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Chapter 17

Smart manufacturing workplace safety with
virtual training, AR and haptic technologies

Bhakti Yudho Suprapto1, Ahmad Farhan Aristz1, Eric Sean
Kesuma1 and Suci Dwijayanti1

Accidents due to undetected fires have caused huge losses in various contexts in the
world, such as in offices, manufacturing workplaces, residential areas, even in forest
areas. The evacuation process in the firefighting system requires an effective and fast
response. The source of fire must be found quickly to prevent it from spreading. Image
processing based on an object detection system, it is believed, can circumvent this
problem. The method for detecting objects is performed by the You Only Look Once
(YOLO) algorithm in real-time. The most suitable YOLO model for the system is the
Tiny YOLO VOC model which was built with the Darkflow framework. Besides
detecting the fires, the robot can be used to ease the search process and firefighting
efforts. However, it needs planning to fit the robots with the system optimized to do the
best in the minimum time possible. In robotics, finding the fastest path can be solved
by embedding the A* algorithm in the robot. A* algorithm is one of the artificial
intelligence methods for finding the fastest path. Not many studies have applied this
algorithm to the wheel robots to find the shortest path. Therefore, this A* method will
be used for finding the fastest path to find the fire with accuracy by finding the best
distance and route with the coordinate system. In this study, the wheel robots had three
missions, finding the fire, extinguishing the fire, and returning to the starting points.
The system accuracy for those missions was 100%, 83.33%, and 50%, respectively.

17.1 Introduction

Many accidents can occur from a human being’s carelessness. Fire is one of the
accidents that often occur in the factory. Thus, the manufacturing process needs to
be smart to handle various types of accidents, including fire. The need for a fire
detection system to be incorporated as a part of the process is growing rapidly [1].
There is a need for not only the evacuation process to be fast and effective, but also
the search process to find the source of the fire. The firefighting system is efficient

1Department of Electrical Engineering, Universitas Sriwijaya, Palembang, Indonesia



provided a robot is there to find the fire and extinguish it. In addition, a detection
system is also important to find the source of the fire. Automatic systems of fire
detection can utilize and detect temperature, smoke, and fire. Each sensor operates
using different principles and gives different responses.

A robot can be utilized to search and detect fire by finding the best route. The
procedure of finding the best route can be developed using artificial intelligence.
The shortest path algorithm which is embedded in the robot may help the robot to
complete its mission. However, the process of firefighting becomes a problem,
especially for a wheeled robot [2]. In the previous research, some methods have
been developed to find the shortest path, such as by Dijkstra [3], by Bellman-Ford
[4], and research on the D* algorithm [5], and A* algorithm [6]. D* and A* algo-
rithms have been implemented by Takayuki Goto and Takeshi in a robot and they
showed that A* algorithm had better performances than D* algorithm [7].
Nevertheless, the A* algorithm has not been applied to the wheeled robot to
extinguish the fire. Thus, this research utilized A* algorithm to find the best and
shortest path to find the source of the fire by a robot. To do so, the robot needs to
detect the fire. This can be implemented by using the image processing approach.
The image processing method is applied to object detection by finding the char-
acteristics of fire such as smoke; while fire detection is accomplished through
images or real-time video. Various methods have been developed for object
detection using image processing, such as R-CNN using PASCAL VOC [8], fast R-
CNN for PASCAL VOC dataset and MS COCO, single shot multibox detector
using PASCAL VOC, imageNet, and MS COCO [9], and YOLO using PASCAL
VOC and ImageNet [10].

Some studies have shown that YOLO gives better performance in the frames
per second, which is 91 fps faster than other methods often below 59 fps [11]. Even,
PASCAL VOC 2007 Fast YOLO has the highest speed up to 155 fps which is twice
the accuracy for real-time detector [10].

Thus, this study proposes an integrated system to detect and extinguish the fire.
This system combines image processing and the shortest path algorithm. Here,
YOLO is implemented to detect fire and some wheeled robots are used to extin-
guish the fire in a labyrinth which is assumed a factory. A* algorithm is then used
to determine the shortest path passed by the robots based on the information given
by the YOLO. This chapter is organized as follows: Section 17.2 describes the
robot design and Section 17.3 explains the fire detection using YOLO, followed by
the shortest path using A* algorithm in Section 17.4. Results and discussion are
presented in Section 17.5. Finally, this chapter is summarized in Section 17.6.

17.2 Robot design

The design of the robot was divided into two parts, namely the mechanical part and
the wiring. Acrylic was chosen as the material for the upper and lower part of
robots. The sensors, components, and motors were put in place based on the design.
The designed robot can be seen in Figure 17.1.
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As shown in Figure 17.1, Robot_1 is yellow and Robot_2 is red. Both robots
have the same sensors despite having different designs. The design was aimed to be
distinguished by the name of the robot and by the sending of position data of the
robot easily.

The hardware needed to build this robot is diverse such as a microcontroller,
wireless module nRF24L01, flame sensor, driver motor DCMP H-bridge MOSFET,
ultrasonic sensor, compass magnetometer 3 axis HMC5883L, relay, and LCD
OLED. Each component has a different function.

Arduino Uno is the microcontroller used for radio communication with the
robot. The robot receives the data sent by YOLO through wireless module
nRF24L01. A flame sensor finds the location of fire or flame, driver motor DCMP
H-bridge MOSFET drives the DC motor, and PING sensor is an ultrasonic sensor to
detect the distance of an object in front of the sensor which beams an ultrasonic
wave with a frequency of 40 kHz. The sensor detects the value of reflection
received by it.

17.3 Fire detection using YOLO

A flowchart of the designed system for fire detection using YOLO can be seen in
Figure 17.2. The data used for training were fire images and firefighter robots’
images. In total, there were 1000 data where the fire and robot were placed ran-
domly in the labyrinth. The data were taken above the path of the labyrinth using
the external camera Logitech C525. Later, the image data were bounded box as a
dataset for training YOLO.

The YOLO frames object detection as a regression problem to spatially sepa-
rated bounding boxes and associated class probabilities. It trains on full images and
directly optimizes detection performances [12]. YOLO detects the object by

Figure 17.1 Firefighter robot
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Figure 17.2 Flowchart of the designed system for fire detection using YOLO
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dividing the image into some regions and predicts every bounding box and prob-
abilities for each region. Those bounding boxes are then compared to every pos-
sibility to be predicted. YOLO has benefits compared to other classifiers since it
can see the entire collection of images during training and test time. Thus, YOLO
outperforms R-CNN by making less than half the number of background errors.
The architecture of YOLO can be seen in Figure 17.3.

Some structures of YOLO were used in this study since the training process
aims to get a model with appropriate architecture. Some models were compared to
obtain the model with the smallest loss and shortest computation time. The most
optimal model was then used to test the system.

Testing was performed to evaluate the designed system. In this study, two
evaluation processes were done, including the detection test to find the robot and
fire, and the sending data from the system to the firefighter robot.

17.4 Shortest path using A* algorithm

17.4.1 A* algorithm
A* algorithm is a computation algorithm to find the path by giving plots that can be
passed from a point to several destinations. A map with several points may com-
plicate the process to find the best path. Hence, the shortest path algorithm is
needed to be embedded in a robot so it can find the best route to its destination. A*
algorithm introduces heuristic in the algorithm. Hence, each step must be planned
well to get the optimal decision.

A* algorithm works based on the shortest distance from the starting point to
the destination point. It uses function f (n) which approximates the distance from
one point to another point. The distance traveled from one point to another point is
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Figure 17.3 The architecture of YOLO [12]
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calculated as follows:

f nð Þ ¼ g nð Þ þ h nð Þ (1.1)

where f(n) is the total estimated distance from the starting to the destination point,
g(n) is the distance value to get the destination point, and h(n) is the heuristic value
that estimates value from the starting to the destination. Here, h(n) is obtained by
using a Euclidean distance heuristic which is formulated as follows

h nð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xdestination � xstartð Þ2 þ ydestination � ystartð Þ2

q
(1.2)

17.4.2 Map and node design
In this study, the map of the labyrinth and nodes were designed to embed the A*
algorithm in the robots. Each node has a code in letter form to get the position. The
point was determined to ease the finding path algorithm. Coordinates serve to label
positions were placed in the map so the A* algorithm can be embedded in the
robots to navigate from the start point to the destination. Maps and nodes can be
seen in Figure 17.4.

As shown in Figure 17.4, location points that represent the doors are A, C, F,
G, and I. Besides, this map has four rooms, where room 1 has two doors C and I,
room 2 with door A, room 3 has door F, and the last is room 4 with a door of G.
Meanwhile, the paths are shown in the points of B, D, E, H, and J. These paths are
routes which are passed by the robots to the rooms with fire inside. Coordinates in
the map consist of 14 points on the x-axis and the y-axis. The coordinate points can
be found using the Euclidian distance heuristic approach.
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Figure 17.4 Map and obstacle nodes for firefighter robots
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17.4.3 How the robots work
Figure 17.5 shows how the robot works. In the first stage, the system is initialized
to find and use variable values given by the sensors and other components. Then,
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Figure 17.5 How the robot works
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the robot receives the data which consists of its start position and position of flames
using radio wireless 24L01. After receiving the codes, such as room and flames,
both robots walk to the fire point with the shortest path given by the A* algorithm.
The robot extinguishes the fire after finding the flames. Those two robots divide
their work according to the rooms with fire using the shortest path given by the A*
algorithm if the fire occurs not only in one room but also in other rooms. Finally,
the robots return to their position once they have extinguished the fire.

17.5 Results and discussions

The workplace safety from the fire is an integrated process of object detection using
YOLO and the shortest path calculation using the A* algorithm. Thus, both systems
are examined in the experiment.

17.5.1 Position of robots and fire
Robots and fire were placed in the labyrinth as shown in Figure 17.6. The labyrinth
is assumed as the real condition of a workplace. Each robot was placed in a dif-
ferent room. Then, three flames were used and placed in the different rooms. Some
samples of robots’ position and flames can be seen in Figure 17.7.

17.5.2 Collecting data for YOLO
The data for training YOLO was obtained by Logitech C525 camera which was
placed above 3 m from the floor. The data were saved in the .PNG format with the
file name 0.PNG to 1023.PNG sequentially. The data obtained were the combina-
tion taken of several possibilities of robots’ position as well as flames’ position in

Figure 17.6 Room position in labyrinth
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the labyrinth. The number of robots and that of rooms is two and four, respectively.
Meanwhile, the number of flames for training data may have 1, 2, or 3 flames.

The total data for training was 1,024 images with the labeled object of 3,921.
The objects consist of 1,024 objects of Robot_1, 1,024 objects of Robot_2, and
1,873 objects of fire. The objects were labeled with a labeling program as shown in
Figure 17.8.

The results of annotations consist of three classes, namely Robot_1, Robot_2,
and Fire which were saved in XML file format.

17.5.3 Training YOLO
The training was performed using the YOLO algorithm utilizing Darkflow repo-
sitory. Here, CUDA 9.0, Cuddn 7.0.5, OpenCV 3.4.6, Anaconda3 with Python 3.6,
and TensorFlow 1.5 were used in the training process.

(a) (b) (c)

Figure 17.7 Some samples of robots’ position (a) 2 robots and 1 fire (b) 2 robots
and 2 fires, and (c) 2 robots and 3 fires

Figure 17.8 Labeling training data
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Two models were used in the training process, namely Tiny YOLOv2 and Tiny
YOLO VOC. The number of epochs was set to 20, 50, and 100 epochs.

17.5.3.1 Tiny YOLOv2
The structure of Tiny YOLOv2 is shown in Table 17.1. Tiny YOLOv2 was a
modified set of YOLOv2.

The training result using Tiny YOLOv2, an epoch of 20, and iteration of 1280
is shown in Figure 17.9.

As shown in Figure 17.9, the training results have large loss values.
Meanwhile, a good model must have a loss value that approaches zero. Thus, the
number of epochs was improved to 50 as shown in Figure 17.10.

Table 17.1 Structure of Tiny YOLOv2

Layer description Output size

Input (416, 416, 3)
conv 3x3p1_1 þ bnorm leaky (416, 416, 16)
maxp 2x2p0_2 (208, 208, 16)
conv 3x3p1_1 þ bnorm leaky (208, 208, 32)
maxp 2x2p0_2 (104, 104, 32)
conv 3x3p1_1 þ bnorm leaky (104, 104, 64)
maxp 2x2p0_2 (52, 52, 64)
conv 3x3p1_1 þ bnorm leaky (52, 52, 128)
maxp 2x2p0_2 (26, 26, 128)
conv 3x3p1_1 þ bnorm leaky (26, 26, 256)
maxp 2x2p0_2 (13, 13, 256)
conv 3x3p1_1 þ bnorm leaky (13, 13, 512)
maxp 2x2p0_2 (13, 13, 512)
conv 3x3p1_1 þ bnorm leaky (13, 13, 1024)
conv 3x3p1_1 þ bnorm leaky (13, 13, 1024)
conv 1x1p0_1 linear (13, 13, 40)
max_batches 120,000
Step �1,100, 80,000, 100,000
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Figure 17.10 shows an improvement of loss values with the final value of the
loss being 34.84 in the 3,200th iteration. This value is lower than the 20 epochs.
However, the model was not able to detect the robot as shown in Figure 17.11.
Thus, the number of epochs is increased to 100 epochs.

The training result using 100 epochs can be seen in Figure 17.12. As shown in
the figure, the performance of the model is much better than the previous two
models. However, the model is not able to detect the fires and robots as shown in
Figure 17.12.

These results indicate that the model is not able to detect the object. Given
confidence has been decreased to 1%, the system was still not able to detect the fire
or robot as shown in Figure 17.13. Thus, another structure of YOLO has to be
implemented since the Tiny YOLOv2 is not able to detect the object well.
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Figure 17.11 Some samples of testing results using Tiny YOLOv2 50
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17.5.3.2 Tiny YOLO VOC
Tiny YOLO VOC is a modified model of YOLOv2 and the structure of Tiny
YOLO VOC can be seen in Table 17.2.

Here, three epochs were used, including 20, 50, and 100 epochs. The results of
the training process using those epochs can be seen in Figures 17.14–17.16,
respectively. As shown in Figure 17.14, the training result is much better than Tiny
YOLOv2. The final loss value is 1.93. To validate this model, the testing was
performed in 15 images as shown in Table 17.3.

As shown in Table 17.3, the class of Robot_1 has average confidence of
86.75%, Robot_2 has 76.28%, and Fire has 84.4%. These results indicate the Tiny
YOLO VOC can be used to detect the object of fire and robots. However, the
performance may improve by increasing the number of epochs. Figure 17.15
shows the results using 50 epochs. As shown in the figure, the loss value has
decreased to 0.23 which indicates this model is good enough to be used in the
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Figure 17.13 Some samples of testing results using Tiny YOLOv2 50
epochs model

386 Human–machine collaboration and interaction for smart manufacturing



Table 17.2 Structure of Tiny YOLO VOC

Layer description Output size

Input (416, 416, 3)
conv 3x3p1_1 þ bnorm leaky (416, 416, 16)
maxp 2x2p0_2 (208, 208, 16)
conv 3x3p1_1 þ bnorm leaky (208, 208, 32)
maxp 2x2p0_2 (104, 104, 32)
conv 3x3p1_1 þ bnorm leaky (104, 104, 64)
maxp 2x2p0_2 (52, 52, 64)
conv 3x3p1_1 þ bnorm leaky (52, 52, 128)
maxp 2x2p0_2 (26, 26, 128)
conv 3x3p1_1 þ bnorm leaky (26, 26, 256)
maxp 2x2p0_2 (13, 13, 256)
conv 3x3p1_1 þ bnorm leaky (13, 13, 512)
maxp 2x2p0_2 (13, 13, 512)
conv 3x3p1_1 þ bnorm leaky (13, 13, 1,024)
conv 3x3p1_1 þ bnorm leaky (13, 13, 1,024)
conv 1x1p0_1 linear (13, 13, 40)
max_batches 40,100
Step 1,100, 20,000, 30,000
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Figure 17.14 Training graph using Tiny YOLO VOC with 20 epochs
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Figure 17.15 Training graph using Tiny YOLO VOC with 50 epochs
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testing. Thus, the test was done to see the performance of the model as given in
Table 17.4.

As shown in Table 17.4, the system was able to detect the robots and fires. The
average confidence for class of Robot_1, Robot_2, and fire are 87.06%, 87%, and
91%, respectively. The system did not have any error in detecting the robots and
fires with an accuracy of 100%. To see whether this is the best model for detecting
fires and robots, the number of epochs was increased to 100 epochs. The
figure below shows the results of training using 100 epochs. The final loss value is
0.12 which approached zeros. Thus, this model has the lowest loss value. To test
this model, 15 testing data were used as shown in Table 17.5.
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Figure 17.16 Training graph using Tiny YOLO VOC with 100 epochs

Table 17.3 Testing result using Tiny YOLO VOC 20 Epoch, threshold ¼ 20%

Image Robot_1 Robot_2 Fire_1 Fire_2 Fire_3

Loc. (%) Loc. (%) Loc. (%) Loc. (%) Loc. (%)

1.png 1 99.1% 2 43.8% 4 96.1% 3 63.1% 3 58.3%
2.png 1 96.1% 2 76.4% 2 60.4% 3 99.5% 4 43.7%
3.png 1 79.5% 4 79.1% – – – – – –
4.png 1 97.3% 4 67.7% 4 27% 4 45.6% 3 97.7%
5.png 1 97.2% 4 81.9% 1 93.8% 1 26.8% 4 56.4%
6.png 3 94% 2 88.4% 2 98.8% – – – –
7.png 4 99.2% 3 91.9% 2 98.6% – – – –
8.png 4 89.8% 2 41.7% 2 86.1% 4 97.3% – –
9.png 4 96.7% 2 68.3% 2 92.8% 3 99.5% – –

10.png 4 67.6% 2 92.8% 1 99.4% 4 82,5% – –
11.png 4 96.9% 3 84.2% 2 99.% 3 99.3% – –
12.png 3 61.4% 4 73.9% 1 97.9% 4 97.7% 3 98.8%
13.png 4 49.4% 1 86.4% 1 98.5% 4 88.9% 3 98.8%
14.png 3 91.8% 2 93.1% 1 87.9% 2 90.5% 4 99.3%
15.png 4 85.2% 1 74.6% 1 95.7% 2 97.7% 3 98.6%
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As shown in Table 17.5, the model of Tiny YOLO VOC with 100 epochs has
shown instability compared to the model with 50 epochs. For example, for image 1,
the model with 100 epochs has a confidence of 22.7% which is lower than 50
epochs. Besides that, a few errors occurred in detecting the fires as in images 2 and

Table 17.4 Testing result using Tiny YOLO VOC 50 Epoch, threshold ¼ 20%

Image Robot_1 Robot_2 Fire_1 Fire_2 Fire_3

Loc. (%) Loc. (%) Loc. (%) Loc. (%) Loc. (%)

1.png 1 99.4% 2 53% 4 98.1% 3 93.0% – –
2.png 1 99.2% 2 92.1% 2 78.3% 3 99.5% 4 28%
3.png 1 89.9% 4 93.4% – – – – – –
4.png 1 98.9% 4 92.5% 4 70.7% 3 97.2% – –
5.png 1 95.8% 4 98.3% 1 95.1% 4 64.3% – –
6.png 3 98.1% 2 95.3% 2 99.4% – – – –
7.png 4 98.8% 3 99.2% 2 99.3% – – – –
8.png 4 89.5% 2 87.7% 2 85.8% 4 99.3%
9.png 4 97.4% 2 56% 2 93.7% 3 99.4%
10.png 4 61.2% 2 99.4% 1 99.7% 4 80.3%
11.png 4 99.4% 3 96% 2 99.8% 3 99.7%
12.png 3 65.85% 4 64% 1 98.6% 4 99.5% 3 99.8%
13.png 4 76.8% 1 73.1% 1 99.2% 4 98.8% 3 99.3%
14.png 3 81.9% 2 98.7% 1 98.7% 2 98.2% 4 99.5%
15.png 4 53.8% 1 99% 1 97.7% 2 98.9% 3 99.1%

Table 17.5 Testing result using Tiny YOLO VOC 100 Epoch, threshold ¼ 20%

Image Robot_1 Robot_2 Fire_1 Fire_2 Fire_3

Loc. (%) Loc. (%) Loc. (%) Loc. (%) Loc. (%)

1.png 1 99.9% 2 22.7% 4 97.8% 3 87.3% – –
2.png 1 99.9% 2 92.9% 2 66.8% 3 99.8% fail fail
3.png 1 73.2% 4 95.7% – – – – – –
4.png 1 99.9% 4 96.4% 4 33.3% 3 96.9% – –
5.png 1 99.3% 4 99.8% 1 99.8% 4 30.6% – –
6.png 3 99.8% 2 98.7% 2 99.6% – – – –
7.png 4 99.9% 3 99.8% 2 99.8% – – – –
8.png 4 93.2% 2 84.6% 2 78.8% 4 99.8% – –
9.png 4 99.6% 2 17.6% 2 89.1% 3 99.8% – –
10.png 4 75.3% 2 99.8% 1 99.9% 4 42.8%
11.png 4 99.9% 3 99.1% 2 99.9% 3 99.9%
12.png 3 13% 4 29% 1 99.2% 4 99.7% 3 99.9%
13.png 4 60.2% 1 73.1% 1 99.3% 4 99.2% 3 99.7%
14.png 3 95.3% 2 99.8% 1 99.9% 2 98.6% 4 99.7%
15.png Fail Fail 1 99.8% 1 95.7% 2 99.7% 3 99.6%
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15. Comparison of testing results using Tiny YOLO VOC with 50 epochs and 100
epochs can be seen in Figure 17.17.

As shown in Figure 17.17, the Tiny YOLO VOC with 50 epochs can detect the
fire in room 4. This result may be improved by decreasing the confidence threshold.
However, it may influence the performance of the system as a whole. Thus, this
study shows that Tiny YOLO VOC with 50 epochs is the most appropriate model to
detect fire and robots.

Based on the structure of Tiny YOLOv2 and Tiny YOLO VOC as shown in
Tables 17.14 and 17.15, the difference between them is the batch number. The Tiny
YOLOv2 has 120,000 batches, meanwhile, the Tiny YOLO VOC has 40,100 bat-
ches. Batch shows the maximal value of sample data can be processed before the
YOLO model is updated. Thus, the Tiny YOLOv2 has more cost computation than
the Tiny YOLO VOC. Hence, this study utilized the model obtained by the Tiny
YOLO VOC with 50 epochs.

17.5.4 Evaluation of the shortest path
Evaluation of the performance of A* algorithm was done manually by finding the
shortest path. The results can be seen in Table 17.6.

As shown in Table 17.6, the A* algorithm can find the shortest path from the
start point to the destination. The distance obtained by the A* algorithm is close to
the actual distance which was calculated using a ruler. The distance in the A* for
each box is 10.21341. The shortest distance was from A to C which is 85 cm.

An evaluation was also performed by taking the combination of the location of
fire and robots. The robot used the A* algorithm to find the shortest path with some
random combinations. There are some possibilities of 1 fire, 2 fires, and/or 4 fires.

17.5.4.1 Testing a robot with 1 fire
Here, the robots and fire were placed randomly. A sample of the position of robots
and a fire can be seen in Figure 17.18. Green represents the start point of the robot

(a) (b)

Figure 17.17 Testing results using Tiny YOLO VOC (a) 50 epochs and (b)
100 epochs
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and red is the door where the fire takes place. The results of using 2 robots and 1
fire as the means of obtaining the shortest path can be seen in Table 17.7. As shown
in the table, both robots tried to reach the same room since there was only one
source of the fire. The robot determined the shortest path to the fire.

Table 17.6 Evaluation of the shortest path using A* algorithm

No. View in
OLED

Input
location

Input
destination

Route Distance
with A*

Actual
distance

1 1 3 CBDF 25.30 259.7

2 2 4 ABDEG 35,30 348,8

3 3 1 FDBC 25.30 259.7

4 4 3 GEDF 30.94 325.9

5 1 4 IHG 24.61 239

(a) (c)(b)

Figure 17.18 Samples of robot evaluation with 1 fire (a) initial position of the
robot, (b) Robot_1 walks to room 4, and (c) Robot_2 walks to room 4

Smart manufacturing workplace safety 391



Table 17.7 Sample of evaluation results using 2 robots and 1 fire

No Location
Robot_1

Destination
Robot_1

Route
Robot_1

Distance 1
(A*)

Location
Robot_2

Destination
Robot_2

Route
Robot_2

Distance 2
(A*)

1. A G ABDEG 35.30 I G IHG 24.61
2. C A CA 8 G A GEDBA 35.30
3. F C FDBC 25.30 A C AC 8
4. G F GEDF 30.94 A F ABDF 25.30



17.5.4.2 Testing 2 robots with 2 fires
This test was performed using two robots and two sources of fire. The sample
position of robots and fires can be seen in Figure 17.19. Robots and fires were
placed in random locations. A sample of the position of robots and a fire can be
seen in Figure 17.19.

The results for all the possible positions of robots and fires can be seen in
Table 17.8. As shown in the table, two robots divided their duty to tend to the
fire. The robot with the shortest position to the fire based on the A* algorithm
looked for the fire, and the other robot found the other fire. The distance
obtained by the A* algorithm became the information used by the robot to
determine their location to the fire.

17.5.4.3 Testing 2 robots with 3 fires
An evaluation was also performed with 3 fires and the two robots placed randomly.
The results can be seen in Table 17.8. As shown in the table, the robot with the
shortest distance to the fire extinguished the fire. Then, both robots head to the farther
fire. The distance calculated by the A* algorithm was used by robots to determine the
shortest path to the fire so both robots can extinguish the fire efficiently. Besides, the
A* algorithm was used to compare the distance to the fire between the robots.

17.5.5 Receiving data
Receiving data is performed by module NRF24L0, the data was received in the
format data type of unsigned int [robot1, robot2, fire1, fire2, fire3]. As an
example, if robot1 is in room 1, robot2 is in room 2, and the two fires are in
rooms 3 and 4, the system may receive the data as a code of [12340]. The last
digit is “0” since there is no fire in room 3. The result of receiving data can be
seen in Table 17.9.

(b) (c)(a)

Figure 17.19 Samples of robot evaluation with 2 fires: (a) initial position of the
robot, (b) Robot_1 walks to room 2, and (c) Robot_2 walks to room 4
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Table 17.8 Sample of evaluation results using 2 robots and 2 fires

No Location
Robot_1

Destination
Robot_1

Route
Robot_1

Distance 1
(A*)

Location
Robot_2

Destination
Robot_2

Route
Robot_2

Distance 2
(A*)

1. C F CBDF 25.30 A A A 0
2. F F F 0 G I GHI 24.61
3. G I GHI 24.61 A F ABDF 25.30
4. G F GEDF 30.94 C A CA 8



As shown in Table 17.9, the module radio NRF24L01 succeeded to send
and receive the data since the sent code is the same as the received code.
Received code is processed as the location of robot position and fire position so
the robot knows its position and the location of the fire. After sending the data,
the robot calculates the distance using the A* algorithm and walks toward the
fire’s location.

17.5.6 Evaluation of the entire system
The evaluation of the system as the complete system of safety using the com-
bination of the YOLO algorithm and the A* algorithm can be seen in
Table 17.10. The robots tried to find the location of the fire and the fire was
extinguished. This testing was done in ten experiments, where the fire and
robots were placed randomly in the labyrinth. The number of fires for this
testing was 1, 2, and 3 fires. Testing aims to see the performance of the YOLO
model and A* algorithm.

As shown in Table 17.10, YOLO can detect the location of the fire and the
robot’s as well. The robot succeeds in finding the location of the fire. The
whole system can send the code of robots’ position and the location of fires
using the A* algorithm. The result of detection and localization can be seen in
Table 17.11.

In the evaluation of the entire system, the robots succeeded in finishing their
mission to look for the fire. However, some experiments showed the robot failed to
extinguish the fire because the fan installed on the robot was not strong enough to
extinguish the fire. The percentage for the robot to detect and find the fire using the
YOLO algorithm and shortest path of the A* algorithm is 100%. Meanwhile, the
success of extinguishing the fire was 83.33%.

Analysis of the confidence value of YOLO to detect objects was also per-
formed. This data can be seen in Table 17.13. It shows that the image processing
approach can be utilized to detect fire. The average confidence value for Robot_1,

Table 17.9 Sample of evaluation results using 2 robots and 3 fires

No. Route Robot_1 Distance 1 (A*) Route Robot_2 Distance 2 (A*)

1 G 0 AC 8
GEDF 30.94 CBDF 25.30

2 C 0 F 0
CHG 24.61 FDEG 30.94

3 GEDF 30.94 C 0
FDBA 25.30 CA 8

4 A 0 G 0
ABDF 25.30 GEDF 30.94

5 FDEG 30.94 A 0
GHI 24.61 AC 8
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Robot_2, and Fire are 84%, 92%, and 88%, respectively, using the model given by
Tiny YOLO VOC.

The results indicate that the combination of YOLO – to detect the fire and
robot location – and the A* algorithm – to find the shortest path based on the
location given by YOLO – is good enough to be implemented in various contexts,

Table 17.10 Evaluation of receiving data

Experiment
no,

Detection image
by YOLO

Data location sent Data location received Success

1
[12430]

[12430]

�

2
[12243]

[12243]

�

3
[14430]

[14430]

�

4
[14140]

[14140]

�

5 [43200]
[43200]

�

6
[42240]

[42240]

�

7
[42230]

[42230]
�

8
[42140] [42140]

�

9
[43230]

[43230]
�

10
[34143] [34143]

�
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Table 17.11 Evaluation of the entire system

Experiment
no.

Detected images by
Tiny YOLO VOC

Data
sent

Remarks

1 21,400 Robot finished the missionRobot_1 failed
to return to the start position

2 32,100 Robot finished the missionRobot_2 failed
to return to the start position

3 12,230 Robot finished the mission

4 41,320 Robot_1 finished the missionRobot_2
found the fire

5 13,430 Robot finished the mission

6 23,140 Robot finished the mission

7 13,123 Robot finished the mission to fire_2Fire_3
was found

8 13,200 Robot finished the mission

9 21,400 Robot finished the missionRobot_2 failed
to return to the start position

10 13,123 Robot finished the mission
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including manufacturing. The proposed method is effective in extinguishing the
fire which may take place in the manufacturing with various rooms.

17.6 Conclusions

Image processing can be used to detect fire using a deep learning approach, namely
the YOLO algorithm. Tiny YOLO VOC shows better performance than Tiny
YOLOv2 to detect the object with an accuracy of 100%. The A* algorithm can be
implemented in a multi-robot scenario to determine and compare the distance from
the start point to the destination (fire location) by calculating the shortest distance.
The system to detect and extinguish the fire can find the shortest path to the fire
with a success rate of 100%. A combination of YOLO and A* algorithm can be
implemented in real-time conditions, such as manufacturing workplace.

Table 17.12 Evaluation of the entire system in real-time

Experiment no. Robot_1 Robot_2 Fire

Location Remark Location Remark Location Remark

1 2 True 1 True 4 True
2 3 True 2 True 1 True
3 1 True 2 True 2,3 True
4 4 True 1 True 3,2 True
5 1 True 3 True 4,3 True
6 2 True 3 True 1,4 True
7 1 True 3 True 1,2,3 True
8 1 True 3 True 2 True
9 2 True 1 True 4 True
10 1 True 3 True 1,2,3 True

Percentage of success 100% – 100% – 100%

Table 17.13 Confidence value of system evaluation

Experiment no. Confidence value
Robot_1

Confidence value
Robot_2

Confidence
value Fire

1 96% 99% 93%
2 99% 90% 99%
3 91% 93% 95%, 99%
4 100% 100% 98%, 99%
5 90% 91% 99%, 98%
6 90% 93% 94%, 85%
7 85% 90% 85%, 90%, 90%
8 36% 88% 27%
9 85% 90% 79%
10 67% 90% 85%, 86%, 77%
Average 84% 92% 88%
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However, further study is still needed to improve the capability of the robot to
extinguish the fire and return to the start position since the current system has an
83.33% success rate to extinguish the fire and 50% to return to the start point.
Besides, various data for training based on the environment of the robot’s acting
out to extinguish the fire can be improved.
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