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Abstract—Now-a-days, speech is used also for communication 
between humans and computers, which requires conversion from 
speech to text. Nevertheless, few studies have been performed on 
speech-to-text conversion in Indonesian language, and most 
studies on speech-to-text conversion were limited to the 
conversion of speech datasets with incomplete sentences. In this 
study, speech-to-text conversion of complete sentences in 
Indonesian language is performed using the deep bidirectional 
long short-term memory (LSTM) algorithm. Spectrograms and 
Mel frequency cepstral coefficients (MFCCs) were utilized as 
features of a total of 5000 speech data spoken by ten subjects 
(five males and five females). The results showed that the deep 
bidirectional LSTM algorithm successfully converted speech to 
text in Indonesian. The accuracy achieved by the MFCC features 
was higher than that achieved with the spectrograms; the MFCC 
obtained the best accuracy with a word error rate value of 
0.2745% while the spectrograms were 2.0784%. Thus, MFCCs 
are more suitable than spectrograms as feature for speech-to-text 
conversion in Indonesian. The results of this study will help in the 
implementation of communication tools in Indonesian and other 
languages. 
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I. INTRODUCTION 
Speech is a longitudinal wave that propagated through a 

medium, which can be solid, liquid, or gaseous [1]. Humans 
utilize speech as a primary component of communication to 
exchange information. Today, humans communicate also with 
computers; generally, this communication requires the 
conversion of speech into text [2]. This process involves 
various stages of conversion and outputs data consisting of 
numbers that can be processed by a computer into text [3]. 
Speech-to-text conversion can be implemented in various 
applications, such as communication tools for deaf people [2], 
smart homes [4], and translators [5]. 

Some studies have investigated speech-to-text conversion 
in various languages. Ahmed et al. utilized a hidden Markov 
model (HMM) for English and Arabic speech recognition [6]. 
Hotta [7] and Othman [8] performed speech-to-text 
conversion using neural networks in Japanese and Jawi, 
respectively. Kumar et al [9] used a recurrent neural network 
(RNN) for speech-to-text conversion in Hindi, and Laksono et 
al. [10] used connectionist temporal classification (CTC), 
which is usually applied on top of an RNN, for speech-to-text 

conversion in Indonesian and Javanese. Abidin et al. presented 
an approach to obtain Indonesian voice-to-text data set using 
Time Delay Neural Network Factorization (TDNNF) [11]. 

Mon and Tun [12] proposed the HMM method, which uses 
Mel frequency cepstral coefficients (MFCCs) as features. 
Because they used a large dataset of English words, the HMM 
was ineffective owing to the high probability of similarity 
between words. Zhang [13] used a combination of the deep 
neural network (DNN) and HMM model for English speech 
recognition and showed that DNN-HMM was superior to the 
traditional Gaussian mixture model (GMM)-HMM method. 
Nevertheless, it still had low accuracy. Liu et al. [14] had 
shown that the RNN together with Long Short Term Memory 
(LSTM) improved the performance of speech recognition on 
the ChiME-5 dataset. Meanwhile, Wu et al. [15] and He [16] 
utilized RNN-LSTM for Chinese dataset, and the accuracy of 
speech recognition was improved. 

Most studies on speech-to-text conversion were limited to 
the conversion of words or incomplete sentences from a 
dataset, and very few studies considered speech-to-text 
conversion in Indonesian. Laksono et al. [10] used DNN and 
CTC with MFCCs as the features for speech-to-text 
conversion in Indonesian and Javanese with a small number of 
Indonesian and Javanese words. However, the result showed 
low accuracy for both Indonesian and Javanese; thus, they 
might not be suitable for speech-to-text conversion. 

In this study, we perform speech-to-text conversion in 
Indonesian using a deep bidirectional long short-term memory 
(LSTM) algorithm. We determine the features suitable for the 
deep bidirectional LSTM and consider complete sentences 
consisting of subject, predicate, object, and adverb spoken by 
some respondents. 

The rest of this paper is organized as follows. In Section 2, 
the research method used in this study is presented. Section 3 
reports and discusses the results. Finally, the paper is 
concluded in Section 4. 

II. MATERIALS AND METHODS 

A. Data Collection 
The speech data were obtained from ten speakers (five 

males and five females). Every speaker uttered ten sentences 
in Indonesian consisting of a subject, predicate, object, and 
adverb, as presented in Table I. Each sentence was uttered 50 
times; thus, a total of 5000 sentences were recorded. Data 
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were manually divided as follows: 70% for training, 20% for 
validation, and 10% for testing. Thus, 3500 training, 1000 
validations, and 500 testing data were obtained. The data were 
recorded in the Control and Robotics Laboratory, Universitas 
Sriwijaya. 

B. Proposed Speech-to-Text Conversion Process 
Fig. 1 shows a block diagram of the proposed speech-to-

text conversion process. The speech is recorded using a 
FIFINE K669B microphone with a sampling frequency of 16 
kHz. Speech data undergo the preprocessing stage, which 
involves normalization, silence removal, and pre-emphasis, to 
correct the speech signal by reducing noise and removing the 
silence area on the speech signal. Then, the speech features are 
extracted into spectrograms and MFCCs. The features are fed 
to the deep bidirectional LSTM to determine the probability of 
each label. In the deep bidirectional LSTM training process, 
CTC is used to determine the loss. Subsequently, the network 
performs the decoding for the process of labeling from the 
output of the deep bidirectional LSTM network and language 
model obtained from the Kompas newspaperFinally, text if 
obtained as the output. 

TABLE I. SENTENCES UTTERED BY THE SPEAKERS 

No. Sentence 
1 saya bermain bola di lapangan 
2 ayah membaca buku di ruang tamu 
3 nenek memasak sayur di dapur. 
4 kakak bermain sepeda di halaman 
5 paman menggembala sapi di kebun. 
6 bibi mengantar tas ke sekolah. 
7 dia membaca buku di rumah. 
8 adik memakai sepeda ke sekolah 
9 kakek menanam padi di sawah 
10 ibu menonton tv di kamar 

 
Fig. 1. Block Diagram of Speech-to-Text Conversion Process. 

C. Evaluation 
The word error rate (WER) is used to determine the 

percentage of success of speech-to-text conversion. It is 
determined by calculating the number of insertions, 
subtractions, and substitutions of the word used to convert 
speech into text as follows: 

𝑊𝐸𝑅 = 1
𝑧
∑𝐸𝐷�ℎ(𝑥)�             (1) 

where 𝐸𝐷(ℎ(𝑥)) is the number of insertions, subtractions, 
and substitutions of the word in the target sentence and 𝑧 
represents the total words in the reference which were actually 
said [17]. 

III. RESULTS AND DISCUSSION 

A. Preprocessing Signal 
The preprocessing stage involved normalization, silence 

removal, and pre-emphasis, which were performed using the 
Python library Pyrus. Normalization is performed by dividing 
the data in the speech signal by the maximum value of the 
amplitude to equate the amplitude of the speech signals. 
Owing to the recording process, the speech signal may have 
different intensities and consequently, different amplitude 
values. Silence removal is performed to determine the silence 
area to be erased on the speech signal. Finally, pre-emphasis is 
important to remove the noise while maintaining the 
frequency of the speech signal. 

Fig. 2(a) and (b) show the speech signal before and after 
the preprocessing stage, respectively, displayed using the 
audacity software. From the figure, it can be seen that before 
preprocessing, the speech signal has an amplitude of less than 
0.5 and silence areas are at the beginning and end of the 
speech. On the other hand, after preprocessing (Fig. 2(b), the 
amplitude of the signal is approximately 0.5, which is the ideal 
value for speech signals [18], and the silence areas are smaller 
than those before the preprocessing stage; the duration of the 
speech signal changes from 3 to 2.4 s. Furthermore, the noise 
in the speech signal was reduced by using a high pass filter to 
eliminate speech signals with frequency below 250 Hz. 

B. Feature Extraction 
Using the contrib audio library of TensorFlow, we 

extracted the log power spectra, i.e., spectrograms, and 
MFCCs as features and determined which is more suitable as 
input to the deep bidirectional LSTM. 

To obtain the spectrograms, the preprocessed speech signal 
was divided into sections with window lengths of 32 ms and 
window steps of 16 ms. A fast Fourier transform (FFT) was 
performed to convert the speech signal from the time domain 
to the frequency domain. 512 frequency bins were used, and 
only half of the frequency bins plus one (257 bins) were used. 
Then, the log power spectra, which were the density of the 
FFT spectra, were used as input for the training process. The 
visual representation of log power spectra is known as 
spectrogram. Fig. 3 shows an example spectrogram. As shown 
in the figure, an x-axis shows the time length and a y-axis is 
the power spectrum of the speech signals. 
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(a) 

 
(b) 

Fig. 2. Speech Signal (a) before and (b) after Preprocessing. 

 
Fig. 3. Example of a Spectrogram. 

The MFCCs are generated using the result of the spectral 
density, which is filtered with a Mel scale and filter bank to 
obtain the energy at each point. The resolution of the Mel 
filter bank was 40 with lowest and highest frequencies of 0 Hz 
and 8 kHz, respectively. The Mel spectrum, which is the 
output from the Mel filter bank, is converted into the time 
domain using a discrete cosine transform (DCT) with a 
coefficient of 13. The output from the DCT process is called 
an MFCC plot. Fig. 4 shows an example MFCC plot. 

 
Fig. 4. Example MFCC Plot. 

C. Language Model 
A language model is used to perform the decoding process 

on the network output for the speech-to-text conversion 
process. The decoding process is performed by calculating the 
probability of appearance of each word based on the exact 
word order [19]. This probability is calculated from the word 
chunks based on word order in the N-grams model. The 
language model can be built using Corpus text with a large 
amount of data, e.g., words and sentences in a newspaper. 
Accordingly, in this study, Corpus text in .txt format derived 
from the Kompas newspaper [20] was used. The Kompas 
newspaper has published more than 5000 articles, which were 
merged to create the language model. Before using, the 

Corpus text is sorted in alphabetical order from A to Z, and 
invalid data such as space and blank () are removed. 

A 5-gram language model was built with outputs in 
lm.arpa format using the KENLM library. The lm.arpa output 
was transformed into binary format to be processed and read 
by the computer. Then, a trie that works by tracking the 
minimum probability for the word prefix was created as a data 
structure to assist in using the memory to construct the 
language model. 

D. Training Dataset 
The DeepSpeech library was used in the training process 

of the deep bidirectional LSTM algorithm. This algorithm 
consists of a combination of bidirectional RNN and LSTM, 
commonly known as bidirectional LSTM. The bidirectional 
LSTM exploits long-range context dependencies in the past (t 
− 1) steps and future (t + 1) steps. This algorithm has a deep 
architecture, which can performe high-level representations of 
acoustic data [21]. The DeepSpeech architecture consists of 
the input layer derived from the extracted features, i.e., 
spectrograms and MFCCs. Then, there are five stacked hidden 
layers: three linear hidden layers, one LSTM hidden layer, and 
one linear hidden layer. The last layer is an output layer that 
uses the Softmax activation function to determine the 
probability of a transcript label. Fig. 5 shows a schematic of 
the DeepSpeech architecture. 

 
Fig. 5. Schematic of DeepSpeech Architecture. 

The training performance can be determined from the loss 
values on the network. To prevent overfitting on the network, 
we use the early stopping technique, which involves the 
comparison of the loss value of the network during validation. 
The output of the network will be processed by CTC to 
perform the decoding process with the prefix beam search 
method according to the probability generated by the SoftMax 
layer and language model. CTC is used to model the training 
results obtained by a network. Because it can classify labels 
without having to know the alignment given, it is suitable for 
the deep bidirectional LSTM [22]. The CTC value decreased 
as the number of layers used increased, a phenomenon known 
as the CTC loss. The CTC loss value is a representation of the 
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accuracy of the training results; a smaller CTC loss value 
indicates a higher accuracy. Nevertheless, an excessively 
small CTC loss value leads to overfitting. In the training, we 
used five scenarios denoted as A, B, C, D, and E, as presented 
in Table II, to find the most suitable parameters. 

In scenarios B, D, and E, the training process is continued 
until the epoch is ended, while in scenarios A and C, it is 
stopped early. We used 3500 speech data for training and a 
batch size of 70; thus, the number of steps in each epoch was 
50. These steps were repeated for all data in each epoch. The 
training process resulted in a model called output graph, which 
could be stored and used to transcribe the data. Table III 
presents the results of each training scenario. 

From Table III, it can be seen that when spectrograms 
were used as the input to the deep bidirectional LSTM and 
early stopping was activated (scenario A), training ended after 
12 epochs within 5 h, 13 min, and 23 s with training and 
validation loss values of 0.746044 and 4.590043, respectively. 
When MFCC were used as the input and early stopping was 
activated (scenario C), training ended after 9 epochs within 2 
h, 53 min, and 5 s with training and validation loss values of 
0.424811 and 0.914198, respectively. These results indicate 
that MFCCs are more suitable as input to the deep 
bidirectional LSTM than spectrograms. These results may also 
imply that the MFCC features are better in terms of the 
computation time and loss value, and provide more useful 
information for the classifier. 

On the other hand, when spectrograms were used as the 
input to the deep bidirectional LSTM and early stopping was 
not activated (scenario B), the loss values were lower than in 
scenario A. Furthermore, when MFCCs were used without 
early stopping (training scenario D), the loss values were 
lower than in scenarios A, B, and C. In particular, in scenario 
B, the training and validation loss values were 0.084932 and 
2.765626, respectively, and training was completed within 16 
h, 6 min, and 40 s; in scenario D, the training and validation 
loss values were 0.016846 and 0.505358, respectively, and 
training was completed within 15 h, 13 min, and 14 s. 
Therefore, when MFCCs are inputted, the training and 
validation loss values are smaller than when spectrograms are 
inputted. Although overfitting occurred in training scenario D, 
the training process could be re-adapted as shown in Fig. 6. 
Overfitting may have occurred owing to the presence of noise. 

To prevent overfitting, we reduced the number of epochs 
before the occurrence of overfitting (scenario E). The process 
of training in scenario E is performed to determine the best 
training results before overfitting. Training ended at epoch of 
24 within 7 h and 23 min with training and validation loss 
values of 0.077836 and 0.494393, respectively. Fig. 7 shows 
the plot of the loss values in scenario E. Compared to training 
scenario D, scenario E has higher training loss value but lower 
validation loss value. In scenario E, the training process took 
only 24 epochs, which is less than in scenario D. 

E. Testing Model 
The model obtained from the training results was tested. 

The test involved speech-to-text conversion of 500 speech 
data samples not included in the training process. As a 

measure of the accuracy, we considered the WER, which has a 
range of 0–1; a smaller WER value indicates a higher testing 
accuracy. Table IV shows the results obtained from a different 
model of training scenarios. 

TABLE II. SCENARIOS USED FOR TRAINING 

Parameter Spectrogram MFCC 

Training scenario A B C D E 

Train Batch Size 70 70 70 70 70 

Validation Batch Size 4 4 4 4 4 

Test Batch Size 1 1 1 1 1 

Learning Rate 10-4 10-4 10-4 10-4 10-4 

Epoch 50 50 50 50 24 

Early Stopping Yes No Yes No No 

TABLE III. RESULTS OF THE TRAINING SCENARIOS 

Parameter Spectrogram MFCC 

Training 
Scenario A B C D E 

Actual 
Epoch 12 50 9 50 24 

Time (h) 5:13:23 16:06:40 2:53:05 15:13:14 7:23:00 

Training 
Loss  0.746044 0.084932 0.424811 0.016846 0.077836 

Validation 
Loss 4.590043 2.765626 0.914198 0.505358 0.494393 

 
Fig. 6. Training and Validation Loss Values in Scenario D (using MFCC 

and 50 Epochs). 

 
Fig. 7. Training and Validation Loss Values in Scenario E (using MFCCs 

and 24 Epochs). 
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TABLE IV. RESULTS OF TESTING USING DIFFERENT MODELS 

Parameter Spectrogram MFCC 
Training scenario A B C D E 
WER 0.035686 0.020784 0.004706 0.002745 0.002745 
% WER 3.5686 2.0784 0.4706 0.2745 0.2745 

From Table IV results with a WER of 2.0784% in training 
scenario B, testing with MFCCs yielded the best results with a 
WER of 0.2745% in training scenarios D and E. These results 
indicate that the MFCCs are more suitable than spectrograms 
for speech-to-text conversion with the deep bidirectional 
LSTM algorithm. Training with MFCCs can identify linguistic 
content and remove unimportant parts of speeches, which may 
contain noise. Furthermore, training with MFCCs can 
demonstrate the vocal tract of human speech in the form of a 
power spectrum. Fig. 8 shows the accuracy of each model. 

 
Fig. 8. WER Graph for each Training Scenario Model. 

F. Testing Process using Speech Variations 
Testing was also performed using five speech variations, 

namely regular (normal) conversation, speech with high 
intonation, speech with low intonation, speech with fast 
rhythm, and speech with slow rhythm. The test involved two 
speakers: a male and a female. The speakers uttered sentences 
1–5 (see Table I) with the five styles listed in Table V. We 
tested the model obtained from training scenario E (using 
MFCCs as features) because it yielded the best results among 
the five training scenarios. Table V shows the WER obtained 
from the testing using different speech styles. 

The results reported in Table V indicate that the model 
detected normal speech effectively. It can be seen that the 
intonation of the speech did not significantly affect the results. 
The model also detected the speech with fast rhythm well. 
However, the WER value obtained with the slow-rhythm 
speech is 40%, which indicates that many errors occurred 
during speech-to-text conversion. This may be due to the time-
lapse between the words spoken and the large number of 
silence areas on the speech signal. These results indicate that 
the rhythm of the speech tends to affect the speech-to-text 
conversion process, while the intonation does not. 

G. Testing Process with Secondary Datasets from TITML-
IDN 
The model obtained with training scenario E was also 

tested using five sentences obtained from the TITML-IDN 
dataset [23]. Table VI presents the results of speech-to-text 
conversion using speech corpus data for males and females. 

TABLE V. RESULTS OF THE TESTING USING DIFFERENT SPEECH STYLES 

Variation WER (%) 

Normal 0 

High Intonation 9.3 

Low Intonation 1.7 

Fast Rhythm 6 

Slow Rhythm 40 

TABLE VI. RESULTS OF SPEECH-TO-TEXT CONVERSION USING THE 
TITML-IDN DATASET 

No. Target 
Transcript 

Speech Detected 
from Male Speaker 

Speech Detected from 
Female Speaker 

1 dia tidak datang 
ke sekolah 

diadi kakak ke 
sekolah diadi eka ke sekolah eu 

2 

ketika 
kuatrianus 
hendak 
menelepon di 
wartel di 
halaman parkir 
bandara 
penjahat radin 
melarikan tas 
dengan mobil 
feroza. 

kakak kakek muka 
selaku depkeu abu di 
halaman take pea 
asapa kakak di 
menanak ka sea budi 
rusun ke 

kakak kakak sae aka di 
mana di halaman 
taeuk di aibak adi naik 
asean men sakka 

3 

kalian boleh 
lihat saya tidak 
apa apa padahal 
saya juga 
mengonsumsi 
produk 
transgenik 

ada media saya ia 
kakak kakak saudi 
kamanan ke kekakuan 

ayah menamai sa saya 
ie kakak kakak da sau 
iea bermasa ke sekaa 
sea edi 

4 
adi pandai 
bermain alat 
musik keyboard 

aibak bermain skea 
babibu mena 

adi aak benenain kaka 
aib mena 

5 

minggu depan 
ada main bola 
bareng anak 
kelas dua f 

ibu mentan kakak 
main telapak kakak 
kakak 

nenek kakak bermain 
bola aur aa seka 

The results indicate that the model could detect the words 
in the TITML-IDN. For example, the target transcript “dia 
tidak datang ke sekolah” spoken by the male and female 
speakers is converted to “diadi kakak ke sekolah” and “diadi 
eka ke sekolah eu,” respectively. Therefore, the model 
successfully detected the word "ke sekolah" and it detected the 
word “dia” as “diadi.” However, the model did not recognize 
all words successfully because they were not in the transcript 
of the training data. Besides, the number of words in the 
model was much smaller (only 39 different words) than that in 
the TITML-IDN dataset. In addition, speech data from 
TITML-IDN have a different structure of sentences used in 
our primary data. ITITML-IDN either contains complete 
sentences (subject-predicate-object-adverb) or non-complete 
sentences or only phrases, as these data were obtained from 
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the text corpus. Meanwhile, the speech in our primary data 
recorded from 10 respondents consists of complete sentences, 
as described in the section Data Collection. 

IV. CONCLUSIONS 
This study tested the performance of a deep bidirectional 

LSTM algorithm on speech-to-text conversion in Indonesian 
using MFCCs and spectrograms as features. The data used 
were complete sentences consisting of subject, predicate, 
object, and adverb spoken by some respondents. With the 
MFCCs and spectrograms, the algorithm achieved the highest 
WER of 0.2745% and 2.0784%, respectively, indicating the 
higher performance of the MFCCs on speech-to-text in the 
Indonesian language. 

The algorithm was shown to successfully convert speech 
with different intonation and rhythm and achieved reasonable 
accuracy when applied to the TITML-IDN dataset. 

However, the variation of words used in this study is still 
limited. Thus, in the future, the algorithm should be tested 
with speech with the higher variation of words and rhythms to 
increase its universality. 
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