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Attitude and Altitude Control of a Quadcopter
using Neural Network Based Direct Inverse Control
Scheme
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This paper proposes the application of Neural Network based Direct Inverse Control (DIC) for the attitude and altitude
control of quadcopter unmanned aerial vehicle (UAV). The backpropagation learning algorithm were utilized in order to find
the appropriate connection weights of neurons by using real quadcopter flight data on hovering state. The experimental
results showed that the NN-controlled quadcopter can follow the desired trajectory and maintain the hovering state at
different levels of altitude with low errors. This results have proven that the performance of the proposed NN DIC controller

in controlling a quadcopter UAV is satisfying.

Keywords: Backpropagation algorithm, Direct Inverse Control, Neural Network, Quadcopter.

1 INTRODUCTION

A quadcopter is classified as a rotary wing with four
rotors located at its four corners. The advantage of this
structure laid on the ability to perform Vertical Take Off
and Landing (VTOL), high maneuverability along its
course, and stable hovering®2. Therefore, a quadcopter
based unmanned aerial vehicle (UAV) provides
exceptional benefits and is eligible for many civil and
military applications such as aerial observation,
photography, security monitor, search and rescue missions
and other comparative applications .

A quadcopter is intended to have the capability as a
helicopter, with a more straightforward mechanical
system yet more stable in its maneuvers because of a four
motors system. On the other hand, a quadcopter is a very
dynamic system due to the non-linear characteristic of the
plant, under actuated and cross-coupling from its

*Corresponding author: kusumo@ee.ui.ac.id

gyroscopic moments of the motors®®. Thus, controlling
the quadcopter within a six degree of freedom (DoF) is a
challenging problem.

Some of the most widely used control methods for a
guadcopter are PID, LQR, and Backstepping. PID and
LQR control algorithms are a linear control algorithm that
is not suitable for non-linear systems, while the
robustness of a Backstepping control algorithm is still
questionable®®.

Some researchers have developed various neural
network based control systems and all methods revealed a
good performance characteristics!**. In the previous
studies, we have also developed a quadcopter control
system using neural network-based inverse system in a
Direct Inverse Control (DIC) scheme®®. The Cross
configuration quadcopter system was developed in the
Computational Intelligence and Intelligent Systems
Laboratory, Universitas Indonesia. The back propagation
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neural networks based inverse (BPNN-INV) control
system that was used as the quadcopter controller system,
however, is trained and tested by using a database taken
from a stationary vertical test-bed system. As the
consequence, the database obtained from this experiment
is valid for a constant altitude condition only. In order to
develop an autonomous BPNN-INV control system, in
this paper, the neural networks based inverse system is
trained by using a real data flight of the quadcopter.

This paper is structured as follows. Section 2
introduces the structure of Quadcopter, the dynamics and
kinematics of quadcopter model. The experimental data
acquisition is also put forward in this section. The neural
network control algorithm is discussed in Section 3,
followed by the elaboration of simulation results on the
experimental data in Section 4. Finally, our work in this
paper is summarized in the last section.

2 THE QUADCOPTER AND DATA ACQUISITION

A. Quadcopter Model

The dynamic model of the quadcopter is defined by
dividing the system into two reference frames as shown in
Fig. 1. A body frame (BF) is the first reference frame,
where the OB (X, Y, Z) is chosen to coincide with the
center of mass. The second reference frame is the earth
frame (EF), where the OE (x, y, y) is the axis origin. The
position and orientation of the BF or the quadcopter is
described with respect to the EF reference frame®®.

The quadcopter used a fixed pitch blade at each
motor, so that the motor generates an equal thrust on the
guadcopter movement. The front (M1) and rear (M3)
motors rotate clockwise, while the other two motors (M2,
M4) rotate counter clockwise (Fig. 1), hence, these
motors configuration structure canceled the rotational
torque for a stable movement of the quadcopter. The
movement of the quadcopter is then only controlled by
increasing or decreasing the rotor speed.

F4 Fi
Left yaw
w2 e
, Z q Front
pitch y Y roll
F3 BE £
y x @

‘g“\I—"" Rear w Right

east
EF

Fig. 1. Quadcopter basic movement

Increasing or decreasing the four propeller rotation
at the same velocity produces an U; force for a vertical
movement (Zg axis), and the U; force generated by the
same velocity of the motors has to be equal with the
thrust required in a determined altitude for a hovering
movement of the quadcopter. Changing the velocity of the
propeller 2 and 4, respectively, i.e., Qo, Qa, creates an U,

RESEARCH ARTICLE

force for a roll (¢) rotation. The U, force produced by
changing the speed of the propellers rotation makes the
quadcopter rolling to the right or left in the Yg axis, if the
quadcopter is already stable by a determined U; force for
a determined altitude.

Likewise, changing the velocity of the propeller 1
and 3, respectively, i.e., Qi, Qs, creates a Us force for a
pitch () rotation. The produced Us force makes a forward
or a backward movement in the Xg axis. As the same with
the condition in a rolling movement, the quadcopter
should be in a stable condition of hovering state that the
changing velocity of the propeller 1 and 3 makes the
quadcopter moving forward or backward.

When making a different motor speed between each
pair of 2 blades, i.e., a counter-torque is generated by the
motors system, the U, force makes a yaw () rotation.
Thus, the quadcopter is driven by four rotors that would
produce a controlled thrust and torque to move from one
point to others with a determined roll, pitch, and yaw
moving condition. However, although quadcopter has the
ability to move in a 6 DoF system, only a 4 DoF
movement that are controlled directly by the four
rotorst’1°,

To simplify the modeling of a quadcopter, some
assumptions are adopted such as: the quadcopter structure
is rigid and symmetrical, the propellers are rigid, thrust
and drag forces are proportional to the square of
propellers speed rotation, and the distribution of the
quadcopter mass is symmetrical?>?2, These assumptions
make it difficult to develop a model of quadcopter as
realistically as possible.

The equation of motion of the quadcopter is obtained
using Newton-Euler formalism. The translational and
rotational dynamics of quadcopter can be described by (1):

X =(sw~s¢+0y/~s€~c¢)%
.. U,
Y =(—c:,//-s¢+s://~s<9~c¢5)F )

z =—g+(c€~c¢)&
m

p= IYY _Izz qr_‘]TP qQ + U2
Ixx Ixx I><><

qzlzz_lxx priJTP pQJr&
Ly Yy Iy
2 Iz

where X,Y,7 the linear accelerations of quadcopter with
respect to EF; the p,q,f angular accelerations of

quadcopter with respect to BF, s and ¢ are the respective
of sin and cos, Jtp the total rotational moment of inertia
around the propeller axis, m the mass of the quadcopter, g
the acceleration due to gravity, Ixx, lvv, lzz the body
moment of inertia, and p, q, r the angular velocities of
quadcopter. Meanwhile, Q is the algebraic sum of the
propeller speeds and Q is defined as:

Q=-0Q,+Q,-Q,+Q, )
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The relationship between the basic movements and
the thrusts and torques generated by each propeller are
written in (3), as:

U, =b(Q2 + Q) +Q +Q7)

U, =lb(-Q2 +Q?) 3)
U, =Ib(-Q? +Q2)

U, =d(-Q+Q2 -Q2 +Q?)

With Uy the vertical thrust, U, the roll torque, Us the pitch
torque, U4 the yaw torque, Qnthe propeller speed, b the
thrust coefficient, d the drag coefficient and | is the
distance between the center of quadcopter and the center
of the propeller.

B. Experimental Data Acquisition

The developed quadcopter used in this experiment
has a 60 cm span dimension with a 1.2 kg in weight. The
guadcopter is operated by a human pilot through a Radio
Control (RC) system and using an open source Flight
Control Unit (FCU), an Ardupilot 2.5., as the main
controller system. As the main controller system, the
Ardupilot 2.5 is consists of a microcontroller, a gyroscope,
an accelerometer and a barometer as an Inertial
Measurement Unit (IMU). Four T-Motor 940 KV-BLDC
combined with T-Motor 18A Electronic speed controller
(ESC) and 12"x5" propellers carbon placed at its four
corners of the quadcopter are used as the actuator, and a
Lippo battery with a voltage regulator are used for
electric supply system.

The experimental flight dataset is recorded 4 times
(Fig. 2), by saving the data in the on-board memory of the
flight controller, where the three of them are used as the
training dataset, and the other one is used as the test
dataset. As can be seen in this figure, the first and second
datasets represent the steady hovering state of the
guadcopter while the third and fourth data sets represent
the variation of rolling and pitching maneuver around the
steady hovering point.

In this experiment, the training datasets consists of
the second, the third and the fourth data sets, while the
first dataset is used to test the neural networks based
controller system.

3. NEURAL NETWORK BASED DIRECT
INVERSE CONTROL SYSTEM

A. Control Strategy Design

The quadcopter is an under-actuated system, because
there are six state variables (X, Y, Z, ¢, 6, y) of the
quadcopter states should be controlled by only four input
control signals, i.e., U1, Uz, Us, Ua, respectively. As can
be clearly seen from (1) and (3), the four input signal
controls produced four outputs with only U; that contain
the value for controlling the position X, y, z, with Uy, Us,
U, produced the attitude and orientation of the quadcopter.
Therefore, control strategy for the under-actuated system

of the quadcopter is done by dividing the control system
into two subsystems, as seen in Fig. 3. The inner loop
control subsystem is then used for controlling the attitude
movement, i.e., the roll, the pitch and the yaw, as the main
part of the quadcopter control system. While the outer
loop control subsystem is used for the controlling the
lateral movement of the quadcopter position®°1°,
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(a) Steady hovering data set as the test dataset.
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(b) Steady hovering data set as the training dataset.



Adv. Sci. Lett. X, XXX-XXX, 2015

Roll Motor1
20 1800
2]
2 o e = o
© § 1400
o
20 1200
0 100 200 300 400 0 100 200 300 400
Pitch Motor2
20 1800
12
2 4 £ 1600
S
©
S 1400
o
20 1200
0 100 200 300 400 0 100 200 300 400
Yaw Motor3
20 1800
2]
o E 1600
$ 0 s r‘WWW\M'V'V Wi
B 1400
o
20 1200
0 100 200 300 400 0 100 200 300 400
Altitude Motor4
20 1800
1)
£ 1600
£ 10 s rlhﬂihﬁbwflAT‘wwHJTHAﬂvlwy\
2 1400
o
0 1200
0 100 200 300 400 0 100 200 300 400
t (x 200ms) t (x 200ms)

(c) Hovering state data set with variation of rolling and
pitching as the training dataset.
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(d) Maneuver data set around the steady hovering as the
training dataset.

Fig. 2. The data set
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Fig. 3. Full control of quadcopter
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B. DIC Strategy Design

Direct Inverse Control (DIC) is a simple strategy to
implement and control nonlinear dynamics''. The basic
idea of Direct Inverse Control (DIC) scheme is to train a
neural network as the inverse of the nonlinear system of
the plant in order to nullify its dynamics characteristics.
The neural networks based inverse system is then utilized
as the controller of the system in a cascade structure as
can be seen in Fig. 4.

* :
UG NN U(t) |Quadcopter Yo
~ hal L

Inverse Model System

of Quadcopter

Fig. 4. Direct Inverse Control

DIC method is divided into two sections, namely (1)
the system identification, and (2) an inverse model. Both
of these two subsystems are trained using a back
propagation learning method with an appropriate number
of layers and neurons. The learning mechanism of the
back propagation method is accomplished by using the
system’s real data to find the appropriate weights of the
learning data set, and calculating the output neurons. The
neural network’s outputs are compared with the real target
output of the training data, and the errors are used to
update the neuron weights. This mechanism is done
iteratively until a minimum error value is obtained.

The utilization of the DIC scheme in our quadcopter
is conducted by firstly gathering the input-output data of
the plant that comprise all of the operating range of the
system. As can be seen from (1) and (2), the input-output
dataset for our quadcopter are the input control signal u(?)
as the speed of rotation of each rotor, and the quadcopter
flight dynamics (X, Y, Z, ¢, 8, ) as an output signal y(z).

Training the neural networks for the system identification
is conducted as shown in Figure 5a, while the
architectural configuration for training the neural
networks based inverse model is shown in Figure 5b. The
neural networks based of the system identification
consists of an input layer with 28 input neurons, a hidden
layer with 30 neurons and an output layer with 4 output
neurons. As same as neural networks based of the system
identification, an architectural configuration of neural
networks based inverse model has 28 input neurons, 30
hidden neurons and 4 output neurons.

Uqr) b0

Quadcopter
Plant

error,

—— ]
(2) Identification system

(b) Inverse model
Fig. 5. Training configuration
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4 EXPERIMENTAL RESULT

Training stage of the neural network based system
identification has been converged at 20000 epochs with a
Mean Sum Square Error (MSSE) of 2.9706. Meanwhile,
the neural network training for the inverse model
converged at 6000 epochs with MSSE 2888.723. The
weights obtained from the training are then used as the
neural-network based DIC system (Fig. 4), and tested by
using the testing dataset.

Figure 6 shows the comparison of the altitude
condition of the quadcopter between the real test dataset
and the simulation result, while Fig. 7 shows the attitude
condition of the real dataset and the simulation result
using a neural networks based inverse model, both using
the NN based DIC scheme.
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Fig. 6. Response result of altitude
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Fig. 7 Response result of attitude

As can be seen clearly in the Fig. 6, the simulation
result shows that the quadcopter movement can followed
the desired trajectory and maintained the hovering state
with an altitude Mean Square Error (MSE) of 0.02842
meter. As also depicted in Fig 7, the MSSE of the attitude
condition of the quadcopter along its course is 1.2486
degree. The low MSE and MSSE results show that the
NN based DIC system has a good performance despite
the existence of low errors of the altitude, and on the roll
and the pitch parameters.

5 CONCLUSIONS

In this paper, we have proposed the utilization of
backpropagation control system using Direct Inverse
Control scheme for attitude and altitude control of a UAV
quadcopter on hovering state. Real flight data
experiments have proven that the proposed method can
control both the attitude and altitude of the UAV with
reasonable errors of 1.2486 degree and 0.02842 m,
respectively. It is therefore shown that this method can
also perform well in controlling the altitude of a UAV.
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