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Necessity of Log(1/R) and Kubelka-Munk transformation in chemometrics analysis
to predict white rice flour adulteration in brown rice flour using visible-near-infrared
spectroscopy

Laila RAHMAWATT™
ADNAN?, Merynda Indriyani SYAFUTRI®, Eka LIDIASARI® Rima Zuriah AMDANI!, PUSPITAHATI®,
Sri AGUSTINT, Laela NURAINTY, Slamet Diah VOLKANDARI', Mohammad Faiz KARIMY!, SURATNO!,
Anjar WINDARSIH', Muhammad Fahri Reza PAHLAWAN?

Abstract

This study compared the calibration model performance of reflectance to absorbance transformation spectra combined with
pre-processing spectra to find the best model to predict white rice flour adulteration in brown rice flour using the visible and
near-infrared spectrometer. Partial least squares regression (PLSR) and principal component regression (PCR) were compared
using reflectance, Kubelka-Munk (KM), and Log(1/R) spectra. Area normalization (AN) and Savitsky-smoothing Golay’s (SGS)
were pre-processing methods. The sample was white rice flour mixed with brown rice flour at 0%, 5%, 10%, 15%, 20%, and
25%. Reflectance spectra outperformed KM and log (1/R) spectra in this study. Reflectance spectra provided the best model for
PLSR and PCR. Pre-processed SGS spectra were best for PLSR, while raw reflectance spectra were best for PCR. PLSR and PCR
both had an R? of prediction of 0.96, while the overall average R* of prediction favors PLSR over PCR. The present study led to
the discovery of a simple novel method for developing adulteration flour and showed that a visible near-infrared spectrometer

, Aryanis Mutia ZAHRA?, Riana LISTANTT?, Rudiati Evi MASITHOH?, Hari HARIADT,

combined with PLSR, or PCR, could predict white rice flour adulteration in brown rice flour.

Keywords: Kubelka-Munk; spectra transformation; pre-processing; chemometrics; multivariate analysis.

Practical Application: A rapid and non-destructive measurement to predict the adulteration of rice flour by visible near-

infrared spectroscopy.

1 Introduction

Spectroscopy is a method that studies the interaction
between electromagnetic waves with matter (van der Meer, 2018).
Various studies have proven that spectiffcopy can measure
postharvest product parameters (Jaiswal et al., 2014; Jie et al.,
2014; Laborde et al., 2021; Masithoh et al., 2020a; Santos et al.,
2013; Walsh et al., 2020). Depending on the electromagnetic
waves used, spectroscopy can be divided into ultraviolet (UV)
spectroscopy, which uses ultraviolet light (100-400 nm); visible
(Vis) spectroscopy which uses visible light (400-700 nm ); Infrared
(IR) spectroscopy which uses infrared light (700 nm-1mm).
Spectroscopy in theinfrared region could be divided into near-
infrared (700-2500 nm), mid-infrared (2500-25000nm), and far-
infrared (25000nm- 1mm). The different electromagnetic waves
can determine what product and parameter can be measured.

The use of spectroscopy to analyze the quality parameters
of powdered products has been widely reported. Adulteration
detection in powder products could be detected using NIR

(Quelal-Véisconez et al., 2018, 2019; Rismiwandira et al., 2021;
Xuetal., 2013) and MIR (Masithoh et al,, 2022; Rodriguezetal.,
2019; Roosmayanti et al., 2021). The chemical parameter of
powdered product could also be quantified using NIR spectroscopy
(Masithoh et al., 2020b; Vesela et al., 2007; Wu et al., 200 or
MIR spectroscopy (Masithoh et al., 2022; Quelal-Vasconez et al,,
2018, 2019; Rodriguez et al., 2019; Roosmayanti et al., 2021;
Xu et al,, 2013). Adulteration detection in powder products is
related to food authentication to minimize food fraud. Food
adulteration will affect the physicochemical properties of the
product, physical characteristics, sensory, presence of bioactive
compounds, and a food allergen, which is related to the right of
consumers to guarantee food safety, quality, and authenticity.
Vis-NIR spectroscopy will enhance the method of classang
food products (Chen et al,, 2006; Cruz, 2007; Rahmawati et al.,
2022; Zhang et al., 2023; Zhou et al., 2023) and identifying
the quality parameters of powder products as a way of smart
authentication (Masithoh et al., 2022; Quelal-Vésconez et al.,
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2018, 2019; Rodriguez et al., 2019; Roosmayanti et al., 2021;
Xu et al,, 2013).

Vis-NIR Spectroscopy uses light in the visible and near-infrared
regions to measure product parameters. The light emitted by the
source onto the product’s surface will be reflected, transmitted,
or absorbed by the molecules in the product (Guo et al., 2016).
The amount of reflected, transmitted, or absorbed light in a range
of wavelerfffhs is called spectra. The spectra contain information
related to the chemical and physical parameters of the product
(Juhész et al., 2005). Spectra in the visible light region contain
information on color pigment. In contrast, NIR spectra contain
information related to interactions between electromagnetic
light with C-H-O-N molecules (Xie et al., 2009). Chemometrics
analysis involves extracting information within the spectra to
identify desired quality parameters.

Chemometrics analysis of spectra consists of two critical
steps, ie., pre-processing spectra and calibration modeling.
Spectra pre-processing is necessary to reduce trivial information
within the spectra (scattering, noise, baseline correction) and
amplify the critical signal for measurement (Mishra et al,,
2020). Calibration modeling is the step to connecting the
multiple variables of spectra with the desired quality parameter
(Masithoh et al., 2020b). Two typical calibration modeling
methods were partial least squares regression (PLSR) and principal
component regression (PCR). The combination of calibration
modeling and pre-process spectra dramatically determine the
model’s ;?formancc to predict desired quality parameters using
spectra. Several spectra pre-processing methods often used
include normalization, standard normal variate, smoothing,
Savitsky-Golay'’s derivative, and multiple scatter correction.
Suitable pre-process spectra could improve model performance
(Mishra et al,, 2021). However, spectra pre-processing can also
have a negative impact on the model performance (Schoot et al,,
2020). Therefore, a comparison of model performance built from
several pre-process spectra must be made to find a model with
the best prediction performance.

Pre-process spectra could be applied directly to reflectance
or transmittance spectra. Considering that the light absorbed
by the molecules is essential information, several studies have
transformed the reflectance or transmittance spectrainto absorbance
spectra before creating a calibration model. The absorbed light
is essential because it can cause interactions in the product
molecules or excitation, such as stretching, twisting, rocking,
wagging, scissoring, and so forth (Nielsen, 2017). Absorbance (A)
spectra could be quantified using Beer’s Law; that is, A=log(1/T)
for transmittance mode and A=log(1/R) for reflectance mode
(Schaare & Fraser, 2000). In addition, the Kubelka-Munk equation
(A=(1-R*)/2R) can also be used for reflectance spectra which
also account for scattering (Nicolai et al., 2007a).

Each calibration model typically uses a single pre-process
spectra. However, multiple pre-process spectra can also be carried
out to better model performance (Mishra et al., 2020). Several
studies have proved that using multiple pre-process spectra could
yield better model performance to identify adulterated samples
(Quelal-Visconez et al., 2018; Xu et al., 2013). However, to the best
of our knowledge, a study regarding the necessity of transformation
reflectance or transmittance spectra to absorbance combined

with pre-processing spectra for an adulterated sample has not
been reported yet. Therefore, this study aimed to compare the
calibration model performance of original reflectance, Log(1/R),
and Kubelka- Munk Transformation spectra combined with pre-
processing spectra to find which combination yielded the best
model to predict adulteration of white rice flour in brown rice
flour using the visible and near-infrared spectrometer.

2 Materials and methods
2.1 Samples

Brown rice flour and white rice flour were obtained from the
local market in Yogyakarta, Indonesia. The flours were separately
sieved with a 50-mesh sieve (0.29 mm, ASTM standard) to obtain
uniform samples. The flour that did not pass the sieve was ground
in a blender and re-sieved. Sieved brown rice flours were then
intentionally mixed with white rice flour. The white flour in
brown rice flour was 0%, 5%, 10%, 15%, 20%, and 25%, with each
total mix of 30 grams. Adulterated flours wemixed manually
in a closed bottle for minutes. The samples were dried using a
food dehydrator at 60 °C for 12 hours to remove excess water.

2.2 Spectra acquisition

The spectrometer instrument used in this study was Vis-
NIR miniature spectrometer (Flame-T-VIS-NIR Ocean Optics)
equipped with a tungsten halogen lamp (360-2400 nm, HL-
2000-HP-FHSA Ocean Optics) and a sensor probe (QR400-
7-VIS-NIR Ocean Optics). For each adulteration percentage,
30 grams samples were divided into six samples of 5-gram flour.
The sample was placed ina 2-centimeter-diameter, 1-centimeter-
thick aluminum cup. Reflectance spectra were measured at a
90-degree angle to the samples surface. For each sample, ten
reflectance spectra were obtained. The total number of spectra
obtained was six levels of adulteration with five samples and ten
replication (n=300 spectra).

2.3 Chemometrics analysis

Allreflectance spectra taken were compiled and transformed
into absorbance in Ms. Excel. Reflectance to absorbance spectra
was quantified using Equation 1, and Kubelka-Munk (KM) spectra
were quantified using Equation 2. Spectra were imported into
the Unscrambler” X software (CAMO, Oslo, Norway) for further
chemometric analysis. Several pre-process spectra were applied to
reflectance, log (1/R), and KM spectra, such as Savitsky-Golay's
smoothing (SGS), area normalization (AN), standard normalvariate
(SNV), multiple scatter correction (MSC), Savitskygg@olay’s first
derivative (SGD 1st, polynomial=2, side points’32). Multivariate
analysis principal component regression (PCR) and partial least
squares regression (PLSR) were performed using spectra data
asa predictor variable (X) and adulteration level as a dependent
variable (Y). Before performing multivariate analysis, the dataset
was divided into a calibration set (2/3 data, 200 samples) used
to build the calibration model and a prediction set (1/3 data,
100 samples) used to test the model prediction performance.

I (1 (1
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3 Results and discussion
3.1 Vis-NIR spectra of adulterated brown rice

Vis-NIR spectra of adulterated brown rice were measured at
wavelength 345-1033 nm with an interval of 0.2 nm. Due to heavy
noise appearing at <400 nm and >1000 nm, those spectra were
excluded from the analysis (Figure 1). In the wavelength range of
400-1000 nm, the number of variables used was 3188 variables.
Reflectance spectra obtained from the spectrometer were
transformed using the Kubelka-Munk equation and log (1/R).
The reflectance, KM transformed, and log (1/R) transformed
spectra of adulterated brown rice.

Figure 1 shows that KM and Log(1/R) spectra have the
opposite shape of the reflectance spectra. However, all three appear
to have similar trend spectra between adulterated samples. Pure
brown rice (0% adulteration) seems to have a higher absorbance
than the adulterant sample. Asthelevel of adulteration increases,
the sample’sabsorbance appears to be getting lower. The higher
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Figure 1. Adulterated samples differentiation with direct comparison
of spectra obtained by different pre-processing data. Data was obtained
with (A) Original Vis/NIR reflectance spectra, (B} Kubelka-Munk
transformation spectra, and (C) Log(1/R) transformation spectra of

adulterated brown rice.
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the level of adulteration, the brighter the sample will appear.
The bright sample will have a higher reflectance, while the darker
sample will have a higher absorbance.

The reflectance spectra, KM spectra, and Log(1/R) spectra
of adulterated brown rice exhibit similar patterns of absorbance
peaks. All three spectra show three pattern peaks at around
410 nm, 670 nm, and 990 nm. The peak at around 410 nm was
influenced by the carotenoid pigment (Cortés et al, 2016),
which are B-carotene and lutein (Lamberts & Delcour, 2008).
The peak at around 670 nm was correlated with chlorophyll-a
(Guo etal., 2016; Lichtenthaler & Buschmann, 2001). The second
overtone of OH stretching affected the peak at around 990 nm
(Fernandez-Novales et al., 2019).

3.2 PLSR model

PLSR is a quantitative method used to connect multiple
variables of spectra with the desired variable, in this case, adulterant
concentration. PLSR will reduce spectra dimension and form new
variables, up to 20, that can best explain the desired variable with
minimal information loss, noise, and computation time (Abdi,
2010). Orthogonalized PLSR algorithms were performed on the
calibration data with adulteration concentration as Y-variable.
The performance of the PLSR model’s calibration and prediction
in the study were shown Table 1.

The model obtained from the reflectance spectra already has
an outstanding performance with R*>0.90. Model performance
could be increased by log (1/R) transformation of reflectance
spectra. However, the KM transformation of reflectance spectra
yielded a lower model performance. The model obtained by
raw spectra of log (1/R) and KM is also the model that has the
best performance compared to pre-processed Log(1/R) and
pre-processed KM model. Pre-processing of either Log(1/R)
or KM spectra negatively impact the performance of the built
PLSR model and yields a lower model performance.

Overall, reflectance spectra yielded a better average of
model performance than log (1/R), and KM-transformed
spectra. Reflectance spectra yielded R? of prediction ranging
from 0.88 to 0.96, with an average R* of 0.92. Log(1/R) spectra
yielded a bit lower R* of prediction ranging from 0.87 to 0.95,
with an average R* of prediction of 0.91. A similar performance
of reflectance and log (1/R) was also found by (Nicolai et al.,
2007b). KM spectramodel yielded the worst model performances
with R* of prediction ranging from 0.82t0 0.93, with an average
of 0.88. KM spectra yielding a poor model compared to pre-
process, and other spectral transformations were also reported
by (Vasques et al., 2008).

The best model performance from reflectance spectra
was yielded by SGS pre-processed spectra. SGS pre-processed
reflectance spectra have the highest R* and lowest RMSE
of calibration and high prediction performance. With an
R?prediction of 0.96, the model obtained could be used in most
applications, including quality control (Williams & Norris,
2001). Figure 2 shows the best model’s regression coefficient
(B) from reflectance, KM, and log(1/R) spectra. Regression
coefficient (B) can help explain which wavelength influences
the model the most. Based on the regression coefficient (B)
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Table 1. PLSR model performances.

P R KM Log(1/R)
re-process -
te cll;nique ¢ P ¢ P ¢
R* RMSE R* RMSE R* RMSE R* RMSE R* RMSE R* RMSE
Raw 0.94 4.02 0.95 4.00 0.92 4.71 0.93 4.80 0.95 3.94 0.95 3.84
SGS 0.95 3.79 0.96 3.57 0.90 541 0.92 5.03 0.94 4.08 0.95 3.80
AN 0.94 4.11 0.96 353 0.87 599 0.93 4.74 0.90 5.28 0.89 574
SNV 0.87 5.97 0.88 596 0.83 7.03 0.86 6.62 0.87 6.05 0.87 6.23
MSC 0.87 6.01 0.88 6.01 0.82 7.08 0.86 6.66 0.87 6.10 0.87 6.30
SGD st 0.95 3.91 0.88 6.05 0.82 7.07 0.82 7.45 0.94 4.18 0.93 4.56
Max 0.95 6.01 0.96 6.05 0.92 7.08 0.93 7.45 0.95 6.10 0.95 6.30
Min 0.87 3.79 0.88 353 0.82 471 0.82 4.74 0.87 3.94 0.87 3.80
Average 092 4.63 0.92 4.85 0.86 6] 0.88 5.88 091 4.94 091 5.08

Note: R = reflectance; KM = Kubelka- Mulk transformation; C = calibration; P = prediction; B* = coefficient determination; RMSE = root mean square error; 5GS = Savitsky-Golay’s

smoothing AN = area normalization; SN'V = standard normal variate; MSC = multiple scatter correction; SGD = Savitsky-Golay’s Derivative.
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Figure 2. PLSR regression coefficient (B) using (A) SGS pre-processed reflectance spectra, (B) Raw KM spectra, (C) Raw Log(1/R) spectra.

shown in Figure 2, the three models were strongly influenced 3.3 PCR model

by carotenoid pigments on the wavelength 400-500 nm and

Besides PLSR, in this study, we used PCR as a calibration

the second overtone of the O-H bond stretching on the
915-1000 nm. Apart from the carotenoid and O-H bond
wavelength, the regression coefficient (B) of KM and log (1/R)
shows that these models are also influenced by chlorophyll-a
at around 678 nm.

method to connect multi variables of spectra with adulteration
concentration. Like PLSR, PCR is a quantification-supervised
analysis that works with two stages of analysis. First, dimension
reduction of multivariable spectra into new variables (up to 20)
called principal components (PCs). Second, linear regression

Food Sci. Technol, Campinas, 43,e116422, 2023
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relates each PC score with the dependent variable (Vasquesetal.,
2008). Each q will have its model performance, namely regression
coeflicient (R*) and root mean square error (RMSE). PCs with
the lowest RMSE and highest R* (max. 1) will be selected.

Table 2 shows the PCR model performance to predict
adulteration in black rice flour. KM spectra yielded amodel with
the highest average of R* of prediction, which was 0.91, with
R? of prediction ranging from 0.86 to 0.94. The average R* of
the Log(1/R) model’s predictions ranks second with a value of
0.87, ranging from 0.74 to 0.95. Reflectance spectra yielded a
model with the lowest average R* with a value of 0.85, ranging
from 0.48 to 0.96. Despite having a low average R*, reflectance

Fegression Coaffcients

Riegressson Conficmety (B)
b b b 20 =« wwasoes

spectra yielded the best model with the highest R* of prediction
and lowest RMSE, which were 0.96 and 3.42, respectively.
The best model was obtained using reflectance spectra without
pre-processing. This model could be considered a good model.
With R? of 0.95, the model could be used for most applications,
including quality control (Williams & Norris, 2001).

The regression coeflicient (B) of the best reflectance, KM, and
log(1/R) model is shown in Figure 3. Like PLSR models, the PCR
model is influenced by carotenoids and second overtones of the
0O-H bond. Moreover, a weak chlorophyll-a peak also appearsonthe
KM and log(1/R) models. The wavelength at around 930-1000 nm
is the wavelength that contributes the most to the model prediction.
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Figure 3. PCR regression coefficient (B) using (A) Raw reflectance spectra, (B) SGS pre-processed KM spectra, (C) SGS pre-processed Log(1/R) spectra.
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Table 2. PLSR model performances.

P R KM Log(1/R)
re-process
tec Il:nique ¢ P ¢ P ¢ P
R* RMSE R RMSE R RMSE R* RMSE R RMSE R* RMSE
Raw 0.95 3.75 0.96 3.42 0.92 4.65 093 4.63 0.80 7.46 0.74 9.01
SGS 0.95 387 0.96 3.69 0.93 4.58 0.94 4.42 0.93 4.33 095 4.11
AN 0.94 4.17 0.96 3.59 0.88 5.88 093 4.70 0.85 6.47 090 5.62
SNV 0.84 6.65 0.88 6.07 0.93 4.54 0.87 6.44 0.83 6.84 0.87 6.34
MSC 0.84 6.69 0.88 6.10 0.92 4.74 0.86 6.55 0.83 6.90 0.87 6.39
SGD 1st 0.50 11.85 0.48 1266 0.92 4.80 091 5.31 0.90 5.28 090 542
Max 0.95 11.85 0.96 1266 0.93 5.88 0.94 6.55 0.93 7.46 095 9.01
Min 0.50 375 0.48 3.42 0.88 4.54 0.86 4.42 0.80 4.33 0.74 4.11
Average 0.84 6.16 0.85 5.92 0.92 4. 091 5.34 0.86 6.21 0.87 6.15

Note: R = reflectance; KM = Kubelka- Mulk transformation; C = calibration; P = prediction; B* = coefficient determination; RMSE = root mean square error; 5GS = Savitsky-Golay’s
smoothing AN = area normalization; SN'V = standard normal variate; MSC = multiple scatter correction; SGD = Savitsky-Golay’s Derivative.

0,55
0,5

PCR PLSR

Figure 4. Overall average R* of PLSR and PC from reflectance, KM,
and Log(1/R) model.

3.4 Comparison of PLSR and PCR model

To obtain the best model to predict adulteration of white
rice flour in brown rice flour, performance of PLSR and PCR
model were compared. Based on the result found, PLSR and
PCR models have similar results. However, based on the overall
average shown in Figure 4, PLSR models have slightly better
performance than the PCR model. PLSR have a higher overall
average R* of calibration and prediction compared to overall
average R* of PCR. Moreover, based on the standard deviation
of R?, PCR models have a wider range of R* compared PLSR.
The better performance of PLS is because PLS taking into account
the dependent variable when forming new variables (PLS factor)
of PLSR (Vasques et al., 2008). According to (Shao et al., 2007),
PLSR did not include latent variables that are insignificant to
the variance of quality parameters. However, with a prediction
R? of 0.96, the best model from both methods PCR and PLSR
has an outstanding performance. In addition, both models are
influenced by the same wavelength, precisely the wavelengths

associated with the stretching of carotenoids and OH bonds.

4 Conclusion

This article shows that reflectance spectra yielded model
performances superior to KM and log (1/R) spectra. The best

nadel for both PLSR and PCR was acquired using reflect@fice

spectra. The best model for PLSR was obtained using SGS pre-
processing spectra, while the best model for PCR was obtained
using raw reflectance spectra. PLSR and PCR produce the optimal
model with an identical R value of 0.96. However, based on the
overall average of R* of prediction, PLSR is superior to PCR.
Nevertheless, it is proven that reflectance spectra of visible near-
infrared spectrometers combined with either PLSR or PCR can
predict the adulteration of white rice flour in brown rice flour.
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