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Land subsidence in the Bandung basin, West Java, Indonesia, is characterized based on differential
interferometric synthetic aperture radar (DInSAR) and interferometric point target analysis (IPTA). We
generated interferograms from 21 ascending SAR images over the period 1 January 2007 to 3 March 2011.
The estimated subsidence history shows that subsidence continuously increased reaching a cumulative
45 cm during this period, and the linear subsidence rate reached ~12 cm/yr. This significant subsidence
occurred in the industrial and densely populated residential regions of the Bandung basin where large
amounts of groundwater are consumed. However, in several areas the subsidence patterns do not corre-
Subsidence characterization late with the distribu ticncfgmundwa ter prc}ducticnwelrls and mqpp«ed aquifer dgg radation. We con clude
DInSAR that groundwater production controls subsidence, but lithology is a counteracting factor for subsidence
IPTA in the Bandung basin. Moreover, seasonal trends of nonlinear surface deformations are highly related
with the variation of rainfall. They indicate that there is elastic expansion (rebound) of aquifer system
response to seasonal-natural recharge during rainy season.
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1. Introduction

The Bandung basin on the island of Java in West Java Province,
Indonesia, has an areaof2340 km? and elevations between 660 and
2750 m above sea level. This basin is in the central part of the Ban-
dung zone, a belt of intramontane depressions extending through
the center of West Java (Fig. 1). The population of the Bandung
metropolitan area was 6.1 million in 2003, and it is predicted to
increase to 9.7 million in 2025 (Wangsaatmaja et al., 2006). The
growth in population and industrialization, particularly the tex-
tile industry, has increased the exploitation of groundwater in the
Bandung basin (Wangsaatmaja et al., 2006 ). Converting agricultural
land to housing and industrial sites has worsened environmental
impacts (Suhari and Siebenhuer, 1993), and excessive ground-
water extraction in the Bandung basin has induced decrease in
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groundwater level and as a consequence land subsidence occurred.
Decrease in groundwater level in the Bandung basin was reported,
for example by lwaco and Waseco (1990). Abidin et al. (2008)
reported that land subsidence in the Bandung basin might be
caused by several mechanisms, such as excessive groundwater
extraction, building loads, sediment compaction, and tectonic
activity.

Studies of subsidence due to groundwater extraction have been
carried out using GPS observations in Bandung (Abidin et al.,, 2008)
as well as other sites, such as the Rafsanjan plain, [ran (Mousavi
etal, 2001), Po Valley, Italy (Bitelli et al., 2000}, and Tianjin, China
(Lixin et al., 2011). Although GPS surveys can provide subsidence
information with high accuracy, they are costly and time consum-
ing, and they offer sparse spatial resolution in inaccessible areas. In
this study, we have applied differential synthetic aperture radar
interferometry (DInSAR) as well as interferometric point target
analysis (IPTA) to investigate the history of land subsidence of the
Bandung basin on a synoptic basis over a 4-year period. The result-
ing subsidence maps revealed by DInSAR were then combined with
other data, such as production well and aquifer damage maps, to
characterize the subsidence from a geological point of view. Sri
Sumantyo et al. (2012) reported that the subsidence in Indonesia
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Fig. 1. Location of study area.

is related to the changes in the ground water level due to water
pumping, growth in population, industry, and urbanization of the
study area. In addition to the water level, furthermore, lithology
had been cited as controlling the northern extent of subsidence
(e.g., Sneed and Brandt, 2007). Because IPTA further provides infor-
mation of the time-varying nature of aquifer system compaction,
we investigated the factors spatially and temporally controlling
subsidence in this area.

2. Dataand methods

DInSAR is a means of remote sensing that enables changes in the
two-dimensional surface of the Earth tobe detected at millimeter to
centimeter scales (Massonnetand Feigl, 1998). With applications to
natural and artificial sources of deformation such as earthquakes,
volcanoes, and land subsidence from groundwater extraction, as
well as land uplift from steam injection at oil sand field, InSAR
allows us to better understand and analyze the underlying sources
of these changes (e.g., Kobayashi et al,, 2011; Khakim et al., 2012,
2013; Ishitsuka et al., 2012; Tsuji et al., 2009).

We used raw (level 1.0) SAR data acquired by the Phase'rray
type L-band (PALSAR) instrument on the Japanese Advanced Land
Observation Satellite (ALOS)"Daichi” forthe period from 14 January
2007 to 12 March 2011. Data modes are high-bandwidth (FBS-HH,
28 MHz) and low-bandwidth (FBD-HH and HV, 14 MHz) modes,
acquired from ascending orbits with an off-nadir angle of 34.3°.
Main advantage of the L-band ALOS over C-band ERS is deeper
penetration in vegetated areas with less temporal decorrelation
enabling to have longer time separation and longer critical baseline,
thus it results more usable interferometric pairs (Weiand Sandwell,
2010).

InSAR processing in this study is accomplished with the excep-
tion of the lookup table refinement and quadratic phase removal
approaches (Khakim et al, 2013). To eliminate the potential of
slightly differing azimuth image geometry and maintaincoherency,
all images were processed using a common Doppler centroid fre-
quency of 63.465Hz. A global master Single Look Complex (SLC)
image for 1 March 2007 was selected that was 9640 pixels wide
and 24,705 pixels long, to which all other SLC images were then
co-registered. To optimize correlations, the azimuth common band
filtering prior to generating interferograms retained only the com-
mon segment of the azimuth image spectrum (Ferrettiet al., 2007 ).
We applied a two-pass differential InSAR (DInSAR )approach to map
land subsidence (Massonnet and Feigl, 1998), using aShuttle Radar
Topography Mission digital elevation model with 3-arcsecond res-
olution to remove topographic fringes. Adaptive filtering (Li et al.,
2006a) was used to reduce the phase noises that cause pseudo
phase residues and strongly affect phase unwrapping. The min-
imum cost flow (MCF) algorithm (Costantini, 1998) was used to
minimize areas of low coherence due tolayovers and areas of shad-
owing due to rough terrain.

The mountains surrounding the Bandung basin may impose an
altitude dependence on the atmospheric path delay as a result of
changes in atmospheric water vapor and pressure above the basin
and its surroundings. We therefore generated a phase model of the
height-dependent atmospheric phase delay for each unwrapped
interferogram and then subtracted it from each interferogram (Li
et al., 2006b).

Multiple interferograms were stacked to emphasize temporally
coherent signals (including subsidence) and estimate a subsidence
rate. Stacking also reduced atmospheric artifacts and phase noise,
which are spatially but not temporally coherent. The stacking was
done as a weighted sum of individual differential phases using the
time interval of the interferogram as the weight (Sandwell and
Price, 1998). Longer time intervals yield larger cumulative displace-
ments, making the ratio of phase noise to the differential phase
small. Thus, selecting interferograms with long intervals and short
baselines yields better results in the stacking calculation.

In order to confirm the resulting subsidence rate obtained by
stacking DInSAR data, we applied IPTA (Werner et al., 2003). We
also exploited the temporal and spatial characteristics of linear and
nonlinear displacements using IPTA. Furthermore, seasonal varia-
tion of subsidence trend was extracted using nonlinear least square
method with trust-region algorithm (Conn et al., 2000). We first
subtracted the known linear displacement from total displacement
of each time series to estimate seasonal amplitudes. More details
to estimate both linear and nonlinear components of displacement
based on IPTA is described in Wegmuller et al. (2004, 2008 ). Non-
linear trends y(t) are then fit to a Fourier series model, instead of
a simple-sinusoidal model (Bell et al,, 2008), to each time series as
follows,

4
yt)=ap+ Za.—, cos(nwt) + by sin(newt) (1)

n=1

where ap is a constant shift in the model due to interferometric
noise, a, and by are the maximum seasonal amplitude for either
subsidence or uplift oscillations, t and @ are time and angular
frequency of subsidence or uplift oscillation, respectively. For the
seasonal analysis we assumed around 1-year periodicity for initial
parameters for inversion, because the ground deformation (uplift
and subsidence) is based on the annual cycles of discharge and
recharge processes. Some statistical parameters used to evaluate
the fit goodness are sum of squares due to error (SSE), R-square,
and root mean squared error (RMSE).




M.YN. Khakim et al_ / Intemational Journal of Applied Earth Observation and Geoinformation 32 (2014) 199-207 201

2007/03/01-2007/07/17

'
@
@

Latitude (deg)

107.3 107.4 107.5 1076 107.7 1078 1079 108.0

Longitude (deg)
2007/03/01-2007/12/02

Latitude (deg)

I I I I
073 107.4 107.5 107 6 1077 107.8 1079

Longitude (deg)
2007/03/01-2008/06/03

@
in

Latitude (deg)

107.3 107 .4 107.5 1076 107.7 107.8 107.9

Longitude (deg)
2007/03/01-2009/07/22

Latitude (deg)

107.3 107.4 107.5 107.6 107.7 1078 1078 108.0

Longitude (deg)
2007/03/01-2010/07/25

'
@
o

Latitude (deg)

I
107 6

Latitude (deg)

2007/03/01-2007/09/01

Latitude (deg)

|
=3

1EII7.6
Longitude (deg)
2007/03/01-2008/03/03

1
107.3 107.4 1075 107.7 107.8 107.9 108.0

-7.0 -

Latitude (deg)

107.8 107.7

Longitude (deg)
2007/03/01-2008/12/04

107.3 1074 107.5 107.8 107.9

=70

Latitude (deg)

107.5 107 6 107.7 107.8 107.9 108.0

Longitude (deg)
2007/03/01-2010/01/22

107.3 1074

Cimahi

~Rancaekek

Margaasih Majalaya

Ketapang

Latitude (deg)

Oayeuh Kolot

107.5 107.6 107.7

Longitude (deg)
2007/03/01-2011/03/12

107.3 1074 1078 1079 108.0

107.3 1074 107.5 0 107.7 1078 1079 108.0 1073 1074 107.5 107.6 1077 1078 107.9
Longitude (deg) | . Longitude (deg)
-45 Subsidence [cm] 0

Fig. 2. Sequential subsidence patterns in Bandung basin from 138 days to 1472 days after 1 March 2007

3. Results and discussion

We mapped of displacement history estimated by using two-
repeat pass DInSAR for the period 1 March 2007 to 12 March 2011
with the same baseline of 1 March 2007 (Fig. 2). Based on our analy-
sis, the coherence of generated interferograms is lower infarmland,
lake, river, vegetative areas than in urban area. The coherence is
more than 0.6 in urban area and less than 0.3 in surrounding area
consisting vegetated area. Fortunately, our target area is located in
urban area where subsidence occurred. Thus subsidence could be
accurately estimated and reasonably good quality for this study.

Subsidence features are generally oriented in the
northwest-southeast direction of the Bandung basin itself.
Subsidence began historically in several urban areas where

industries were established; in our mapping these grew and
merged over the study period to create a larger subsidence pat-
tern over the Bandung basin. Subsidence was concentrated in
urban areas such as Cimahi, Rancaekek, Dayeuh Kolot, Ketapang,
Margaasih, Majalaya (Fig. 2h). Subsidence in the city of Cimahi
reached ~45 cm during the study period obtained from the DInSAR
technique, for a subsidence rate of ~12 cm{yr. These results agree
well with subsidence obtained from IPTA technique (discussed in
Section 3.2).

3.1. Spatial variation

Because groundwater extraction has been suspected of con-
tributing to subsidence in the study area, we compared our
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subsidence maps (Fig. 3a) to the groundwater production wells
and aquifer zonation (Fig. 3b and c) (BPLPH and LAPIITE, 2011).
As expected, subsidence was generally associated with areas of
greater density of production wellsand greater declines in ground-
water level. The aquifer was classified by the percentage of its area
with groundwater declines into zones labeled “damage”, “critical”,
“prone”, and "safe” defined as more than 80%, 60-80%, 40-60%,
and less than 40%, respectively (Fig. 3c¢). For most areas in the Ban-
dung basin, the pattern of estimated subsidence rate is correlated

with both the distribution of production wells (Fig. 3b) and aquifer
zonation (Fig. 3c). Interestingly, subsidence did not occur in the
areas outlined in red in Fig. 3a, even though those areas included
damaged aquifers and dense production wells (Fig. 3b and c).

The northeastern part of Cimahi is located on an area of allu-
vium (as partofunconsolidated Cibeureum Formation ) surrounded
by consolidated rocks, volcanic products, breccia (Cikapundung
Formation) in the northeastern part whereas tuffaceous breccia,
lava, sandstone and conglomerate (basement) in the southwestern
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Fig. 4. Profiles of subsidence across Cimahi city (Fig. 3a) obtained from stacking 32 differential SAR interferograms and an individual SAR interferogram with time intervals
from 138 to 1472 days after 1 March 2007: (a) line A-A’ and (b) line B-B'. Also shown are subsidence rates along both profiles.

(Fig. 3a). The hydrological condition of Cibeureum Formation is as
the highest productivity aquifer in the Bandung basin (lwaco and
Waseco, 1991). Despite a large amount of groundwater extraction
in northeastern Cimahi, land subsidence was absent in the area
of consolidated rocks. But significant subsidence was observed in
areas of alluvium and lake deposits. The lake deposit is a part of
stratigraphical unit of Kosambi Formation (Koesoemadinata and
Hartono, 1981). It appears that subsidence in this part of the Ban-
dung basinis controlled by lithology. The same was true of several
other areas.

We constructed eight time-lapse profiles of subsidence across
Cimahi along lines A-A" and B-B’ (Fig. 3a). These profiles (Fig. 4)
indicate that subsidence patterns at all time intervals, from 138
to 1472 days, are highly consistent with each other. This pattern
shows that subsidence depends on geological conditions in the
aquifer and its surroundings. If the subsurface in the profile is lat-
erally homogeneous, the subsidence should be symmetrical across
the profiles. At the southwestern end of profile A-A’ (Fig. 4a), how-
ever, the slopes of the subsidence are relatively constant and steep,
indicating the presence of a boundary between consolidated rock
on the southwest and compressible alluvial sediment on the north-
east. The boundary may also act as a barrier to groundwater flow
that would impede the horizontal propagation of fluid pressure in
water levels.

In the northeastern part of Cimahi and Bandung cities, subsi-
dencewas expected as aresult of groundwater overpumping where
the aquifer map shows a “damage” zone (Fig. 3c). However, there
is no subsidence in that region despite the presence of production
wells in the northeastern part of profile A-A" (Fig. 4a). Based on
these observations, features in the subsidence map do not corre-
spond with features in the aquifer zoning map in several areas.
However, subsidence did not occur inhard rock areas but increased
with time in alluvial sediment deposits.

Profile B-B" (Fig. 4a) crossed the central part of the subsiding
area over substrates of hard rock, alluvium, and lake deposits. The
corresponding subsidence profiles (Fig. 4b) are also sensitive to the
presence of production wells and lithology. Subsidence occurred in
areas with no production wells (Fig. 3b) indicates that groundwater
extraction has a widespread effect in an area where aquifers are
interconnected. However, the peaks in subsidence were always in
areas hosting production wells.

Relations between subsidence rates and geologic features are
also clearly shown in Fig. 5. Profiles of subsidence rates transect
along line C-C" and D-D' (index map of Fig. 5) indicating large

subsidence occurred in areas dominated by Cibeureum Formation.
This formation is distributed southward in form of Alluvium fan
(Koesoemadinata and Hartono, 1981). Undulations in the subsi-
dence profile in Fig. 5a and b are associated with the presence of
Citarum and Cikapundung rivers as natural recharges of surface
water.

3.2. Seasonal variation

Total deformation of ground surface, which a nonlinear com-
ponent and noise are superimposed on linear component (blue
circles in Fig. 6b-g), indicates that the fluctuations of defor-
mations varied with time. Even though cyclic uplift occurred,
subsidence trends continuously and linearly increased in magni-
tude. Linear-subsidence rates estimated by using [PTA agree well
with those of DInSAR. The linear displacement rates obtained from
[PTA in several areas, such as Cimahi, Dayeuh Kolot, Rancaekek,
Margaasih, Ketapang, and Majalaya with the rates of 11.9 cm/yr,
8.6cm/yr, 6.1cmfyr, 5.6 cm/yr, 7.4cm/yr, and 74 cm/yr, respec-
tively (Fig. 6b-g) by fitting a linear regression (R2 >0.95).

To investigate characteristics of aquifer system response to sea-
sonal variations, we derived components of nonlinear deformation
by using IPTA. This analysis provides insight into the elastic defor-
mation of the aquifersystem. Using trust-region algorithmwith the
95% confidence interval, we evaluated the fit goodness of data to the
model when estimatingseasonal displacement trends (Fig. 7). From
this evaluation, the model has small random error components. It
can be indicated from SSE values closed to zero (i.e., 0.0029, 0.0046,
0.0014, 0.0017,0.0013, and 0.0022). A maximum R-square value is
up to 0.7 indicating that the fit explains 70% of total variation in the
data about the average. In addition, the standard deviation of the
random component in the dataranges from 0.01 to 0.02. It indicates
that the fits are useful for our analysis.

Estimated trends of nonlinear subsidence are highly related
with the variation of rainfall over the Bandung basin as shown
in Fig. 7. This relationship is important information for inferring
aquifer system behavior during groundwater extraction. Aquifer-
system deformation in the elastic range of stress typically is small
and reversible (Galloway and Sneed, 2013). Seasonal, reversible
land surface displacements (subsidence and uplift) of a few cm are
typical for many alluvial aquifer systems with significant fractions
of fine-grained deposits. It can be understood that when fluid is
injected pore pressure rises and possibly exceeds the original value.
In this case the effective stress decreases under the original value.
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Moreover, a dilatation phenomenon could be induced, thus con-
tributing to the magnitude of the injected formation expansion. A
more detailed description of the land uplift (rebound) mechanism
due to fluid injection was given by Teatini et al. (2011).

In the Bandung basin, seasonal uplifts, of up to 2-4cm,
(Fig. 7b-g) reflected elastic expansion of the aquifer system
response to groundwater level recovery during rainy season
(October-March). During this season any residual compaction in
the aquifer system generally is compensated by elastic expansion
in the aquifers and aquitards as natural recharging response, thus
resulting in a subsidence reduction. However, this natural recharge
rate may be less than groundwater discharge, and then a net dis-
placement becomes subsidence. Therefore, this natural recharge is

not significant to recover aquifer system from compaction. Mean-
while, in the dry season (April-September) when groundwater
level decline, aquifer systems undergo a compaction (no rebound)
as a consequence of groundwater discharge.

Based on seasonal deformation trends, the aquifer has char-
acteristics to retain an elastic expansion. It has potential to
recover some storage capability under enhanced future manage-
ment (Amelung et al,, 1999; Osmanoglu et al., 2010). During rainy
season, annual uplift occurred indicating that aquifer rebounded
due to recharging from surface water. Therefore, seasonal defor-
mation trends derived from SAR data provide information of
elastic expansion of the naturally or artificially injected forma-
tion.
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4. Conclusion

We successfully used the DInSAR and IPTA techniques to derive
rates, spatial details, and temporal variations of land subsidence
associated with groundwater extractionin the Bandung basin, West
Java, Indonesia. Areas of subsidence that initially arose in industri-
alized urban areas extended in space and increased in magnitude
over the period of our survey. The rate of subsidence was as much
as 12 cmfyr.

The magnitude and patterns of subsidence are not perfectly cor-
related with the distribution of groundwater production wells and
groundwater levels. Abrupt changes in the subsidence degree were
observed at boundaries between consolidated rock and unconsoli-
dated sediment in the basin. Subsidence did not occur in response to
groundwater withdrawal in areas of consolidated rocks. We con-
clude that subsidence in Bandung basin is controlled not only by
groundwater withdrawal, but also by lithological factors.

Although subsidence was reduced by the elastic expansion of
the aquifer system response to natural recharge during rainy sea-
son, residual compaction continued affecting further subsidence.
Natural recharge cannot recover aquifer system from compaction.
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