning algorithms:
perspective. Cambridge University Press; 2011.

Kumar G. Evaluation metrics for intrusion detection systems-a study. Int J
Comput Sci Mobile Appl 2014;2(11).

Moustafa N, Hu J, Slay J. A holistic review of Network Anomaly Detection
Systems: A comprehensive survey. J Netw Comput Appl 2019;128:33-55.

Hodo E, Bellekens X, Hamilton A, Tachtatzis C, Atkinson R. Shallow and deep
networks intrusion detection system: A taxonomy and survey. 2017, arXiv:
1701.02145.

Kim K, Aminanto ME, Tanuwidjaja HC. Deep learning. In: Network intrusion
detection using deep learning. Springer; 2018, p. 27-34.

Hindy H, Brosset D, Bayne E, Seeam A, Tachtatzis C, Atkinson R, et al. A
taxonomy and survey of intrusion detection system design techniques, network
threats and datasets. 2018, arXiv:1806.03517.

Stathakis D. How many hidden layers and nodes?
2009;30(8):2133-47.

Goodfellow I, Bengio Y, Courville A. Deep learning. MIT Press; 2016.

Yan B, Han G. Effective feature extraction via stacked sparse autoencoder to
improve intrusion detection system. IEEE Access 2018;6:41238-48.

Mendoza H, Klein A, Feurer M, Springenberg JT, Urban M, Burkart M, et
al. Towards automatically-tuned deep neural networks. In: Automated machine
learning. Springer; 2019, p. 135-49.

Kingma DP, Ba J. Adam: A method for stochastic optimization. 2014, arXiv:
1412.6980.

Clevert D-A, Unterthiner T, Hochreiter S. Fast and accurate deep network
learning by exponential linear units (elus). 2015, arXiv preprint arXiv:1511.
07289.

Jeni LA, Cohn JF, De La Torre F. Facing imbalanced data-recommendations for
the use of performance metrics. In: 2013 humaine association conference on

a classification

Int J Remote Sens

affective computing and intelligent interaction. IEEE; 2013, p. 245-51.

Dong Y, Guo H, Zhi W, Fan M. Class imbalance oriented logistic regression.
In: 2014 international conference on cyber-enabled distributed computing and
knowledge discovery. IEEE; 2014, p. 187-92.

Rahman MM, Davis D. Addressing the class imbalance problem in medical
datasets. Int J Mach Learn Comput 2013;3(2):224.

Haider W, Creech G, Xie Y, Hu J. Windows based data sets for evaluation of
robustness of host based intrusion detection systems (IDS) to zero-day and stealth
attacks. Future Internet 2016;8(3):29.

Shibata K, Ikeda Y. Effect of number of hidden neurons on learning in large-scale
layered neural networks. In: 2009 ICCAS-SICE. IEEE; 2009, p. 5008-13.

Lin SZ, Shi Y, Xue Z. Character-level intrusion detection based on convolutional
neural networks. In: 2018 international joint conference on neural networks.
IEEE; 2018, p. 1-8.

Tchakoucht TA, Ezziyyani M. Multilayered echo-state machine: A novel
architecture for efficient intrusion detection. IEEE Access 2018;6:72458-68.
Lopez-Martin M, Carro B, Sanchez-Esguevillas A, Lloret J. Conditional variational
autoencoder for prediction and feature recovery applied to intrusion detection
in iot. Sensors 2017;17(9):1967.

Lin P, Ye K, Xu C-Z. Dynamic network anomaly detection system by using deep
learning techniques. In: International conference on cloud computing. Springer;
2019, p. 161-76.

Jomaa HS, Grabocka J, Schmidt-Thieme L. Hyp-rl: Hyperparameter optimization
by reinforcement learning. 2019, arXiv preprint arXiv:1906.11527.

Yu W, Wang Y, Song L. A two stage intrusion detection system for industrial
control networks based on ethernet/IP. Electronics 2019;8(12):1545.

http://dx.doi.org/10.1016/j.jisa.2018.05.002
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb35
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb35
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb35
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb35
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb35
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb36
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb36
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb36
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb36
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb36
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb37
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb37
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb37
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb37
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb37
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb38
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb38
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb38
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb39
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb39
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb39
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb39
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb39
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb40
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb40
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb40
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb40
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb40
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb41
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb41
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb41
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb41
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb41
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb41
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb41
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb42
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb42
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb42
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb42
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb42
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb43
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb43
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb43
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb43
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb43
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb43
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb43
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb44
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb44
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb44
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb44
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb44
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb45
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb45
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb45
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb46
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb46
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb46
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb46
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb46
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb47
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb47
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb47
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb48
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb48
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb48
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb48
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb48
http://dx.doi.org/10.1016/B978-0-12-814761-0.00010-1
https://autonomio.github.io/docs_talos/
https://autonomio.github.io/docs_talos/
https://autonomio.github.io/docs_talos/
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb52
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb52
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb52
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb52
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb52
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb55
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb55
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb55
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb55
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb55
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb56
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb56
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb56
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb57
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb57
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb57
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb58
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb58
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb58
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb59
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb59
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb59
http://arxiv.org/abs/1701.02145
http://arxiv.org/abs/1701.02145
http://arxiv.org/abs/1701.02145
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb61
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb61
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb61
http://arxiv.org/abs/1806.03517
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb63
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb63
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb63
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb64
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb65
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb65
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb65
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb66
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb66
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb66
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb66
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb66
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1511.07289
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb69
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb69
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb69
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb69
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb69
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb70
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb70
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb70
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb70
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb70
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb71
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb71
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb71
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb72
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb72
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb72
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb72
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb72
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb73
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb73
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb73
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb74
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb74
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb74
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb74
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb74
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb75
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb75
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb75
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb76
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb76
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb76
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb76
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb76
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb77
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb77
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb77
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb77
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb77
http://arxiv.org/abs/1906.11527
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb79
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb79
http://refhub.elsevier.com/S2214-2126(21)00043-0/sb79

	Attack classification of an intrusion detection system using deep learning and hyperparameter optimization
	Introduction
	Related work
	Proposed method and design
	Deep learning model
	Deep autoencoder model
	Deep neural network model

	Experimental design
	NSL-KDD dataset
	CSE-CIC-IDS2018 dataset
	Data preparation and preprocessing
	Metric evaluation
	Hyperparameter optimization

	Results and discussion
	Hyperparameter importance
	Performance comparison
	Comparison with other methods

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

