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Abstract. Let 0 < @ < 1 and 8 = 1. We show that every x € [0, 1] has an expansion of the
form

Zx hy
X = i i *
ﬁEJ-=l Pign—2 1 Pilx)

n=1
where h; = h;(x) € {0, a/B}, and p; = p;i(x) € {0, 1@\’-&: study the dynamical system
underlying this expansion and give the density of the invariant measure that is equivalent
to the Lebesgue measure. We prove that the system is weakly Bernoulli, and we give a
version of the natural extension. For special values of @, we give the relationship of this
expansion with the greedy S-expansion.

1. Introduction

In 1957, Rényi introduced in [R2] a generalization of the continued fraction algorithm; the
so-called f-expansions. The metrical properties of these xpansions were investigated,
and Rényi gave important results on the existence and properties of the density of the
invariant measure, and conditions when the underlying systemis ergodic. In the last section
of [R2] Rényi discussed an example at length that he had introduced sligha earlier in [R1].
These are the -expansions, for which the ‘generating” map Ty, for 8 = 1, is given by

Tg(x) = mod 1), forx € [0. 1). (1)
Using T, one can show that every x € [0, 1) has a series expansion of the form

=) ;— )

n=l
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where a, e {0, 1,..., |8]} in the case &€ M, and @, € {0, 1, ..., 8 — 1} in the case
B e M.

There is a dramatic difference between the case that 8 € [N (in this case the Ty -invariant
measure is Lebesgue measure A on [0, 1), and the digits are independent, i.e. the underlying
dynamical system is Bernoulli), and the case that § ¢ 4. In this last case, the Lebesgue
measure is certainly not the Tg-invariant measure. In fact, Rényi showed that in this case
the density /ig of the Tg-invariant measure is bounded by £ =1 —1/8 and h = 1/¢, and
that the underlying system is ergodic. He was also able to find the density of the Tg-
invariant measure, in the case where g8 is equal to the golden mean G = (1/2)(\!@+ 1).
Shortly afterwards Gel’fond (in [Gel]) and Parry (in [Par]) independently obtained an
exact expression for the density hg.

Expansions to base 8 have provided a wide and deep field for research, toy models, etc,
exactly because lhereuc:h a difference in behavior of the map Ty when § is an integer
or not. For example, ilG‘lC case where § > 2 is an integer, only certain rationals have a
finite expansion, while in the case where f§ is not an integer, almost every x € [0, 1) has
uncountably many different series expansions of the form (2).

There are also a number of interesting variations on fS-expansions. For example,
in [W1], Wilkinson considered so-called («. §)-expansions, for which the ‘generating’
map is given by T, g(x) = fx + a(mod 1), and shows that for § = 2 the underlying
dynamical systems are weakly Bernoulli. The more difficult situation 1 < f§ <2 was
investigated in [Pal]; see also [FL]. Another interesting generalization was given recently
by Gora in [Go].

Although there are many papers on piecewise linear maps, where the multiplication
factor in each case is greater than 1 + & for some £ = 0 (see e.g. [W2, K, Ry]), relatively
few papers exist where the map is expanding on at least one branch and contracting on at
least one other branch; see e.g. [BF, CLdR, I].

In this paper, we study another kind of (@, 8)-expansions based on piecewise linear
maps T, which are (like the Wilkinson-Palmer map 7, g) variations on the map Ty as
defined in (1). The big difference here is that T is expanding on one branch and contracting
on another branch.

1.1. (a. B)-expansions. Let 0 =o <1 and 1 = =2, Consider the transformation
T:10, 1] — [0, 1], given by

— x €[0. 1/8) = L. “
= o
) 5P =D, xell/p =1,

see also Figure 1.
For x € [0, 1] we set

1. xel . x € lo,
p=px) = reh and h=h(x)={&E
0. xel, E, x el

Clearly,
T(x)=pPWal =Py _ pix).
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0
FIGURE 1. The map T.

Forn = 1, define p, (x) = ;J(T”_l(x))._ and h,(x) = h(T"Y(x)). Then, if T"(x) # 0, we

have 2
_ W T(x)
= prixgl=-pix) = gpi(x)gl—pilx)
i (x) A 12 (x) T2(x)

- Britxgl—pix) gt gI—(pix+ma)y © gpix)+p2(x) g2—(pi{x)+p2(x))

n
= ".”(x) -+ -+ n h” (x) m " ! (I) ] .
prixgl-pitx) IgZ,-=1 pilx) =231, pilx) ﬁE,-=l pilx) gn—23_1_, pilx)

Thus, we see that if, for some m, T™(x) = 0 and m is the least positive integer with this
po £
property, then x has a finite expansion of the form
hi(x) @ ha(x) I (x)
Iﬂpll-l‘)al—}'ﬂl-l‘) ﬁpl[.T}+P2(-‘f]az—ipl‘.-‘f]+ﬁ2(-"}}' rgzj-”:l pilx)gm—31, pilxy”

Suppose now that T"(x) #£ 0 for all n = 1. We claim that in this case

X = 3 Ialx) @
- n=1 ﬁZLL P"{"-}'Q"E_ZLL piixy

In order to prove this claim, note that, since T"(x) € [0, 1], it suffices to show that

27 1
= BLizt Pix)gn—X 1, pil) =0 (5)
For this, we show that
. 1
2 BTzt Pi0gn=Ti, pilx) < 0c. ©)

n=l
We have the following lemma.
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LEMMA 1.1. Let O =a < land 1 = B < 2, and let the map T be defined as in (3). Then

we have that:

(1)  Th) Cly

(i) let k = kiw) be Iamique non-negative integer for which (1/8%) <« < (1/8%.
then T' (1) C Ipfor1 =i <k + 1.

Proof.

(1) Note that T(fy) =[0, («/B)(f — 1)). Since a(f —1) <1, then (a/B)(f —1) <
1/B. Hence, T(11) C [0, 1/8) = I.

(ii)  Since

1 1 .
W-ﬁa’fﬁ for k = kia),
it follows that

ad
B
Thus, T(I}) C [0, 1/'{,8;""'1)) and, hence,

1 1
(ﬁ—l)fﬁ(ﬁ—l){ﬁ-

. 1

Remark 1.1. Suppose that T™(x) £ 0 for all m = 1. Let k=k(x) = 0 be such, that
1/t < @ < 1/p%, then from Lemma 1.1 we have

. F
#O0<i<=n—1|T'x)el}=
{0 = _| (x) 1}‘k+2

PROPOSITION 1.1. Suppose that for all m > 1 we have that T" (x) # 0, then

foralln = 2.

x 1

- .
Z rgZLl Pfl-l'}'a,!!—z,’-’:l pilx)

n=I1

Proof. Since § > 1, while @ < 1, the above sum is the largest whenn — 3" | p;(x) takes
its largest possible value for eachn = 1. Now

n—Y pix)=#0<i<n—1|T'(x)e L}

i=1

Since 1/8%+! < o < 8% for a unique k = k(&) = 0, again by Lemma 1.1,

n=) pi)=#0<i<n—1|T'@eh}=<

n=1

n
k+2

Since we now have that Q',SH'I = 1, we find that

= 1 = 1

n=1

{ 4} oo 1
E e E _ =g
o ix N Ax) — nik+1) [} 3 "

ﬁEJ=l Pix)gn=Yi-1 Pifx) n=1 75T @3 n=1 {arrgl-l—l) =

Thus,

3 I
HZ—I: r@Z};[ pi{x)gn=3iL, pi(x)
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In this paper the metrical properties of (o, §)-expansions are investigated. In particular,
we show that the underlying systems are weakly Bernoulli and we also find the entropy of
this dynamical system. In §5 we consider the special case where o = 1/%, for k € N. In
these cases the (a, #)-expansions yield ‘slow”™ S-expansions. In fact, we see that the series
expansions yielded by these (o, 8)-expansions are identical to the series expansions given
by the corresponding S-expansion, but that the series expansion is yielded ‘in a slow way’.

In the last section the case § = 2 is considered. For these values of f§ there are two
meaningful ways to define (@, f)-expansions. In the first way one defines the map T as
in (3). In this case, the proof that the expansion converges, i.e. that (4) holds in the case
B8 = 2, is slightly more involved than the above proof of (4) for 1 <= § < 2. Another way of
defining (a, #)-expansions in the case § = 2 is along the lines of the classical f-expansion.
In both cases the underlying dynamical systems are weakly Bernoulli. Since the proofs of
these results are similar to the case that 1 < § < 2, only outlines of these proofs are given.

2. Digits and fundamental intervals
2.1, Digits. We have seen in (4) that every x € [0, 1] can be written ast
=
= pLizi Pign—Lioi i

where this sum is finite if 7" (x) = 0 for some m > 1.

Note that the i; and p; are determined once we know in which element of the partition
{Iy. I} the point T'~!(x) lies. Define for x € [0, 1] the sequence of digits a, = a,, (x).
n=1,by

a, =k ifand onlyif 7" (x) € I, where k € {0, 1}. (7

We call the sequence (a,),= the (@, f)-digits of x. Note that the sequence (a,),=
completely determines the expression (4) and vice versa. So we identify x with its sequence
of (a, f§)-digits,

.
Itn
.r=z =:lar.az. ...].
n=1 ﬁZLL Pi Cr”_ELL Pi

In fact, since forn = 1,a, = 1 — p,. and by the definition of &, we have that

> a
n
X = .
; ﬁ”""l_ZLl ai = 1H 0 ai
2.2, Fundamental intervals. We define fundamental intervals (of rank »n) in the usual
way: the intervals of rank one are A(i)={x|ai(x) =i}=1F, fori €{0, 1}, and the
intervals of rank n, forn = 2 are

Al o sig) = AGD N T AG) M- N TV AG,)

={xla(x) =iy, ..., a,(x) =iy}
hy N N h,, N T7(x)
- Brial-p B Pign—Xiipi - Bl Pign—Xio Pi

={x|x

+ We drop the argument whenever possible.
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where

0, ;=0 I, i;=0,
hj=3qa . and p; = )
I ij=1 0. ij=1.

On A(iy, ..., i), the map T" is linear with slope IBZLI Pign=Yi_1 Pi,

A fundamental interval A(iy, ..., i) 1s full if A(T"(A(y,...,iy)))=1. Here A
denotes Lebesgue measure on [0, 1]. From the above we see that if A(iy, ..., iy) is full,
it is equal to the interval

i f’ﬂ! i f’ﬂ! + 1
[ SRS SERTA ) SR SV S OpS S

m=1 m=1

and
1

BT PignTi ot

In §2.3 we show that the full intervals generate the Borel o-algebra.
We now consider non-full fundamental intervals that are not subsets of full intervals of

MA@ i) = (8)

lower rank. Let By, be the collection of non-full intervals of rank n that are not subsets of

full intervals of lower rank.

Note that A(1) is the only member of B and B2, since A1) = A(10). Suppose that
Af(iy, ..., Iy) is an element of B, then A(iy,....i;) € Bjforl = j =n — 1. We claim
that A(iy, ..., i) contains exactly one element of B, . There are two cases:

. if TA(,....LNNA() =@, then A(iy,...,ip 0 =A(i,...,i,), and
Afiy, ... .0, Q) 1s the only member of B, 4| contained in A(iy, . ... i,);

. if T"(A(, ..., i) MA(L) #W, then Ay, ..., i, 0)1s full, A(iy, ..., i, 1)
is non-full and therefore in B,4;; furthermore, A(A(i].....i,. 1)) < (1/8)
AAG, LT

Since |B1| = |B2| = 1, it thus follows by induction from the above that | B, | =1 for all
.

Let B, = {A(iy, ..., iy)}. then it follows from the above that @

MAGL ) = MAGL L im1) G TTHAGL L dee1) DAL =1,
and
1
AMAGL. ..., 00)) < El{ﬂ.{h,, cvine1)) A TTNAG L iee1)) NA(D) # .
By induction, this implies that

. . 1
AMAGY, i) € —=—
pr—Xioi p

where

n
n—> p=#H0<j<n—1|T/(x)eA)
f-=1

forany x € A(i1, ..., in). Note that, since T is expanding on A(0), we have that

n
1:1—1!1:]:\: (n - Z P’-) = oc.

=1
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2.3, Full intervals generate the Borel o-algebra. We now show that full intervals
generate the Borel o-algebra on [0, 1]. We first introduce some notation. Let F;; be the
collection of all full intervals of rank n, and let D,, be the collection of full intervals of rank
n that are not subsets of full intervals of lower rank, 1.e.

Dy ={A(i1,....in) e F | A1, ... ij) g Fjforany 1 < j <n— 1}
We have the following lemma.

LEMMA 2.1. The union of all full intervals that are not subsets of full intervals of lower
rank has full Lebesgue measure, i.e.

A(O Jad. .. .5;‘,1)) =1.

n=1 Dy

Proof. For any N = 1,

N
A([O, o\ JUaG. ... j,;)) =A(U NI 5,1)) =AA(i, ..., i)

n=1 D, B,
1
< —_—
BN =L pi
where A(i, ..., i,) is the unique element of B,,. Taking the limit as N tends to infinity,
we obtain
oo
,x([n,1)\UUA(J‘1,,,,,J‘H))=Q 0
n=1 Dy,

Remark 2.1. Lemma 2.1 implies that

o0

A(U Jad. .. .,:',z)) =1.
n=1 F,

So applying a similar procedure to any interval, we find that any interval can be covered
by a countable disjoint union of full intervals.

LEMMA 2.2, Let A(iy, . ... I,) be the unique element of B,, then
T"AG, ... 0, =10, T"(1)) forn=1.

Proof. The proof proceeds by induction. First note that By = {A(1)}. and that T A(1)
= 1[0, 7(1)). Furthermore. By = {A(1) = A(10)}. so TTA(10) = [0, T*(1)).

Suppose the statement holds for index n. Let .&(51, ., Iy) be the unique element of
By, then by assumption T"A(i1, . .., i) = [0, 7" (1)) We have the following two cases.
. IFT%(1) e Aﬁ. then B, 1 = {A(i], ..., i, O}, and

TOHAG, iy, O =T AGY, L i) = [0, TN (D).
e IfT"(1)e A(1), then Bos1 = {A(i1, ..., in 1)} and

T"A(iy, ..oy ig, D=[1/B, T"(1)), soT" T AG, ..., i, 1) =[0, T"T(1)).
u|
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3. Natural extension of T

In recent years, the use of natural extensions has contributed greatly to the development
of the theory of many number theoretical maps and algorithms; see e.g. [BJW], where the
natural extension of the Gauss map was crucial in proving the so-called Doeblin-Lenstra
conjecture, or [DKS], where the natural extension yields in a simple and elegant way the
underlying invariant measure, which is the Parry measure. See also [DK] or [IK] for a
more detailed discussion of these and other related results.

3.1. Construction of the natural extension. In this section we derive (a version of) the
natural extension of the dynamical system underlying (c, §)-expansions. Throughout this
section, for n = 1, let p, = p,(1), h;; = h,(1) and

PH hl hf!

On ﬁplﬁ'l_PL rgEL pi Q’”_Z};l i

Set Ry =10, 1) x [0, 1), and for n = 1, set

R, =[0, T"(1)) x [0 : )

C B g
Furthermore, let

-
Z=|J Ry x(n},

n=(

and let B = LI, Bx be the disjoint union of the Borel o-algebras 5, on R, x {n}.
Denoting by A the two-dimensional Lebesgue measure, we have by Proposition 1.1,

el " 1
Z ARy) =1 +§: r@ELl p,—u,:z—Ej;le =0

n=(0 n=1

so the Lebesgue measure A(Z) of Z is finite. Let A be the normalized Lebesgue measure
on Z. Now define 7 on Z as follows:
. if (x, v, 0) e By x {0}, then

(T(x), y/B. D), x € A0,

T(x, y,0) = {
(T(x), y/a, 1), x € A(l):

15
. if (x,y,n) € R, x {n},n=1,and T"(1) € A(0),
63
TGy, m)=(T&),y/p.n+ 1y

. if(x,y.n) € R, x {n}.n=1,and T"(1) € A(1), then for x € A(0) one has,

P, v
T—a Ty = T < &_+r_00 L)
(x, y.n) ( (x) o, P )

and for x € A(1) one has,

T(x,y,n)=(T(x), v/e,n + 1).
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One can also describe 7 on R, x {n},n = 1, using the («, B)-digits of 1 in the following
way. Let (dn)n=1 be the (o, §)-digits of 1 and let (x, y, n) € Ry x {n}. Suppose that
(ap)p=1 is the sequence of (a, f)-digits of x. Then

Py y
T(.‘[’),Q—-l-E,O‘ . al < dn+1.
T(x,y.n)= !

(T(T) n + l)e- al =dﬂ+]+

! ﬁPJr+lQ'1—Pn+l !
From the above definition of 7 one has that
T(Rg x {0} = ([0, 1) x [0, 1/B) x {0} U (R x {1}),
and, for = 1,

Rn+1 X {ﬂ' + l}s d:z+1 =0,
T(Rn X {n}) = Py, Py
([0, 1) x [ “) x {0}) URupr X (4 1)), duyy = 1.

Qn ' Qn+1

Since lim,_. o (P,/ Q,) = 1, we see that 7 is surjective. It is easily seen that 7 is injective,
measurable and Lebesgue measure preserving.

Let w:Z — [0, 1] be the projection on the first coordinate, and let B be the Borel
o-algebra on [0, 1]. We want to show that

5’=|j B, =|i| \3? T~ B x {i}.
i=0 i=0 n=0

Note that By is generated by sets of the form
Afay, ....ay) x A(by, ..., by) x {0},

where A(ay, ....a,) and A(by. ..., by ) are full intervals in [0, 1]. We now specify a
particular generator of B, n = 1. Foreach n = 1, the map

10, 1) — [n, : )

Bt Pign Lot pi

given by
X

wn (x)=

t ?
’gZ’;l Pign—2i—| Pi
is a continuous isomorphism. Hence, sets of the form

{1#::(&(}31, ceen b)) | Alby, L., by s full}

generate the o-algebra on

1
0, 7 n .
[ rSEI=L Pi Qr”_ZI=l Pi )

Now the Borel g-algebra on [0, 7" 1) is generated by sets of the form

Ay, ap) = Aday, . ... oap) N[0, T (1),
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where AW(q, ..., a,; Alap, ..., ag) is a full fundamental interval in [0, 1). Thus,
B, is generated by sets of the form

Ay, .y a) X Y (AbL, - b)) X (),

where A(a. ..., ag) and A(by, .. .. by) are full intervals.
Since
Ay, @) x Y (Aby, - b)) X (i)

is equal to
TUA(d), . ...dyay, ....oap) x Alby, ..., by) x {0},

we only need to show that
Alar. ..., ax) x Ab1. . ... bm) x {0} e T"x~'B x {0}.
To this end, divide by - - - by, inl%'ull) subblocks C - - - Cy as follows. Let
rp=inf{j = 1] TIA®D, ... . bj) =10, 1)},
and set Cy = by - - by, chwnsider bpiq1 - By oset
rr=inf{j = 1| TjA(h,-lH, b i) =10, DL
and C; = by 4| - - - by 4y Continuing in this way, we obtainr| < rz < -- - < ry, such that
Ci=brtectr, 141" bypogr;, 1=j=E,

THAC) =10, Dyand A(b1, ..., b)) =A(Cy,.... Cy).
If we consider
‘é' =é‘(hla R 9bm) x [09 1) x {OL

then r; is the first return time of elements of A to Ry x {0} =[0, 1) x [0, 1) % {0}. So, for
any x € A(by, ..., bw) and any y € [0, 1),

ri(x.y.0) =r =inf(j = 1| T/A(by. ... by) =[0. D}
=inf{j =17/ (x, y,0)€ Ry x {0}}.

From the definition of 7, we see that b).- =dj- for 1<j<r —1 and b, =0, while
dy, = 1. Note that

TA(Cy. ay. . ... ay) %[0, 1) x {0} = A(ay. . ... a,) x A(C]) x {0}

where C1 =by -+ by =d) .. .dr,—10, and
P._, P
mcl)=[ i, )
er—l er

Likewise, one can define »; as the jth return time of elements of

Aby, ..., by x [0, 1) x {0} to Ry x {0}.
Then, we have forany 1 < j < ¢,

bﬂ'[‘l""-l-i"f_[-l-l = dla wees hi'[‘l‘""l‘i"f—l = di"f—].
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and br1+---+r; =0, while d,-j = 1. Moreover,

T TAC, ..., Clal, ... an) % [0, 1) x {0}
= Alay, ..., a,) x A(Cy,...,C;) x {0},

where Cj =didz . .. d,-}._10, and

Protoiricl Prootr.
&(C1WC;)=[ e n+ -HJ)‘

Oritotrj=1 Qrgotr,
Consider
A =A(Cs, Ciz1,...,Cl.al.....an) x [0, 1) x {O}.
Note that A(Cy, Ce—1,....C1) and A(Cy, Ce—1, ..., C1, a1, ..., ay) are both full.
Then
T"A = ab, ceLdy) X A(Cy, L., Cy) % {0}
= Alay, ....ay) x Alby, ..., by) x {0}

Thus.
Al@r, ....an) X Alb1, ..., bw) x {0} e T2 1B x {0).

This proves that
_ o0 o0
B=| |\ 7"x7'B x (i}.
i=l n=0

Define a measure 2 on [0, 1] by pu(A) = i(n_l(A)), Since 7 om =m o T, we see that
¢ is T-invariant. Furthermore, p is equivalent to Lebesgue measure on [0, 1] with density

~c
Lo, o1y (x)
h“-ﬁ(x) = C‘I-ﬁ[l[ﬂ-”(x) + Z rgz‘.’_[l p;c‘:n?z{r—l P i|& ©)

n=1

oo T”l —1
C = 1 + M T
a.f ( el ﬁEr:l F'J'Q'”_EJEI Pi )

where

is a normalizing constant. We have the following theorem.

THEOREM 3.1. The system (Z, B,A.T) is a version of the natural extension of
([0, 1], B. pu. T).

3.2, Entropy. Although the entropy of T can be calculated from general theory, we
derive the op}f of T ‘by hand’, using the Shannon-McMillan-Breiman theorem. We
first show that T is ergodic with respect to the T-invariant measure j as given in the
previous section. The proof of ergodicity is based on a classical lemma, known as Knopp’s
lemma; see [DK].

LEMMA 3.1. (Knopp’s lemma) If B is a Lebesgue set and C is a class of subintervals of
[0, 1), satisfving:
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(a) every open subinterval of [0, 1) is at most a countable union of disjoint elements
from C;

by forall AeC, AMANB) = yi(A), where y = 0is independent of A;

then M(B) = 1.

THEOREM 3.2. The system ([0, 1], B, 1, T) is ergodic.

Proof. Let B € B be such that T7'B =B and [ B) = 0. We need to show that ;1(B) = 1.
Since p is equivalent to Lebesgue measure A on [0, 1], it is enough to show that A(B) = 1.
Let C be the collection of all full fundamental intervals. By Remark 2.1, C satisfies
hypothesis (a) of Knopp’s lemma. Now let A = A(iy, ..., i,) be afull interval. From (8),

we have
1

ﬁz:';l I’J’gr”‘ZLL P’

AMA(G, o)) =

Furthermore, T" on A iﬁear with slope ﬁz};l Pi =iz Pi | Thus,
AMANB)=AMANTTB)=A(A)L(B).
Therefore, hypothesis (b) of Knopp’s lemma is satisfied with » = A(B) = 0. Hence,
AMB)=1and T is ergodic. O
THEOREM 3.3. The entropy of T is given by
hy (T) = (A (0) log B+ (A(1)) log a.

Proof. Since the partition P = {A(0), A(1)} generates the o-algebra, ie. V,&:’ﬂ T—ip
= B, then by the Shannon-McMillan-Breiman theorem

log (A, ..., i)
hpy(Ty=— lim og u(Ah !,;)(r)),

H— 00 n

where A(iy, ..., i,)(x) denotes the element of V::[% TP containing x. Let

= I

Du,‘ﬁ= 1 +

L)

n=1 rgZ‘JLl PJ‘Q‘H_Z}LL Pi

then from (9), we have that

Cyph(A) = u(A) = Cy Dy ph(A). (10)
Hence, ) )
h(T) = — Tim log M&KH,I; ‘s hz)(-'f)).
Letm) < mpz < ... besuch that A(iy, ..., im,){x) is full, then

h, (T)=— lim log A(A(, .. .\ Tm,) (X))

n—00 ny,

iy

My,
= ”1_111:1’c log f— Z pilx) +Hl_1£1;_; log cr(l — m—u ; p,—(x))

mn =
(A0)) log f+ (A1) log e,
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in the last equation, we used the fact that

My
Tim (1/m}) Zl pi(x) = w(A(0)),
=
p-almost everywhere. a

4. Weakly Bernoulli
We first show that the transformation T is exact. Since full intervals alerale the Borel
o-algebra on [0, 1], by a result of Rohlin [Roh] it is enough to show that there exists a

universal constant y = 0 such that for any full interval A(i1, . .., i») and any measurable
subset A of A(iy,....i,) onehas
u(A)
n(T"A) = . —
V@G, i)
To this end, let A(ii. ..., iy) be a full interval of order n and A a measurable subset. On

n n
Aliy, ..., 1,) the map T" is linear with slope ﬁzi=l Pig"—Li=1 Pi where

Then,
A(A)

AMT"A) = BLiz Pign—Yi1 Pij(A) = -
(T7A) = p=i=t N HA(A) MAG, ..., i)

By (10), we have
AA)
k(ﬂ(f], s !.J'E))

p(T" A) = Co,pDap MT"A) = Ca.pDa.p

j1(A)
Fu(Aln, ..., in)

Setting y = Cc@_ﬁﬂé‘ﬁ, then y = 0 and

= Cce.ﬁDcze

p(A)
(AT, i)

Thus, T is exact, hence mixing of all orders, see [Roh], and by results of Islam [I], T

w(Ir"A) =y

is weakly Bernoulli. In fact, we show that the natural extension 7 contains an induced
system which is Bernoulli. This allows us to use a theorem of Saleski [S] to give another
proof that T is weakly Bernoulli.
Throughout the rest of this section, we use the same notation as in §2, that is, forn = 1,
Pn = pa(1), hy = h,(1) and
P, Iy hy
On - ﬁf’la’l_a”l Tt ﬁZLl Pigh—2Yio1 Pi’

W be the induced transformation of 7 on the set Ry x {0}, then W(x, y,0) =
Jnix v0) . where

nix,v.0)=inf{j = 1| T/(x, v,0) € Ry x {0}}.
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For k=1, set RE={(x,y,0)€ Ry x {0} |n(x,y,0)=k}). If (x,y 0)€R then
T/ (x,y,0 € R; x {j} for 1 =j<k—1, while 7%(x, y,0) € Ro x {0}. From the
definition of 7, one sees that fork = 1,

RE x (0} = [E, i) X [0, 1) x (0},
Or-1 Ok
where Py /Q} as given in §3, and P,/ Qg = 0. Note that
P, P
[ - 1+—‘) oy
Or—1 Ok
{and, hence, Rf} x {0} # @) if and only if 7%='1 € A(1). Furthermore,
"
(T(x)& rk 0)& (x.y.0) € Ry x {0}
Wix, y,0) = . Py v .
(x, ¥, 0) Tk (x), k—1 _ . — 0 (x.v.0) € Rf} x {0},
Qk-1  glHYici Pigk=D-Lisi
and k = 2.

On the interval

o)
Qr—1 O/’

(85

Or—1 O

the map T* is linear with

and

: k=1 -1 P

Qi1

If we consider the transformation § on [0, 1) defined by S(x) = Tk (x)if

LSRN
' Q1 Ok /)
then S is a generalized Liiroth series transformation which was studied in DK]._ and

it was shown that § preserves Lebesgue measure, and its natural extension 1s defined on
[0, 1) x [0, 1) by

Py v . P P
Sx,}-‘:(Sx& + - ) 1f_re|:—,—),
. ) P O rBZf;Ll Pitl g k—1—=Y{") p; Qi1 O

Furthermore, & preserves the two-dimensional normalized Lebes@® measure and & is
Bernoulli. Consider the projection p : Ry = {0} — [0, 1) x [0, 1) given by p(x. y. ) =
(x.y). Then, poe W =80 p and W and § are isomorphic, hence W is Bernoulli. We
now use the following theorem to prove that 7 is Bernoulli.
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THEOREM 4.1. (Saleski’s theorem) Ler {w, w, T') be a non-atomic Lebesgue space
with an automorphism T. Let A € B be a subset of X of positive measure and denote

by Ty the induced transformation of T on A. Moreover, suppose that we have that Ty is
Bernoulli, T is weakly mixing aﬁ

oo 0o o0
HM(\/ \/ T4y, ‘ \/ T;;P) < o0,
i=1 j=1 i=0

where P is a Bernoulli partition of (A, Ta) and e

y?: HA - U T7fA AN Lij T-"Al.
i=1 i=1
Then T is a @mnu!ﬁ automorphism.
We have the following result.
THEOREM 4.2. The system (£, B. x. T) is Bernoulli.

Proof. Note that T 1s exact, hence mixing, implying that 7 is mixing, and therefore weakly
mixing; see [Roh]. We now apply Saleski’s theorem with A = Ry x {0}, T4 =W and
P= {Rg % {0} | k = 1} the Bernoulli partition. In our case the sets ¥; are given by

P P
Yi=1|—=1)=[0.1) x {0}, |0, — ) x [0, 1) x {0} .
Now, the partition57is a refinement of the partition ¥; for all j = 1, hence Ve, WP is
a refinement of \/7~ | VT:I W!Y; for all j > 1. This implies that

19
o o0 ) o .
Hs o (\/ \/ wiy; | \/ W P) =0,
i=1j=1 i=1
where igﬂx{(}} denotes the induced measure of A on Ry % {0}. Thus, 7 is Bernoulli. O

5. Slow B-expansions
In this section we consider the case @ = 1/8%, for some £ € M. In this case
Bx, x € A(0),
@ (Bx — /B xe A,
42
Since T(1)=(8—1)/p""" <1/, then TEEA(1) C A(0) for i=1,2, ..., ¢+ 1L

That is, @ignever x € A1), then T(x), ..., T (1) € A(D), and T (1) = T(1),
where Tj is the greedy transformation, given by

T(x)=

Ta(x) = pBxmod 1.
This implies that Ty is a jump transformation of T, with

T(x). x € A(0), Tp(x), x e A(D),

Tpx)y=1{ and T(x)= .
pex) TI2(x), x e A1), o (x) Te(x)/BY, xe A(D).
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Let a, = a,(x) be the nth (1/8%, B)-digit of x as given in (7), and let d,, = d,(x)
be the greedy digits of x, Le. dn = LﬁT‘;f_l[x)J, n= 1. Frc.a the above we see that
whenever a, =1, then a4 = - =ay1441 =0. So given the sequence (a,(x))y=1,
the sequence (d,(x)),= is completely determined; simply remove in (a,(x)),=1 the
€ + 1 zeros following every occurrence of 1. Vice versa, knowing (d, (x)),=1, we can
construct (&, (x)),=1 by inserting £ + 1 zeros after every occurrence of 1. We formalize
this rtlatm;hip as follows. @

Lets(x) =inf{n = 1| T"(x) = Ts(x)}. Note that

1, x € A(D),
€+2, xeAl),

and we have that Tg(x) = T35 (x), and if s(x) = £ 4+ 2, then T(x), T2(x). ..., T*@)=1(x)
e A(0). Set fori =1, 5i(x) =.5'(Tl|r;;_1 (x)), where 51(x) =s(x). We call 5; the ith jump
time. Given the (I/ﬁe, f)-digits (an)n=1 and the greedy digits (dn)n=1 of x, we have

5(x) =

ay=d; and ar=-.-=a, =0ifs =042,
and fori = 1,
ﬂ_\-l+___+_‘-1.+1 = d,‘+1 'dl]d ”-\'1+---+-\)‘+2 = .= H-"lz"'+-\'1'+l = 0 lf 5,'_1’_1 = E =+ 2

We now compare ‘on a finite level’ the (1/8%, f)-expansion of x and its greedy
expansion. More precisely, let

X = -
PSS S

n=l
_
be the (1/8*%, B)-expansion of x, and let

-
X = E
n=1

d!!
i

=

be its greedy expansion. We have the following result.

THEOREM 5.1. Let x € [0, 1] be such, that T™(x) # 0 for allim = 0. Then for anvn = 1
one has

s+t n
" hy, dp,

Pt S = 2 o

m=1

m=1

and

St t8p i LI ]
E ;};—E(ZS,—— Z ;},—):il, (12

=1
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Proof. The proof is done by induction. Let 1 = 1, we have two possible cases.
(i) Ifsi=ws1(x)=1,thenx e A(0),h =0, p1 =1, and 4, = 0. This implies that both
sides of (11) are equal to zero and that both sides of (12) are equal to one.
(i) If sy =s51(x)=£€4+2, then x € A(1), h, = 1/',8“’1, pr=0d =1 hy=-- .=
hgy—iy2p=0and pp =- .- = p; = 1. Therefore,
R

hm f!] f!] 1 ! dm
2 ﬁZ:-":LpJ-—S[m—Z}":l ) rgpl—éil—pl} - rg—é - E _,; ﬁ?’

m=1
and
kil m
Z;J,-—E(.n —Zp,—) =(s—1)—Ef=E+1—E=1,
i=1 i=1

mmd it follows that (11) and (12) are satisfied.
Assume that the statement holds for n = &, we need to show that it holds forn =& + 1.
Owing to our assumption, we have
84ty

k
Ty _ z dy
ﬁZ}”:l .PI_Hm_Z}":l PJ'}' - ﬁm !
m=l

m=1

L f R o s 848y
Z ;J,-—E( S — Z pi |l =k
i=1 i=1 i=1

Thus, we only need to show that
R R

and

fm _ diy a3
m=gp+-+ip+1 ﬁE}":l picton=YZip)  gEFL
and
St e sS4
Z Pi— E(SHI - Z p,—) =1. (14)
i=si+etsetl i=s14-- s+l

‘We consider two cases.
(i) Ifsee1(x) =s1(Tf(x) = L, then Tff(x) = T T4 (x) € A(0).
gyt 1 () = Mg g (X)) = R (TS5 (1)) = 0,
Pt sy = 1, and di4 1 = 0. Hence, both sides of (13) are equal to zero. Since
Psi+tsp — E(-T.ﬁ'+1 - PJ\'L+-"+J\',Q+[) =1,

we find that (14) is satisfied.
(ii) Ifspyq(x) =€+ 2, then TS T He(x) = T‘:f(.t) e A(1), and T51++5eti(x) € A(0)
for j=1,..., ¢+ 1. Then,

_ £+1 - _
hyypogynr =18 hyyoqgi2="=hyt . 4g,, =0,
Psi+otn+1 =00 Pytogg 42 =" = Py oty = 1,
and di1 = 1. Thus,
St Sl
* ftm h.\'L—i----—i-.\'k—i-l

=1 i=1

M=s1 4t sp +1 ﬁz?;l IJJ-—\’:UH—E}LI JI'J]') ﬁzj\ +-dag 41 F'J'_“.n"[ +“'+-"R+1_Zn-l+-”+m+l ,UJ')
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By the induction hypothesis,

sttt Sitetat1
pf—f(.ﬁ'l-l-"'-l-.ﬂ--l-l— Z ,ﬂi)=k,
i=l1 i=1
and 1t follows that
FINERS | ) PR RS | ; )
ﬁzj-l:l b pi—L(s -t +1—Ej-l=[ k pPi) — ﬁ'k+p.1'l+---+.1'R+l_£‘.1_p.\'l+---+.\'R+l}| — ﬁk—E‘
We find that
L s | fJ'm 1 3 dk+1

sy e 41 B ptn=y p) gL gt gl

50 (13) holds. Finally,

Z pi — €| sk — Z Fr‘)=[Sk+1—1)—"3=f+1—f=1e

i=sp+-+sg+1 =8+l

so (14) holds. This proves the theorem. O

6. (a. B)-expansions in the case § = 2

As mentioned in the introduction, in the case 8 = 2, there are two ways to define («, 8)-
expansions. In §6.1 a straightforward generalization of the case 1 < 8 < 2 is considered,
while in §6.2 a generalization is discussed which is ‘close’ to the classical S-expansion. In
both cases, the underlying dynamical systems are weakly Bernoulli.

6.1. Two branches. Let 0 =a <1 and f = 2, and let the map T : [Oa] — [0, 1] be
defined as in (3). Using the same notation as in §1.1, we again have for x € [0, 1], with
TN (x) # 0 for N = 0, that

N

hn: ™,
X = Z Zn ] .,H(t_) " s + N | (t) N e (15)
|8 i=l Plrl-'-}'ar” Z]‘:l pilx) rng:l pilx }UN_EJE[ pilx)

n=1
We claim that also in this case
oo
¥ = Z Iy (x)
) ﬁELL I’J‘E-l')arﬂ—zj-;l pilx)”

n=1

cf. (4). Again it suffices to show that

. 1
n]—lp:]w ’32};1 Pilx) =271 pilx) =0,

cf. (5). Recall that (5) holds because the series in (6) converges due to Lemma 1.1. This
approach does not work for 8 = 2. Therefore, we give a new proof of (5), which holds for
all = 1.
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For x € [0, 1], with TV (x) #0 f’oﬁij 0, (15) implies that
J\‘r
iy

= X.
2 BLiz1 P =} [y pilx)

n=I1

We therefore have that

0<s~.=i—ﬂ i () <x. (16)
Bizt Pitgn=Y1 pilx) —

n=1

For k € M, let ny, be defined by

n—1
ny = minln eN; Z L, (T (x)) =k}’

i=0)
where 1y, is the indicator function of the set 1. Since i, # 0 for infinitely many n > 1,
the nj. are defined for every k € . Note that ny < n; <--- are exactly the “times’ that

hy, # 0. Consequently,
o 1

5=

d
B

& BT g T )
and it immediately follows from (16) that

1
lim o

m = (17)
k—oo ﬁz‘=l Pl"-'”a”*“i;:[ pilx)

Moreover, for each & = 1 we have by definition of T that

1 1 1
rgZ}’L Pi) gLy pi(x) - E ,82:'“:1 Prix) =15, pilx)
= 1
ST
: !
" B T e T
1

- +2 +2
rngil' ;‘JJ"."'.)G-R.Q +2_Zfi|_ pilx)

1
8 ST pi) e =150 p
By ‘sandwiching’ we see that the desired result (5) follows from (17), i.e. we have proved
the following lemma.

LEMMA 6.1. Let O < < 1 and § = 1, then
. Iy (x)
n=l ﬁZLL Pilx) =27 pilx)’

X=

None of the results in §§2. 3, and 4 made use of the fact that 1 <= g < 2. Therefore, all
of the results from these sections hold forall 0 <o < 1 and § = 1. However, the results in
§5 depend on the factthat 1 < 8 < 2; see Lemma 1.1. Note that T is weakly Bernoulli for
B = 2 follows as well from [E].
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S

Bx—

P 7B - L%

1

i i 3
B f 7
FIGURE 2. The map T with more than two branches; here o = 0.71 and § =3.5.

6.2. More than two branches. Let(Q <o < 1 and # = 2. As a variation on (1), the map

T:[0, 1] — [0, 1] is defined by

px(mod 1).  xe[0,[B]/).

%{ﬁx— 1B]), xe€llBI/B. 1I;

see also Figure 2. 11
To obtain expansions, we need to rewrite T asin §1.1; for x € [D-,]]r set
77
1, xehi,i=0....,18]—1.

0, xelp],

T(x) = (18)

p=px)=

and

i, xecdo=0...,18]—-1,
h=h(x)= a re%

where I = [i/B. (i + 1)/f§EFor i=0.1,..., (8] —1 and I s =[[B]/B. 1]. Then
TR 7' ~P™Wx —h(x). For n=1, define p,(x)=p(T" '(x)) and h,(x) =

R(T"'(x)). Then, if TV (x) # 0, we have.
18

N By (x) TV (x)
o IBZ?:[ Pii-l'}'a”_Z:';L pilx) rgE]‘;l p,-{_r}a,N—Ef\':l pilx) ’

X =

Thus, we see that if for some m, T™(x) =0, and m is the least positive integer with this
property, then x has a finite expansion of the form

m hin ()
n=1 ﬁEf:l P"“'[)G’”_E};[ pilx)

X =
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Suppose now that 77 (x) == O for all n = 1. We claim that in this case

> hn(x)

X = .
L T n g e i

As in §6.1, this follows from Lemma 6.1 (note that in the proof of Lemma 6.1 we did not
use the fact that T has two branches).
In fact, we have a stronger result; not only do we have that

|
lim =10,
n— g 3 pilx P 3 pitx)

but even that
= 1
< oC
2 P ST S TS
n=l
This follows from the following lemma, which is a straightforward generalization of
Lemma 1.1.

LEMMA 6.2. Let 0 <o < | and B = 1, and let the map T be defined as in (18). Then we

have that:

) T g Cly

(1) let k = k(«) be the unique non-negative integer for which {1/{,8k+1)) <o = 1/,8"'.
then T'(Ig)) C Ipforl <i <k + 1.

A proof similar to that in Proposition 1.1 gives the desired result.
The results from §§2, 3, 4 and 5 can be extended to the present case by making slight
adjustments to the proofs.
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