PERBANDINGAN METODE MAPREDUCE BERBASIS SINGLE NODE HADOOP PADA APLIKASI WORD COUNT

OKTAVIANI, ELVIRA and Utami, Alvi Syahrini and Marieska, Mastura Diana (2023) PERBANDINGAN METODE MAPREDUCE BERBASIS SINGLE NODE HADOOP PADA APLIKASI WORD COUNT. Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_55201_09021281823062.pdf] Text
RAMA_55201_09021281823062.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (4MB) | Request a copy
[thumbnail of RAMA_55201_09021281823062_TURNITIN.pdf] Text
RAMA_55201_09021281823062_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (4MB) | Request a copy
[thumbnail of RAMA_55201_09021281823062_0022127804_0021038607_01_front_ref.pdf] Text
RAMA_55201_09021281823062_0022127804_0021038607_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (3MB)
[thumbnail of RAMA_55201_09021281823062_0022127804_0021038607_02.pdf] Text
RAMA_55201_09021281823062_0022127804_0021038607_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (633kB) | Request a copy
[thumbnail of RAMA_55201_09021281823062_0022127804_0021038607_03.pdf] Text
RAMA_55201_09021281823062_0022127804_0021038607_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (402kB) | Request a copy
[thumbnail of RAMA_55201_09021281823062_0022127804_0021038607_04.pdf] Text
RAMA_55201_09021281823062_0022127804_0021038607_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (488kB) | Request a copy
[thumbnail of RAMA_55201_09021281823062_0022127804_0021038607_04.pdf] Text
RAMA_55201_09021281823062_0022127804_0021038607_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (488kB) | Request a copy
[thumbnail of RAMA_55201_09021281823062_0022127804_0021038607_05.pdf] Text
RAMA_55201_09021281823062_0022127804_0021038607_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (308kB) | Request a copy
[thumbnail of RAMA_55201_09021281823062_0022127804_0021038607_06.pdf] Text
RAMA_55201_09021281823062_0022127804_0021038607_06.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (274kB) | Request a copy
[thumbnail of RAMA_55201_09021281823062_0022127804_0021038607_07_ref.pdf] Text
RAMA_55201_09021281823062_0022127804_0021038607_07_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (237kB) | Request a copy
[thumbnail of RAMA_55201_09021281823062_0022127804_0021038607_08_lamp.pdf] Text
RAMA_55201_09021281823062_0022127804_0021038607_08_lamp.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (116kB) | Request a copy

Abstract

Word Count is a type of task used to count the occurrences of unique words in a text file. Processing time is an important factor to consider in meeting the standards of Big Data processing. In the context of Big Data processing, Hadoop MapReduce serves as a framework used to develop software and process large-scale data in parallel. The conducted research involved the processing of text files using the MapReduce method on the Hadoop Distributed File System (HDFS) using a single node, comparing the results of word count processing with and without the use of MapReduce. The research findings indicate that the implementation of Word Count without using MapReduce offers better speed and scalability in processing Indonesian language text data on a Hadoop single node. Additionally, the comparison of processing time between the Word Count program with Hadoopbased MapReduce and the Word Count program without MapReduce shows that the latter has faster processing time. A significant reduction in processing time, up to 95% for a 5 MB file, can be achieved by using the Word Count method without MapReduce, although the level of reduction decreases with increasing file size. Keywords : Big Data, Word Count, MapReduce, HDFS, Hadoop Single Node

Item Type: Thesis (Undergraduate)
Subjects: T Technology > T Technology (General) > T10.5-11.9 Communication of technical information
T Technology > T Technology (General) > T58.6-58.62 Management information systems > T58.6 General works Industrial engineering Information technology. Information systems (General) Management information systems -- Continued
Divisions: 09-Faculty of Computer Science > 55201-Informatics (S1)
Depositing User: Elvira Oktaviani
Date Deposited: 24 Jul 2023 07:33
Last Modified: 24 Jul 2023 07:33
URI: http://repository.unsri.ac.id/id/eprint/120932

Actions (login required)

View Item View Item