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ABSTRACT
This study aims to investigate the effects of welding on the fatigue and crack behavior of
ASTM A36 steel, a low-carbon steel commonly used in various applications, particularly in
pressure vessel transport tanks for preventing environmental and health problems due to
liquid petroleum gas (LPG) transport tank leaks. This research evaluates the influence of
welding on the material’s properties through various testing methodologies, including
impact and fatigue tests. The impact tests were conducted using the Charpy V-Notch
method, while fatigue tests employed the repeated bending method. The specimens were
subjected to testing at different temperatures and angles to evaluate their performance
under various conditions. The findings indicate that welding introduces weaknesses in the
material, affecting its impact energy and fatigue life. Visual observations and metallographic
examinations further revealed the fracture characteristics and microstructural changes in
welded and non-welded specimens.
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1. Introduction

ASTM A36 is a type of low-carbon steel that proc-
esses attributes, such as strength, weldability and
the ability to be machined. Low-carbon steel is char-
acterized by its high ductility and susceptibility to
corrosion, but it tends to have lower hardness and
wear resistance (Kim et al., 2020; Pratiwi et al., 2023;
Tamlicha et al., 2022; Utami & Chandra, 2017). To
enhance its corrosion resistance, this steel can be
electroplated or coated. Its usage in steel applica-
tions varies based on factors like thickness and the
required level of corrosion resistance. Numerous
products employ ASTM A36 steel plates, including
bridge construction, vessels/tanks and pipes.
According to the ASME XII, the Rules for Construction
and Continued Service of Transport Tanks, ASTM steel

can be used as vessel shell material, one of which is
pressure vessel transport tanks (Rodr�ıguez-Prieto,
Camacho, et al., 2021; Rodr�ıguez-Prieto, Frigione,
et al., 2021).

Pressure vessels have extra work to withstand ther-
mal or non-thermal loads. Loads cause failure in pres-
sure vessels (Haunstetter et al., 2020; Hou�ska et al.,
2022; Larrea-Wachtendorff et al., 2022), so engineers
must analyze the failure of a material. By giving a
load to the material, the effect of giving a load to the
material being tested (Apriansyah et al., 2021).
Pressure vessel failures can be grouped into four main
categories, namely material (Rodr�ıguez-Prieto,
Camacho, et al., 2021; Rodr�ıguez-Prieto, Frigione,
et al., 2021), design (Regassa et al., 2022), fabrication
(Liang et al., 2023) and service (Rodr�ıguez-Prieto et al.,
2022) which explain why failures occur. Failure can
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also be grouped into types of failure, namely elastic
deformation, excessive plastic deformation, brittle frac-
ture, stress rupture, plastic instability, high strain,
stress corrosion and corrosion fatigue which describe
how failure occurs (Ammarullah et al., 2022;
Baigonakova et al., 2022; Frenelus et al., 2022; Nikulin
et al., 2022; Yazdanpanah et al., 2021).

When transport tanks cross the road, pressure
vessels will receive loads including shock loads
which are influenced by road conditions, internal
fluid loads and wind loads so the toughness and
fatigue resistance of the vessels are very important
to analyze (Chandra, Mataram, et al., 2019; Chandra,
Sianturi, et al., 2019). The mechanical properties of
transport tank materials that are important to ana-
lyze due to these problems include toughness and
fatigue resistance. Material toughness is the materi-
al’s ability to absorb energy before a fracture occurs
(Waqas et al., 2019), while fatigue failure is a failure
of the material due to cyclic or repetitive loading
(Chandra, Mataram, et al., 2019; Chandra, Sianturi,
et al., 2019). The studies of fatigue and crack behav-
ior on pressure vessels for liquid petroleum gas
(LPG) transport tanks are important to minimize the
possibility of LPG transportation tank leaks, where
leaks can have serious impacts on the environment
and health, including air pollution and respiratory
problems, damage to water and soil ecosystems, the
potential to trigger explosions and fires and even
cause death.

The analysis of fatigue and crack behavior using
characterization in bending and impact tests is impor-
tant for understanding material behavior, ensuring
quality control, optimizing product design and com-
plying with regulatory requirements. Several studies
have been conducted to analyze the behavior of
materials under different loading conditions. For
example, one study analyzed the effect of stress con-
centration on the bending fatigue performance of
gear steel using bending fatigue tests (Xing et al.,
2019). Another study investigated the crack growth
behaviors and mechanical properties degradation dur-
ing gear bending fatigue using bending fatigue tests
(Lin et al., 2019). Additionally, a study characterized
the deformation field around a fatigue crack tip in
the presence of significant plastic deformation using
bending fatigue tests (Zhang et al., 2023). Another
study conducted a fatigue test on the failure mode of
flange shafts and characterized the propagation char-
acteristics of the initial crack at the junction between
the shaft using impact tests (Xu et al., 2022). These
studies demonstrate the importance of using charac-
terization in bending and impact tests to analyze the

fatigue and crack behavior of materials and compo-
nents (Vasudevan & Sadananda, 2001).

The analysis of temperature in the fatigue and
crack behavior on Pressure Vessels for LPG Transport
tanks still limited, especially in the ASTM A36 steel
material. Investigation of the two mechanical proper-
ties is important to study so that they can be used
as a reference for the selection of welded construc-
tion steel materials for transport tanks. Also, it is
brings beneficial to preventing environmental and
health problems due to LPG transport tank leaks.
From the explanation above, impact testing is
required by providing shock loading and fatigue
testing by continuously dynamic loading on pressure
vessel steel (Halim et al., 2019; Pantazopoulos, 2019;
Pratiwi et al., 2018). So, this study evaluation of
impact test for without welded and welded joints
with temperature and angle variations.

2. Materials and methods

2.1. Impact testing of the Charpy V-Notch
method

This test was carried out in the Engineering
Materials Laboratory, majoring in Mechanical
Engineering, Sriwijaya University, Indralaya campus
using a Charpy Impact Testing Machine type CI-30
with the JIS B7722 testing standard as shown in
Figure 1. Figure 1(a) shows the schematic of the
experimental method for impact testing, and Figure
1(b,c) shows the details of the specimen for the
without welded and welded specimens. The welded
process in this study following the Zhan et al.
(2020), where potential energy retained at the lifting
angle a of the pendulum (J), the position of the
energy held at the swing angle h of the pendulum
(J), pendulum mass (25.68 kg), the distance from the
center of the pendulum axis to the center of gravity
(0.6490m), pendulum lifting angle (146.5�), and
Swing angle after the pendulum hits the specimen
(�) (Riyanto et al., 2022). The impact specimens used
were based on the JIS Z 2202 standard.

In impact testing, the energy to break the speci-
men based on the angle formed by the pendulum
(Galeja et al., 2020; Lascano et al., 2019; Zidan et al.,
2019) is calculated through Equations (1)–(3). Where
E1 is potential energy retained at the lifting angle a
of the pendulum (J), E2 is the position of the energy
held at the swing angle h of the pendulum (J), P is
pendulum mass (25.68 kg), D is the distance from
the center of the pendulum axis to the center of
gravity (0.6490m), a is pendulum lifting angle
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(146.5�) and h is swing angle after the pendulum
hits the specimen (�).

E ¼ E1 − E2 (1)

E1 ¼ P ðD − Dcos aÞ (2)

E2 ¼ P ðD − Dcos hÞ (3)

2.2. Fatigue testing with the repeated bending
method

Fatigue testing was carried out using a Torsion and
Bending Fatigue Machine with the test standard
used being JIS Z 2273. Fatigue testing steps in this
research follow research conducted by Firdaus et al.
(2019). The fatigue specimen used the JIS Z 2273
standard as shown in Figure 2.

2.3. Determination of fatigue testing loading

The loading in the fatigue test can be predicted by cal-
culating the bending stress whose value must be less
than the yield strength value, in this case, the stress
that occurs is still in an elastic condition (Chandra &
Lestari, 2021). The composition and the mechanical
properties of the ASTM 36 for this study as shown in
Tables 1 and 2. Based on the yield strength value of
ASTM A36 steel is 245MPa, so the bending stress for
fatigue testing must be less than 245MPa.

In this study, the specimen was tested with applied
the angle load in variation of the temperature at 0, 10
and 27 �C. The selection of the variation temperature
based on the working temperature conditions of LPG in
the pressure vessel (Yukawa, 1990). The experiment was
three repetitions to get the best result and the average
data from the repetitions will be analyzed (Table 3).

Figure 1. The schematic of (a) impact testing using Charpy V-Notch and The impact specimen JIS Z 2202: (b) without welded
and (c) welded.
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2.4. Visual observation

On visual observation of ASTM A36 steel, the fracture
surface will be analyzed. It aims to see the types of frac-
tures that occur and the crack propagation on the sur-
face of the specimen marked by the presence of
benchmarks, and then to compare the differences in the
fracture surface on ASTM A36 steel specimens resulting
from impact testing and fatigue testing (Chandra,
Mataram, et al., 2019; Chandra, Sianturi, et al., 2019).

2.5. Metallographic examination

In the metallographic examination, the microstruc-
ture of ASTM A36 steel will be observed and ana-
lyzed to determine the phases formed due to heat

treatment (Chandra et al., 2021). This comprehensive
metallographic examination encompasses a detailed
microstructural analysis of key components, includ-
ing the base metal, Heat-affected Zone (HAZ), weld
metal, and fusion lines on ASTM A36 steel. Utilizing
an optical microscope with a magnification of 450x,
the metallographic process is initiated following
thorough specimen preparation procedures such as
sanding and polishing. Subsequently, 3% Nital
(NH03) etching material is employed for the etching
process. Post-etching, the specimens undergo photo-
graphic documentation at a magnification of 450x,
utilizing an optical microscope within the metallur-
gical laboratory.

3. Results and discussion

3.1. Impact testing results

Impact test results for both conditions, namely for
specimens with welded joints and without welds are
shown in Table 4. Each test specimen for both con-
ditions was tested at 0, 10 and 27 �C. The tempera-
ture is important to analysis in the working
temperature conditions to detect the fatigue and
crack behavior for reduce the potential of failure.

Figure 2. Fatigue Specimen JIS Z 2273: (a) without welded and (b) welded.

Table 1. ASTM A36 Steel chemical composition (% weight)
(Surojo et al., 2021).
Composition C Si Mn P S

(%) 0.2 0.24 1.067 0.025 0.024

Table 2. ASTM A36 steel mechanical properties
(Preedawiphat et al., 2020).
Mechanical properties Symbol Value

Yield strength (MPa) ry 245–300
Tensile strength (MPa) rs 420–440
Elongation (%) e 27–30

Table 3. Fatigue loading test with repeated bending
method on ASTM A36 steel.
Angle load Bending moment (N-mm) Stress (MPa)

11 13,075.53 156.93
12 14,383.08 172.62
13 15,690.64 188.31
14 16,998.19 204.01

Table 4. Impact test results for without welded and welded
joints.

Temperature (�C)

Welded Without welded

a (�) b (�) Energy (J) a (�) b (�) Energy (J)

0 146.5 118 6 146.5 100 9.67
10 146.5 115.5 8.2 146.5 85 11.8
27 146.5 110 9.9 146.5 70 17.28
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The results of the impact load test for both condi-
tions without welding and with welded joints in
Table 4 show that the value of the impact energy
decreases as the operating temperature decreases.
Decreasing the temperature causes the level of duc-
tility to decrease then it will become more brittle so
that the required impact energy also decreases
(Perez et al., 2022; Salakhov et al., 2021; Williams &
Boyer, 2020). The impact test specimen curve with
welding shows a trend below the curve without
welding, this is because the weld specimen shows
weakness due to welding defects, and imperfections
in the weld which have an impact on weakening the

metal (Luo et al., 2020; Niessen et al., 2020; Xue
et al., 2022) as shown in Figure 3.

3.2. Impact testing fracture surface

Figure 4 shows the fracture characteristics for the
impact test specimens tested for welding. It can be
seen that the fracture surface at a low temperature
of 0 �C is hairy and flatter which indicates a brittle
fracture, while the higher the temperature at 10 �C
and 27 �C the broken surface looks smoother and
there is an uneven surface. This is consistent with
the impact energy which will decrease for lower

Figure 3. Impact testing curve.

Figure 4. Condition of broken surface specimens of impact welded at a temperature of: (a) 0 �C, (b) 10 �C and (c) 27 �C.
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temperatures compared to higher temperatures.
Porosity is more evenly distributed for lower temper-
atures due to the impact of the welding process
(Abidi et al., 2023).

In the non-welded impact test specimens, the
fracture surface characteristics for temperatures of 0,
10 and 27 �C did not show a significant difference.
This is because there is no effect of welding heat
that can change the microstructure in the heat-
affected area (Chandra et al., 2018). This condition is
shown in Figure 5.

3.3. Fatigue test results

Fatigue testing was carried out on repeated bending
fatigue testing machines with angle variations of 10�,
11�, 12� and 13�. The stress ratio applied was R¼ 0.

Tests were carried out for test specimens that were
either subjected to heat treatment in the form of
welding or without welding. The test results are
shown in Table 5. The fracture cycle of the test speci-
mens with welded joints was lower than those with-
out welds. From the results, it is shown that the
fatigue life of the test specimens which are welded is
lower than that which is not welded. The greater the
bending angle, the smaller the fracture cycle (Macek
et al., 2021; Shi et al., 2022; Sun et al., 2021). This is
because the working stress that occurs is directly pro-
portional to the angle given in the fatigue test (Chen
et al., 2022; Gan et al., 2021; Yang et al., 2022).

The fractured life results for both welded and
non-welded conditions are shown in the relationship
between the stress and cycle curves as shown in
Figure 6. The S-N curve shows that the fatigue life of

Figure 5. Condition of broken surface specimens of impact without welded at a temperature of: (a) 0 �C, (b) 10 �C and
(c) 27 �C.
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the test specimens that were welded was lower than
that of the test specimens without welds. In the test
specimens that were welded, all four specimens
experienced fracture before 100,000 cycles, while the
test specimens without welds varied more. Two var-
iations of angles 10� and 11� fracture before 100,000
cycles, while angles 12� and 13� test specimens
experience longer fractures above 100,000 cycles
and some even close to 400,000 cycles.

3.4. Fractured surface in fatigue testing

The fracture surface characteristics of the test speci-
mens that were welded with various test angles of
10�, 11�, 12� and 13� are shown in Figure 7. The frac-
ture surface consists of stages, namely the crack initi-
ation stage, the crack propagation stage, and the final
fracture stage (Hou et al., 2016; Liu & Pons, 2018; Xiao
et al., 2021). The fatigue fracture surface is character-
ized by a flat and smooth surface, while the final frac-
ture, which is a static fracture, is characterized by a
plastically deformed fracture shape. The initial crack
begins in a weak area of the weld defect which can
trigger an increase in stress in that area (Kubit et al.,
2020). Examination of the fatigue fracture surface in
the form of visual observations is not very clear to get
the characteristics of a fatigue fracture in the form of
beach marks. The absence of beach marks in the
fatigue fracture surface visual observations is due to
the test being carried out at a stress ratio condition
equal to zero (R¼ 0). Beach marks, which are

characteristic features of fatigue fractures, appear
clearer when the test is carried out at R¼ 1. At R¼ 1,
the fatigue fracture surface exhibits distinct beach
marks, which are indicative of the crack growth direc-
tion and can provide valuable information about the
fatigue process. However, the absence of beach marks
at R¼ 0 does not diminish the evidence of a fatigue
fracture surface with the indications described previ-
ously (Braun et al., 2022; Macek et al., 2020).

3.5. Metallographic results

Metallographic examination in the form of examin-
ing the microstructure of pressure vessel materials,
especially in the weld area, needs to be observed to
what extent the effect of welding heat on steel is
commonly used for pressure vessel needs, especially
in areas affected by heat. The microstructure formed
is in the form of ferrite and pearlite phases, where
pearlite is a layer between ferrite and cementite
(Chandra et al., 2020) as shown in Figure 8. In the
filler metal area, the pearlite fraction appears to be
more than the ferrite phase. This shows that the
type of filler metal used in welding uses steel with a
higher composition. This is because the carbon con-
tent can increase the cementite Fe3C fraction so
that it adds more pearlite fractions (Banis et al.,
2019; Handoko et al., 2018; Oliveira An�ıcio Costa
et al., 2022). In the weld fusion area, it shows mar-
tensite and pearlite fractions, while in the HAZ area,
it can see the difference in grain size compared to
the parent metal or base metal. Enlarged grains
make the metal decrease in strength compared to
fine metal grains (Weidner et al., 2019; Yang et al.,
2019; Yuan et al., 2018; Zienert et al., 2021).

4. Conclusions

In conclusion, the study provides insights into the
fatigue and crack behavior of ASTM A36 steel under
different testing conditions that would lead to pre-
venting environmental and health problems due to
LPG transport tank leaks. Impact testing revealed a
decrease in impact energy with decreasing tempera-
tures, particularly pronounced in welded specimens.

Table 5. Impact test results for welded and without welded joints.

Angle load (�)

Welded Without welded

Time (s) Stress repeat (rps) Cycle (N) Stress (MPa) Time (s) Stress repeat (rps) Cycle (N) Stress (MPa)

10 1343 50 67,150 156.93 7216 50 360,800 156.93
11 512 50 25,600 172.62 3256 50 162,800 172.62
12 146 50 7300 188.31 831 50 41,550 188.31
13 62 50 3100 204.01 715 50 35,750 204.01

Figure 6. S-N curve for fatigue testing of welded and with-
out-welded specimens.
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Figure 7. (a) Specimen conditions of fatigue weld joints before being observed under a microscope; Surface condition with
angle loading of (b) 10�, (c) 11�, (d) 12� and (e) 13�.
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The investigation revealed a shorter fatigue life for
welded specimens compared to non-welded coun-
terparts, as illustrated by the S-N curve. Visual obser-
vations of fracture surfaces indicated variations in
characteristics, particularly in welded specimens,
affected by welding defects. The metallographic
examination underscored the necessity for under-
standing the varied material behavior under dissimi-
lar loading conditions, a crucial aspect for effective
application in pressure vessel transport tanks.
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