19-124-374-1-PB

by Tuti Indah

Submission date: 12-Apr-2023 11:18AM (UTC+0700) Submission ID: 2062247433 File name: 19-124-374-1-PB.pdf (191.78K) Word count: 1996 Character count: 12062

PENGGUNAAN STARTER ENVIROSOLVE DAN BIODEKSTRAN UNTUK MEMPRODUKSI BIOGAS DARI BAHAN BAKU AMPAS TAHU

Dika Arya Perdana, Anggrian Luckas Ebrianto, Tuti Indah Sari^{*}

Jurusan Teknik Kimia Fakultas Teknik Universitas Sriwijaya Jln. Raya Palembang Prabumulih Km. 32 Inderalaya Ogan Ilir (OI) 30662 Email: ty indahsari@yahoo.co.id ; tutiindahsari@ft.unsri.ac.id

Abstrak

Energi alternatif yang digunakan untuk mengurangi penggunaan bahan bakar minyak tak terbaharukan saat ini sangat diperlukan. Penelitian ini bertujuan untuk mendapatkan biogas yang dapat digunakan sebagai energi alternatif, serta mencari jenis starter yang mampu digunakan untuk memproduksi biogas. Percobaan dilakukan dengan cara fermentasi menggunakan starter envirosolve dan biodekstran dengan waktu fermentasi 5, 6, 7, 8 hari, dan dengan rasio ampas tahu-air (30:70, 40:60, 50:50, 60:40, 70:30). Fermentasi terjadi di dalam digester yang telah dilengkapi dengan saluran gas dan valve. Hasil analisa penelitian menunjukkan fermentasi menggunakan envirosolve menghasilkan kadar metana lebih baik dibandingkan biodekstran. Kadar metana yang dihasilkan oleh starter envirosolve sebesar 0,98% pada waktu fermentasi 7 hari dengan rasio 40:60 dan kadar metana yang dihasilkan oleh starter biodekstran sebesar 0,92% pada waktu fermentasi 7 hari dengan rasio 50:50.

Kata kunci : biogas, ampas tahu, starter, fermentasi

Abstract

Alternative energy used to reduce the use of fuel oil is unrenewable currently indispansable. This research aims to get the biogas that can be used as alternative energy, beside that to find kinds of starter capable of producing biogas. The experiments is done by fermentation use a starter envirosolve and biodekstran to the time of fermentation 5, 6, 7, 8 dyas, and with the ratio of waste tofu-water (30:70, 40:60, 50:50, 60:40, 30:70. Fermentation take place inside digester has been equiped gas outline and valve. The analysis result of this research Envirosolve starter produces methane better than Biodekstran starter. Volumes of methane produced by envirosolve starter of 0.98% in the fermentation 7 days with a ratio of 40 : 60 and volumes of methane produced by biodekstran starter of 0.92% in the fermentation 7 days with a ratio of 50:50.

Keywords: biogas, tofu waste, starter, fermentation

1. PENDAHULUAN

Kenaikan harga minyak dunia menyebabkan perlu dicari energi alternatif untuk mengurangi penggunaan bahan bakar minyak (*unrenewable*) tersebut. Salah satu contoh, potensi sumber daya alam yang dapat dikembangkan menjadi sumber energi alternatif adalah batu bara, panas bumi, aliran sungai, angin, matahari serta sumber – sumber lain yang berasal dari tumbuh – tumbuhan, seperti pohon jarak, serta energi biogas yang berasal dari limbah industri makanan (Anthon dan Inneke, 2008). Dalam penelitian ini, akan dijelaskan tentang teknologi biogas yang merupakan salah satu sumber energi pengganti minyak bumi.

Ampas tahu merupakan limbah yang mengandung bahan – bahan organik dengan nutrisi yang cukup baik untuk pertumbuhan bakteri metanogenik. Adanya bakteri metanogenik di dalam reaktor dapat menyebabkan terjadinya proses metanogenesis

Page 16

Jurnal Teknik Kimia No. 1, Vol. 19, Januari 2013

yang menghasilkan gas metana. Pemanfaatan limbah ampas tahu saat ini banyak digunakan sebagai makanan tertek. Jumlah industri tahu di Indonesia mencapai 84.000 unit usaha. Dengan kapasitas produksi lebih dari 2,56 juta ton per tahun, industri tahu ini memproduksi limbah cair dan padat sebanyak 20 juta meter kubik per tahun dan menghasilkan emisi sekitar 1 juta ton CO_2 ekivalen (Kementrian Ristek, IPAL 2010).

Penelitian ini didasari dari penelitian sebelumnya mengenai "Pembuatan Biogas dari Ampas Tahu dengan Starter EM-4" (Anthon dan Inneke, 2008). Dari penelitian tersebut starter EM-4 mampu memproduksi biogas. Oleh sebab itu, penelitian ini bertujuan untuk mencari alternatif starter selain EM-4 yang dapat digunakan untuk memproduksi biogas, serta mengetahui pengaruh perbandingan jumlah rasio ampas tahu dengan air dan waktu fermentasi terhadap kadar biogas yang dihasilkan.

Limbah yang keluar dari proses pembuatan tahu terdiri dari limbah padat berupa ampas yang keluar dari tahap penyaringan, serta limbah cair dari proses perendaman, pencucian, penggumpalan, dan pencetakan. Berat kering ampas tahu mengandung 23,6 – 24% protein dan 12% serat kasar (Shurtleff dan Aoyagi, 1979 dalam Witjaksono, 2005). Selain protein dan serat kasar, ampas tahu juga masih mengandung lemak 5,9%, karbohidrat 67,5%, kalsium 19% dan fosfor 29% (Suprapti, 2005).

Menurut Sri Moertinah (1994), diperkirakan dari 5 kg kedelai akan menghasilkan ampas tahu sebanyak 8 kg, dan hasil analisa komposisi ampas tahu dapat dilihat pada table berikut.

Tabel 1. Karakteristik Kandungan Ampas Tahu dan Limbah Cair per 100 gram Ampas Tahu dan 100 ml Limbah Cair

No.	Limbah	Energi	Air	Protein	Lenak	С	N	Mineral	K	P	Fe	Tiamin
		(kalori)	(gr)	(gr)	(gr)	(g)	(g)	(gr)	(mg)	(mg)	(mg)	(mg)
l.	Ampas	393	4,9	17,4	5,9	66,6	0,8	4,3	19	29	4	0,2
2.	Cair	79	53,4	10,4	4,9	24,1	0,5	6,2	55	365	1,3	0,05

Biogas adalah gas yang dihasilkan oleh aktifitas anaerobic atau fermentasi dari bahan – bahan organic termasuk diantaranya kotoran manusia dan hewan, limbah domsetik (rumah tangga), sampah *biodegradable* atau setiap limbah organic yang *biodegradable* dalam kondisi anaerobic (Anonim, 2008). Biogas sebagian besar mengandung gas metana (CH₄) dan karbon dioksida (CO_2), dan beberapa kandungan yang jumlahnya kecil diantaranya Hidrogen Sulfide (H₂S), Ammonia (NH₃), Hidrogen (H₂), dan Nitogen (N₂) yang kandungannya sangat kecil (Berly dan Eko, 2010).

Proses pembuatan biogas dilakukan secara fermentasi, yaitu proses terbentuknya gas metana dalam kondisi anaerob dengan bantuan bakteri anaerob di dalam suatu digester sehingga akan dihasilkan gas metana (CH4) dan gas karbon dioksida (CO₂) yang volumenya lebih besar dari gas hidrogen (H₂), gas nitrogen (N2) dan asam sulfida (H2S). Proses fermentasi memerlukan waktu 7 sampai 10 hari untuk menghasilkan biogas dengan suhu optimum 35°C dan pH optimum pada range 6,4 7,9. Bakteri pembentuk biogas yang digunakan yaitu bakteri anaerob, seperti Methanobacterium, Methanobacillus, Methanococcus dan Methanosarcina (Price dan Cheremisinoff, 1981).

Reaksi pembentukan metana dari bahan – bahan organik yang dapat terdegradasi dengan bantuan enzim maupun bakteri dapat dilihat sebagai berikut :

- Polisakarida bidrolisis glukosa fosforilasi asam asetat bidrolisin energy CH₄ + CO₂ + H₂
 Gliserol fosforilasi asam asetat bidrolisis asam celat bidrolisis asam asetat bidrolisis asam asetat
- Protein hidrolisis asam amino deaminasi
 Baterimetara CH + CO₂ + H₂
 - 4

Faktor-faktor yang berpengaruh terhadap pembentukan biogas adalah kadar karbon dan nitrogen dalam bahan, kandungan air, derajat keasaman, temperatur pencerna, pengadukan dan racun (Fauziyah, 1996).

Jenis – Jenis Starter

Produk bakteri pengurai merupakan kumpulan bakteri hasil modifikasi yang telah diberikan tambahan nutrisi yang dapat membantu proses penguraian bahan – bahan organik. Berikut meruapakan beberapa jenis produk bakteri pengurai, yakni : 1) EM4

EM-4 merupakan kultur campuran dari mikroorganisme yang menguntungkan bagi pertumbuhan tanaman, mampu meningkatkan dekomposisi limbah dan sampah organik, mempercepat proses pengomposan sampah atau kotoran hewan, meningkatkan ketersediaan nutrisi tanaman, serta menekan aktivitas serangan dari mikroorganisme patogen. EM-4 terdiri dari bakteri *genus lactobacillus* (bakteri penghasil asam laktat) dalam jumlah besar, serta dalam jumlah sedikit bakteri fotosintesis *streptomyces sp*, dan ragi yang dikulturkan dalam medium cair pada pH 4,5. Mikroorganisme yang terdapat dalam larutan tersebut berjumlah 10⁹/liter (Higa dan Wididana dalam Anthon dan Inneke, 2008).

2) Envirosolve

Merupakan larutan konsentrasi spektrum mikrobiologi yang bekerja di dalam proses Bioremediasi. Konsentrasi mikroba tersebut bekerja dengan memakan kandungan organik dalam air limbah dan menguranginya menjadi bentuk elemen cair terurai. Dalam proses tersebut mikroba terus menerus menggandakan diri dan berkembang biak selama sumber makanannya tersedia. Koloni mikroba aktif menghasilkan enzim yang membantu dalam menyediakan kebutuhan nutrisi bagi mikroba tersebut.

Kandungan dari produk bakteri pengurai ini antara lain sebagai berikut :

Asam Amino	: 3 – 4 %
Nitrogen (N2)	:4-5%
Glukosa	:6-7%
Mikroorganisme	$: 10^2 - 10^5/ml$
Mikroorganisme	

- a) Mikroba Pengurai golongan celulitic, carbolitic, proteolitic
- b) Lactobacillus sp.
- c) Pengikat Nitrogen
- d) Pengurai Phospat

(AryaCom Technology, 2009)

3) Biodekstran

Merupakan kumpulan bakteri probiotik (bersifat menguntungkan) dan bersifat anaerob (dapat hidup dalam kondisi yang sangat minim oksigen) dan dapat menguraikan bahan-bahan organik yang beracun (limbah) menjadi bahan organik sederhana yang tidak mencemari lingkungan dan menghilangkan bau limbahnya. Jika diaplikasikan pada limbah tahu dapat menguraikan bahan organik kompleksnya (protein, karbohidrat dan lemak) baik padat maupun cair menjadi bahan organik sederhana yang tidak mencemari lingkungan secara biologis.

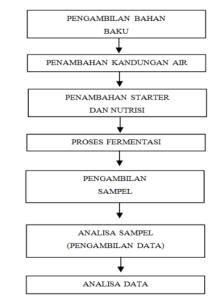
Kandungan bakteri yang terdapat pada produk bakteri pengurai ini antara lain sebagai berikut :

- a) Nitrosomonas sp.
- b) Nitrobacter sp.
- c) Pseudomonas sp.
- d) Bacillus sp.

(CV. Surya Pratama Gemilang, 2007)

Page 18

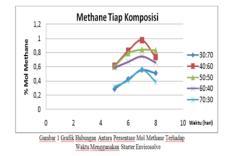
Jurnal Teknik Kimia No. 1, Vol. 19, Januari 2013

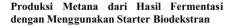

2. METODOLOGI

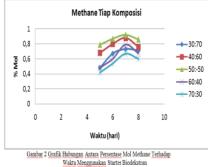
Bahan yang Digunakan : Ampas tahu yang dibeli dari pabrik tahu di Padang Selasa, Bukit Besar. Air sebagai campuran ampas tahu yang akan di fermentasi. Starter (Envirolsolve dan Biodekstran). Urea cair untuk nutrisi dan penyeimbang kadar C/N.

Alat yang Digunakan : Sebuah tangki pencerna (*digester*) yang dilengkapi dengan saluran gas keluar dan valve.

Variabel yang Dijalankan : Pengaruh variasi perbandingan antara kadar ampas tahu dengan air (70%;30%, 60%;40%, 50%;50%, 40%;60%, dan 30%;70%), jenis starter yang digunakan (ENVIROSOLVE liquid bacteria dan Biodekstran), serta pengaruh lamanya waktu fermentasi (5 hari, 6 hari, 7 hari, dan 8 hari) yang dilakukan terhadap jumlah komposisi senyawa yang dihasilkan dalam biogas.


Bagan Prosedur :




3. HASIL DAN PEMBAHASAN

Hasil Produksi Biogas

Produksi Metana dari Hasil Fermentasi dengan Menggunakan Starter Envirosolve

Dari gambar di atas dapat dilihat hasil terbaik biogas pada starter Envirosolve (Gambar 1), didapatkan pada komposisi 40% ampas 2hu dan 60% air. Dengan persentase mol hari ke-5 sebesar 0,61%, hari ke-6 sebesar 0,83%, hari ke-7 sebesar 0,98%, dan hari ke-8 sebesar 0,74%. Hasil terbaik biogas pada starter Biodekstran (Gambar 2), didapatkan pada komposisi 50% ampa 2 ahu dan 50% air. Dengan persentase mol hari ke-5 sebesar 0,79%, hari ke-6 sebesar 0,87%, hari ke-7 sebesar 0,92%, dan hari ke-8 sebesar 0,86%.

Proses pembuatan biogas dilakukan secara fermentasi, yaitu proses terbentuknya gas metana dalam kondisi anaerob dengan bantuan bakteri anaerob di dalam suatu digester sehingga akan dihasilkan gas metana (CH4) dan gas karbondioksida (CO2) yang volumenya lebih besar dari gas hydrogen (H2), gas nitrogen (N2) dan asam sulfida (H2S). Proses fermentasi memerlukan waktu 7 sampai 10 hari untuk menghasilkan biogas dengan temperature

optimum 35°C dan pH optimum pada range 6,4 7,9. Bakteri pembentukkan biogas yang digunakan, yaitu bakteri anaerob, seperti Methanobacillus, Methanobacterium, dan Methanococcus

Pada penelitian ini, digunakan 2 macam tipe starter sebagai perbandingan hasil biogas yang didapat. Dimana masing - masing starter ini dicampurkan ke dalam ampas tahu dengan berbagai komposisi yang telah ditentukan. Pada saat proses pemasukan bahan baku juga dilakukan penambahkan urea ke dalam digester, hal tersebut dilakukan untuk menyeimbangkan kadar C/N untuk menunjang produksi biogas yang dihasilkan.

Hasil sampling biogas ditampung ke dalam kantong plastic. Hal ini dimaksudkan untuk mempermudah proses analisa dengan menggunakan Gas Chromatograph (gambar terlampir). Dimana kantong plastic ini, akan dihubungkan ke Gas Chromatograph dengan menggunakan selang penghubung.

Hasil analisa menggunakan Gas Chromatograph menunjukkan biogas hasil penelitian ini mengandung senyawa - senyawa seperti CH₄, CO₂, H₂, O₂, dan N₂ (Terlampir di lampiran B). Hal ini dapat disimpulkan bahwa starter envirosolve dan biodekstran dapat memproduksi biogas seperti yang diharapkan. Hal tersebut ditinjau dari penelitian sebelum ini, dimana biogas dari ampas tahu dengan starter EM-4 juga menghasilkan gas dengan komposisi yang sama (CH₄ = 6,93%; CO₂ = 9,82%; H₂ = 1,25%; O₂ = 10,38\%; dan N₂ = 68,42%)(Anthon dan Inneke, 2008).

Reaksi pada tahap metanogenis adalah sebagai berkut :

 $CH_3COOH \rightarrow CH_4 + CO_2$

$$2H_2 + CO_2 \rightarrow CH_4 + 2H_2O$$

4. KESIMPULAN

- Kedua starter ini (biodekstran dan envirosolve liquid bacteria) dapat digunakan untuk memproduksi biogas.
- 2) Starter I (Liquid Bacteria) diperoleh hasil maksimal pada komposisi 40:60, dengan hasil persentase biogas 0,98%.
- 3) Starter II (Biodekstran) diperoleh hasil maksimal pada komposisi 50:50, dengan hasil persentase biogas 0,92%.
- 4) Waktu pembentukkan biogas terbaik pada starter I (Liquid Bacteria) maupun starter II (Biodekstran) terjadi pada hari ke-7.

Jurnal Teknik Kimia No. 1, Vol. 19, Januari 2013

 Ditinjau dari hasil yang didapatkan pembuatan biogas dengan proses fermentasi menggunakan starter Liquid Bacteria lebih baik dibandingkan menggunakan starter Biodekstran.

DAFTAR PUSTAKA

- Anonim. 2011. *Biogas*. <u>id.www.wikipedia.org</u>. 10 Juli 2011.
- Anthon dan Inneke. 2008. Pembuatan Biogas dari Ampas Tahu. *Laporan Penelitian*. Palembang : FT Universitas Sriwijaya.
- Fauziyah, Anis Nurul. 1996. Pemanfaatan Limbah Industri Kertas (Biosludge) untuk Pembuatan Biogas. Skripsi. Bogor : Institut Pertanian Bogor

- Menristek. 2010. KNRT Luncurkan Unit Percontohan IPAL Industri Tahu di Purwokerto. Jakarta : Menristek
- Suprapti, M. L. 2005. Pembuatan Tahu. Kanisius: Yogyakarta.
- Surabaya Post Online. 2011. APBN Jebol Bukan Isapan Jempol. 26 Februari.
- Widhartarini, Berly Safitri dan Eko Prasetyo Wibowo. 2010. Pemanfaatan Enceng Gondok Menggunakan Reaktor Biogas. Laporan Penelitian. Palembang : FT Universitas Sriwijaya.
- Witjaksono, T. 2005. Pengaruh Pemberian Ampas Tahu Terhadap Pertambahan Bobot Badan Kambing Kacang Betina Pada Masa Pertumbuhan Awal. Skripsi. Malang : Fakultas Paternakan Universitas Brawijaya.

Page 20

Jurnal Teknik Kimia No. 1, Vol. 19, Januari 2013

19-124-374-1-PB

ORIGINA	ALITY REPORT			
9% SIMILARITY INDEX		% INTERNET SOURCES	% PUBLICATIONS	9% STUDENT PAPERS
PRIMAR	Y SOURCES			
1	Submitt Student Pape	ed to Sriwijaya l	Jniversity	2%
2		ed to Program F itas Negeri Yogy r		2%
3	Submitt Student Pape	ed to Universita	s Muria Kudus	2%
4	Submitt Student Pape	ed to Universita	s Airlangga	1 %
5	Submitt Student Pape	ed to Universita	s Ibn Khaldun	1 %
6		ed to Universita niversity of Sura	0	baya The $1_{\%}$
7	Submitt Student Pape	ed to Universita	s Jambi	1 %

Exclude bibliography On