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1. SUMMARY

1.1. English

Increasing evidence suggests that gut microbes and their metabolites, i.e., short-chain fatty

acids (SCFA), have beneficial effects on the gut function and health of monogastric farm

animals, particularly chickens and pigs. Nevertheless, more research is still needed to fully

understand the complex relationship between gut microbes and their hosts, especially in the

following three aspects. First, investigations into the modulating effects of mixed SCFA on

intestinal barrier function and contractibility in chickens are scarce. Second, the role of direct-

fed microbes (probiotics) in improving gut health and growth in chickens is still controversial,

as evidenced by the different results in various studies. Third, research on the mother-offspring

axis and its role in the establishment of gut colonization in neonatal piglets is still limited.

We applied three complementary study models, including ex vivo and in vivo experiments,

and meta-analysis, to investigate these topics: The ex vivo study aimed to investigate the local

effect of mixed SCFA, with different acetate:butyrate ratios and SCFA concentrations, on the

jejunal and cecal contractibility and jejunal barrier function in laying hens as an animal model.

By implementing Ussing chamber and organ bath techniques, we discovered that increasing

the butyrate proportions and SCFA concentrations improved jejunal ion uptake and barrier

function, as well as stimulated cecal muscle contraction in laying hens.

The aim of the in vivo study was to investigate the changes in bacterial and fungal communities

in sow feces during the lactation period as well as in the gastric and cecal digesta of piglets

from suckling to one week after weaning. Additionally, the correlation between fecal

consistency scores and cecal microbial taxa in the weaned piglets was evaluated. It was shown

that the progressing lactation influenced the bacterial and fungal communities in sow feces.

Moreover, sow feces and piglet gut digesta were found to share bacterial and fungal taxa,

providing evidence that maternal microbes contribute to the gut colonization of neonatal

piglets. In addition, potential bacterial and fungal markers for softer and firm feces postweaning

have been identified that may serve as indicators of gut homeostatic conditions.

The meta-analysis study aimed to assess the modulatory effects of dietary probiotics on gut

barrier and immune-related gene expression, histomorphology, and growth performance in

broiler chickens, both with and without pathogen challenge. Our meta-analysis revealed that

dietary probiotics with various genera/species improved gut integrity and structure in broiler

chickens, without affecting growth performance. Furthermore, the effectiveness of probiotics

was found to be modified by dietary metabolizable energy, crude protein, and days post-

infection.



2

Overall, these studies provide new insights into the early gut microbial colonization in piglets

as well as into roles of SCFA, and dietary probiotics for gut barrier function and immune

responses of the host in chickens. The results obtained may help to develop dietary strategies

to improve gut health in these monogastric farm animals.

1.2. German

Es gibt vermehrt Hinweise, dass Darmmikroben und ihre Stoffwechselprodukte, z.B.

kurzkettige Fettsäuren (SCFA), positive Auswirkungen auf die Darmfunktion und die

Gesundheit von monogastrischen Nutztieren, wie Hühnern und Schweinen, haben. Dennoch

bedarf es noch weiterer Forschung, um die komplexe Beziehung zwischen Darmmikroben und

dem Wirtstier vollständig zu verstehen, insbesondere in den folgenden drei Aspekten. Erstens

gibt es kaum Untersuchungen zu den Darm-modulierenden Wirkungen, wenn die SCFA in

einer Mischung vorliegen, auf die Barrierefunktion und Kontraktibilität bei Hühnern. Zweitens

gibt es in der Literatur widersprüchliche Angaben zur Rolle von direkt gefütterten Mikroben

(Probiotika) für die Verbesserung der Darmgesundheit und des Darmwachstums bei Hühnern.

Drittens ist die Forschung zur Mutter-Nachkommen-Achse und ihre Rolle bei der Etablierung

der mikrobiellen Gemeinschaft im Darm bei neugeborenen Ferkeln noch begrenzt.

Um die drei Aspekte zu untersuchen, wurden drei Studienmodelle angewendet: ex-vivo- und

in-vivo-Experimente sowie Metaanalysen. Das Ziel der ex-vivo-Studie war es, die lokale

Wirkung von SCFA-Mischungen mit unterschiedlichen Azetat:Butyrat-Verhältnissen und

Konzentrationen auf die Kontraktibilität von Jejunum und Zäkum sowie die Barrierefunktion im

Jejunum bei Legehennen als Tiermodell zu untersuchen. Mittels Anwendung von Ussing-

Kammern und dem Organbad zeigte sich, dass ein höherer Butyratanteil und SCFA-

Konzentrationen die Aufnahme von Ionen im Jejunum sowie die Barrierefunktion verbesserte

sowie die Kontraktionen der Zäkummuskulatur bei Legehennen stimulierte.

Das Ziel der in-vivo-Studie war es, die Veränderungen in Bakteriom und Mycobiom im

Sauenkot im Verlauf der Laktation sowie im Magen- und Zäkumchymus bei Ferkeln von der

Geburt bis eine Woche nach dem Absetzen zu untersuchen. Des Weiteren wurden eine

Korrelationsanalyse zwischen der Kotkonsistenz und den Abundanzen der mikrobiellen Taxa

im Zäkum durchgeführt. Die Ergebnisse zeigten, dass sich mit fortschreitender Laktation die

Zusammensetzung der Bakterien- und Pilzgemeinschaften im Sauenkot veränderte. Darüber

hinaus zeigte das gemeinsame Vorkommen von Bakterien- und Pilz-Taxa im Sauenkot und

Chymus im Magen und Zäkum der Ferkel, dass das Mikrobiom im Sauenkot zur

Darmbesiedlung der neugeborenen Ferkel beigetragen hat. Darüber hinaus wurden Bakterien
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und Pilze identifiziert, die mit weicherem oder festen Kot nach dem Absetzen einhergingen

und als Marker-Taxa für den Zustand der Darmhomöostase dienen könnten.

Das Ziel der Metaanalyse war es, die modulierenden Wirkungen von Probiotika auf die

Darmbarriere und Genexpression zu Immunparametern, der Histomorphologie und der

Wachstumsleistung bei Masthühnern zu evaluieren. Es wurde jeweils der Einfluss auf die

genannten Parameter mit und ohne Pathogen-Exposition untersucht. Die Metaanalyse zeigte,

dass Probiotika die Darmintegrität und -struktur bei Masthühnern verbesserten, jedoch ohne

Effekt auf die Wachstumsleistung. Des Weiteren ließen die Daten abschätzen, dass die

Wirksamkeit von Probiotika durch die Nährstoffdichte der Nahrung (umsetzbare Energie und

Rohproteingehalt) sowie die Anzahl der Tage nach der Infektion beeinflusst wird.

Zusammengefasst liefern die durchgeführten Versuche neue Erkenntnisse über die frühe

mikrobielle Besiedlung des Darms bei Ferkeln. Sie liefern ebenfalls neue Einsichten über die

Rolle von SCFA und die Wirksamkeit von Probiotika für die Darmbarrierefunktion und die -

immunrespons bei Hühnern. Die vorliegenden Ergebnisse können dazu beitragen,

Ernährungsstrategien zur Verbesserung der Darmgesundheit von monogastrischen Nutztieren

zu optimieren.
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2. GENERAL INTRODUCTION

2.1. Gut health in monogastric farm animals

The term "healthy gut" is often used in animal nutrition, referring to the combination of

physiological, microbiological, and physical functions of the gastrointestinal tract that work

collectively to maintain homeostasis (Diaz Carrasco et al., 2019; Kogut, 2019; Wickramasuriya

et al., 2022). The gastrointestinal tract plays an important role in supporting livestock

productivity and health, as it not only serves as a site for digestion and absorption of nutrients,

but also functions as a metabolic and immunological organ (Scanes and Pierzchala-Koziec,

2014). Gut health disorders caused by both nutritional and non-nutritional factors are a major

cause of lost productivity in the monogastric industry, including poultry and swine farms

(Jayaraman and Nyachoti, 2017; Kogut, 2019). In pigs, piglets are highly susceptible to

intestinal health disorders, especially during the weaning transition, resulting in high rates of

diarrhea (Upadhaya and Kim, 2021; Huting et al., 2021). To improve the gut health in these

two monogastric farm animal species, especially through improved nutritional factors, it is

crucial to understand the constitution of a healthy gastrointestinal tract and its role in nutrient

metabolism and immune function.

2.2. Gastrointestinal tract and its function in chickens and piglets

Both in chickens and piglets, feed enters the esophagus after being digested in the mouth.

Especially in chickens, the digested feed from the mouth passes through the esophagus into

the crop, which serves as a temporary storage site for feed materials (Scanes and

Pierzchala-Koziec, 2014). The digested feed is then transferred to the stomach, which is further

digested by the action of hydrochloric acid and digestive enzymes to form a digested feed

mixture called chyme. In chickens, they have two types of stomachs, i.e., the proventriculus

(glandular stomach) and the gizzard (muscular stomach). Here, the proventriculus is

responsible for enzymatic digestion, whereas the gizzard, which is located posterior to the

proventriculus, is the main site of mechanical digestion of feed materials (Scanes and

Pierzchala-Koziec, 2014). In addition, the development of the gizzard helps to increase the

secretion of pancreatic enzymes in the small intestine, improve gastrointestinal motility, and

increase nutrient digestibility, thereby improving intestinal function. After chyme is formed, it

then flows into the small intestine which is divided into three segments in order from proximal

to distal parts: duodenum, jejunum, and ileum. The small intestine is the primary site of nutrient

breakdown with the help of digestive enzymes secreted by the pancreas and bile released by

the liver (Scanes and Pierzchala-Koziec, 2014; Pluske, 2016). Once digested, nutrients are
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absorbed through the wall of the small intestine with the assistance of finger-like epithelial villi.

After the small intestine, feed digestion continues in the cecum, of which chickens have a pair.

Here, microbial-assisted fermentation of fiber or undigested nutrients occurs to produce volatile

fatty acids, such as lactic acid and short-chain fatty acids. In addition to their function in

digestion and absorption of nutrients, the small intestine, and ceca also play an important role

in supporting the immune function (Scanes and Pierzchala-Koziec, 2014; Pluske et al., 2018).

The next part of the digestive tract is the large intestine or colon, which is anatomically different

and shorter in chickens than in pigs.

2.3. Gut microbiota and factors affecting their colonization in chickens and piglets

As widely recognized, the gastrointestinal tract is home to a complex and dynamic microbial

community that includes bacteria, fungi, archaea, protozoa, and viruses (Shang et al., 2018;

Yadav and Jha, 2019). Among these microbial communities, bacteria are the most dominant

and their interaction with the host is necessary to support gut health and development (Wei et

al., 2013; Shang et al., 2018). It is important to note that each part of the gastrointestinal tract

has different metabolic, physiological, and immune functions that shape the microbial

community (Yeoman and White, 2014; Chen et al., 2021). More specifically, differences in

available substrates for growth, redox potential, pH, mucus, and host antimicrobial secretions,

as well as the transit time of substrates from the upper to the lower intestine, are considered

to be the main factors leading to gut region-specific differences in microbial distribution and

abundance (Lan et al., 2005; Guevarra et al., 2019; Metzler-Zebeli, 2022). In addition, other

factors, such as genetics, age, diet, rearing system, and health status, are also presumed to

influence the colonization of the gut commensal microbiota (Rehman et al., 2007; Yadav and

Jha, 2019; Chen et al., 2019; Rychlik, 2020), thus it is necessary to consider these factors

when assessing parameters related to the gut microbiota.

2.3.1. Gut microbial composition in chickens

In chickens, many studies have been performed to investigate the composition of the gut

microbiota in each gut segment. The chicken crop is predominantly colonized by Firmicutes,

such as Lactobacillus, followed by Actinobacteria (e.g., Bifidobacterium) and Proteobacteria

(e.g., Enterobacter) (Yeoman et al., 2012; Shang et al., 2018). Similarly, Lactobacillus is also

the dominant genus identified in the proventriculus and gizzard, followed by lactose-negative

Enterobacter, Enterococcus, and coliforms (Shang et al., 2018; Rychlik, 2020). Although the

concentration of bacteria is similar to the crop (Shang et al., 2018), the bacterial fermentation
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activity in the stomach is lower, mainly due to the lower pH, making it less ideal for bacterial

development (Rehman et al., 2007). In the small intestine, the concentration of bacteria varies

from segment to segment and increases distally (Fathima et al., 2022). The different phyla of

bacteria that colonize the small intestine include Firmicutes (e.g., Bacillus, Enterococcus,

Clostridium, Lactobacillus, Candidatus, Ruminococcus, Eubacterium, Staphylococcus,

Streptococcus, Turicibacter, and Methylobacterium), Proteobacteria (e.g., Ochrobaterium,

Alcaligenes, Escherichia, Campylobacter, Hafnia, and Shigella),

Cytophaga/Flexibacter/Bacteroides (e.g., Bacteroidetes, Flavibacterium, Fusobacterium, and

Bifidobacterium), as well as Actinobacteria/Cyanobacteria (e.g., Corynebacterium) (Shang et

al., 2018; Rychlik, 2020).

Figure 1. The composition of major microbial phyla in each gut segment in chickens. The information

included in the figure are extracted from Yeoman et al. (2012), Shang et al. (2018) and Rychlik (2020).

The figure was created with biorender.com.

The duodenum has a lower pH than the jejunum and ileum, which limits the growth of bacteria

and most pathogens (Xiao et al., 2021). In addition, shorter transit times, higher activity of

digestive enzymes, and/or dilution of the digesta by bicarbonate and bile secretions result in

lower microbiota density in the duodenum (Lan et al., 2005; Shang et al., 2018; Yadav and

Jha, 2019). Compared to the duodenum and jejunum, the ileal microbiota is more abundant



7

and predominantly composed of Lactobacillus (Shang et al., 2018). The abundance and

diversity of the gut microbiota is considerably increased in the cecum. The cecal microbiota is

mainly composed of the phyla Firmicutes (e.g., Anaerotruncus, Ruminoccoccus,

Faecalibacterium, Lachnospirceae, Bacillus, Streptococcus, Clostridium, Megamonas,

Lactobacillus, Enterococcus, Weisella, Eubacterium, Staphylococcus, Streptococcus) and

Bacteroides/Cytophaga/Flexibacter (e.g., Bacteroidetes, Fusobacterium, Bifidobacterium,

Flavibacterium, Alistipes, and Odoribacter), followed by the minor phyla Actinobacteria (e.g.,

Corynebacterium, Olsenella, and Collinsella), Proteobacteria (Ochrobaterium, Alcaligenes,

Escherichia, and Campylobacter), and methanogenic archaea (e.g., Methanobacterium,

Methanobrevibacter, Methanococcos, Methanosphaera, Methanothermobacter,

Methanopyrus, and Methanothermus) (Shang et al., 2018; Rychlik, 2020). The chicken colon

is quite short and does not retain much digesta. The types of microbes that colonize the colon

are influenced by the digesta from the preceding intestinal segments, such as the ceca and

ileum. From several studies, Firmicutes (e.g., Lactobacillus) and Proteobacteria (e.g.,

Escherichia coli) are the bacterial phyla found in the colon (Shang et al., 2018; Rychlik, 2020). 

2.3.2. Gut microbial composition in piglets

While the fecal microbiota composition of suckling and weaned piglets has been extensively

studied (Bian et al., 2016; Chen et al., 2017), there is information on the microbiota composition

of different gastrointestinal segments in piglets throughout the suckling and early postweaning

periods. Similar to chickens, microbial abundance in the small intestine of piglets is lower than

in the large intestine, due to the shorter transit time in this compartment. Nevertheless, their

presence is still important for microbiome-gut-host interactions (Metzler-Zebeli, 2022). Luminal

pH is another factor that also determines the microbiota community in gut segments.

Furthermore, there are major changes in the abundance and diversity of gut microbial species

in piglets from birth to weaning, which are closely related to the sow’s milk intake and

environmental factors (Metzler-Zebeli, 2022). This clearly indicates that the sow-piglet

relationship is critical for establishing the microbiota in the piglet gut. During the suckling

period, milk-oriented microbial species are more predominant in the gut, which are strongly

influenced by milk glycans, i.e., lactose and oligosaccharides. In contrast, after weaning, the

number of milk glycan-oriented bacteria is reduced and more microbes utilizing plant

carbohydrates and proteins are detected (Holman et al., 2021; Metzler-Zebeli, 2022). Overall,

more is known about on the evolution of the bacterial microbiota, whereas less has been

described for other microbial groups, such as fungi, protozoa, and viruses.
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Figure 2. The composition of major microbial phyla in each gut segment in neonatal piglets. The

information included the figure are extracted from Li et al. (2018), Gresse et al. (2019), Gryaznova et al.

(2022), and Lerch et al. (2023), The figure was created with biorender.com.

Recently, Lerch et al. (2023) demonstrated that the number of bacteria, fungi, yeasts, protozoa,

and archaea in the gastric digesta of piglets increased from days 7 to 35 of age. Likewise,

bacterial species richness and diversity in the stomach increased during the suckling period

but decreased after weaning. This study also showed that Lactobacillaceae bacteria

dominated the stomach during the suckling period followed by Streptococcaceae and

Pasteurellaceae. Shortly after weaning at 4 weeks of age, the abundance of Lactobacillaceae

and Streptococcaceae in the stomach decreased, providing a niche for the unclassified

families Rikettsiales and Pasteurellaceae. About 1 week after weaning, this microbial

composition changed again, with Lactobacillaceae increasing in abundance and the

unclassified families Rikettsiales and Pasteurellaceae decreasing in abundance. The cecal

community is generally more diverse than the gastric microbiota. In the study by Lerch et al.

(2023), the abundance of bacteria reached its highest on day 7 of age, whereas the number of

protozoa increased on days 21 and 31 of age. However, the abundance of archaea, fungi, and

yeast did not change during the pre- and postweaning periods. Similar to the stomach, the

bacterial species richness and diversity in the cecum also increased during suckling but

decreased after weaning, wheras the fungal community did not change. It was also reported

that Prevotellaceae predominated in the cecum during the suckling and postweaning periods,
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whereas Bacteroidaceae and Pasteurellacae were replaced by Lachnospiraceae and

Acidaminococcaceae after weaning. This study investigated the fungal composition of cecal

digesta, which was dominated by Dipodascaceae at 2 weeks of age. Their numbers declined

with age and were present only in low numbers after weaning. The abundance of Erysiphaceae

in the cecum was almost absent in the first 2 weeks of age but increased at week 4 of age, just

before weaning, and became dominant after weaning. Saccharomycetaceae in the cecum

started to appear at week 4 of age but declined after weaning. In general, this study concluded

that the effect of creep feeding was small, indicating the importance of sow milk components

for the microbial succession in the gut.

Another study by Gryaznova et al. (2022) showed that the number of Lactobacillaceae was

significantly higher in the ileum than in the cecum and rectum within 1 week of age. In addition,

the abundance of Fusobacteriaceae seemed to increase in the direction from the small to the

large intestine. The abundance of Bacteroidaceae was also higher in the cecum and colon

than in the ileum. Likewise, Li et al. (2018) found that Prevotellaceae were the dominant

bacteria identified in the colonic digesta of piglets fed a corn/soybean-based diet at around 3

weeks of age, followed by Ruminococcaceae, Lachnospiraceae, Porphyromonadaceae, and

Bacteroidaceae. Moreover, Lachnospiraceae, Negativicutes, Selenomonadales,

Campylobacterales, and some other species increased in weaned piglets, whereas

Porphyromonadaceae, Alloprevotella, Barnesiella, and Oscillibacter decreased in their study.

Furthermore, a study by Gresse et al. (2019) on the composition of the gastrointestinal

microbiota in newly weaned piglets at week 4 of age showed that both the stomach and small

intestine were predominantly colonized by Lactobacillaceae and Pasteurellaceae, whereas

higher numbers of Peptostreptococcaceae and Streptococcaceae were found in the small

intestine. In the cecum and colon, the Ruminococcaceae, Prevotellaceae, and

Lachnospiraceae dominated, followed by Lactobacilaceae, Bacteroidaceae, Rikenellaceae,

Tannerellaceae, Muribaculaceae, Christensenellaceae, Acidaminococcaceae, Clostridiaceae,

Enterobacteriaceae, and Spirochaetaceae. For the archaeal community,

Methanobacteriaceae dominated in the cecum and colon, followed by a small number of

Methanomethylophilaceae.

2.4. Understanding the mother-offspring axis in establishing microbial colonization

Ensuring optimal microbial establishment early in life is important to improve gut immunity and

growth performance in chickens and pigs. According to a previous study in chickens, a diverse

microbiota colonization was detected in the cecal contents of 1-day-old chicks using 16S rRNA
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(Jiang et al., 2015). This study showed that Proteobacteria was the most dominant phylum,

followed by Firmicutes and Actinobacteria, whereas Tenericutes, Bacteroidetes,

Acidobacteria, Verrucomicrobia, Nitrospirae and Cyanobacteria were identified at very low

levels. These results indicate that beneficial or commensal bacteria may be transferred from

mother to offspring. Subsequently, in ovo techniques were developed to further investigate

this potential pathway, allowing the transfer of various biological materials and supplements to

chick embryos. For instance, early inoculation of young chicks with native microbiota from

healthy adult birds could promote the development of an early gut microbiome (Roto et al.,

2016). Other studies had also revealed that air sac injections with supplements such as

prebiotics modulated the growth of indigenous microflora in the egg along with embryo

development, such as Bifidobacterium spp and Lactobacillus spp. (Slawinska et al., 2019; Das

et al., 2021).

While in ovo techniques have been extensively studied in chickens, the investigation of the

mother-offspring axis in shaping the microbial colonization of newborn piglets during the

suckling period has not been fully elucidated. Microbial colonization of the piglet gut is thought

to begin at birth during the vaginal passage. In addition, sow feces may also serve as a source

of other microbes that could potentially influence gut microbial colonization. A study by Berry

et al. (2021) showed that maternal parity was able to alter the numbers of Akkermansia

muciniphila, Prevotella stercorea, and Campylobacter coli in the piglet intestine 10 days after

birth. Accordingly, modification of the sow's microbiome may affect the bacterial colonization

of the piglets. In order to understand the mechanism of direct differentiation in the piglet gut

microbiota, it would be beneficial to verify whether these microbial shifts and susceptibilities

are related to the microbiota of sows postpartum, as well as pre- and post-weaned piglets.

2.5. The importance of balancing the host gut microbial community for gut health

As mentioned earlier, the gastrointestinal tract harbors a diverse commensal microbiota that

has been shown to have a mutually beneficial relationship with the host (Broom and Kogut,

2018). To establish a mutually beneficial coexistence between the gut microbiota and the host,

balanced gut microbiota and homeostatic conditions are required as the main prerequisites

(Perry and Arsenault, 2022). In this reciprocal relationship, the gut microbiota plays beneficial

roles related to aspects of metabolism and physiology, such as facilitating digestion and

nutrient absorption, regulating intestinal epithelial proliferation, and modulating the intestinal

immune response and barrier function (Tomkovich and Jobin, 2016; Rowland et al., 2018). In

return, the host intestinal tract provides a comfortable environment and sufficient nutrients for
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the gut microbiota to grow and proliferate (Rinttilä and Apajalahti, 2013; Perry and Arsenault,

2022). In addition, under homeostatic and balanced conditions, beneficial gut microbes also

act synergistically to prevent the colonization and proliferation of pathogenic microbes through

competitive exclusion, in part by synthesizing antimicrobial compounds (Shang et al., 2018;

Kogut, 2019; Perry and Arsenault, 2022). However, when the composition and function of the

gut commensal microbiota is disrupted, referred to as dysbiosis, it leads to an imbalance

between beneficial and harmful microbes (Shang et al., 2018). Such conditions increase the

host's susceptibility to infection and inflammation, leading to decreased metabolic activity,

impaired gut structure, and reduced intestinal epithelial barrier function, which is commonly

known as "leaky gut" (Teirlynck et al., 2011; Forgie et al., 2019; Shehata et al., 2022). As a

result, the performance and productivity of chickens and pigs are drastically reduced, ultimately

leading to economic losses.

Figure 3. A flow chart describing the relationship between microbiota balance and gut health. This chart

is constructed based on information from Shang et al. (2018), Forgie et al. (2019), and Kogut (2019).

In general, dysbiosis can be caused by two main factors, namely non-infectious and infectious

factors. One of the main causes of non-infectious dysbiosis comes from dietary aspects, such
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as changes in feed type and composition, nutrient content, or feeding pattern (Teirlynck et al.,

2009; Stanley et al., 2013). For example, changes in the amino acid composition of dietary

protein may alter the composition of the gut microbiota. Or high dietary protein can promote

the overgrowth of protein-fermenting bacteria which can increase susceptibility to disease (Ma

et al., 2017; Forgie et al., 2019; Fathima et al., 2022). Likewise, diets high in simple and refined

carbohydrates or high in saturated fat have also been shown to affect gut microbial

homeostasis, leading to gut barrier dysfunction and increased risk of infection (Thaiss et al.,

2018; Forgie et al., 2019). Infection-induced dysbiosis results from the infiltration of toxic

agents and/or pathogenic microbes such as bacteria, viruses, protozoa, and fungi. For

example, Eimeria spp. and Clostridium perfringens, have been shown to disrupt the balance

and homeostasis of the gut microbiota, with Eimeria replicating in gastrointestinal epithelial

cells and C. perfringens producing toxins that damage epithelial cells in poultry (Broom and

Kogut, 2018). In piglets, postweaning diarrhea is the most common disease in weaned piglets,

primarily caused by pathogens or enterotoxins (Pluske et al., 2018). A previous study showed

a disruption in the composition of the gut microbiota after weaning, which may lead to intestinal

inflammation and ultimately slower growth rate (Dou et al., 2017).

2.6. The gut microbe-host crosstalk in chickens and piglets

Maintaining the balance of gut commensal microbes is essential to preserve the normal

metabolic and physiological functions in farm animals. One mechanism by which the host

recognizes the presence of commensal bacteria is through the regulation of pattern recognition

receptors (PRRs), including: 1) toll-like receptors (TLRs), 2) nucleotide-binding oligomerization

domain receptors (NODs), 3) C-type lectin receptors, and 4) retinoic acid-inducible gene 1-like

receptors (Amarante-Mendes et al., 2018; Metzler-Zebeli et al., 2022a). This recognition

mechanism subsequently provides appropriate responses according to specific microbe-

derived ligands, such as peptidoglycan, lipoprotein, lipopolysaccharide and flagellin

(Amarante-Mendes et al., 2018; Forgie et al., 2019). Likewise, commensal bacteria produce

microbial fatty acids (FAs), i.e., short-chain fatty acids (SCFA), lactic acid (LA), and

polyunsaturated fatty acids (PUFA), to interact with the intestinal epithelium to support specific

intestinal metabolic and physiological functions (Silva et al., 2020; Gomez-Osorio et al., 2021;

Metzler-Zebeli, 2021; Metzler-Zebeli et al., 2021a).

Short-chain fatty acids are the most important microbial fatty acids which are produced from

the fermentation of polysaccharides, such as dietary fiber and (resistant) starch, and protein

(Dai et al., 2011; Makki et al., 2018; Silva et al., 2020; He et al., 2020). Acetate, butyrate, and
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propionate are the major SCFA that contribute significantly as energy substrates for intestinal

epithelial cells, improve intestinal structure, and enhance defense mechanisms (De Vadder et

al., 2014; Forgie et al., 2019; Vasquez et al., 2022). Promoting butyrate fermentation in the gut

is attractive to researchers because it is the preferred energy source for enterocytes and

stimulates intestinal epithelial cell differentiation and proliferation (Kien et al., 2007; Rinttilä

and Apajalahti, 2013; Zhong et al., 2019). Some examples of butyrate-producing bacteria in

pigs include Ruminococcaceae, Faecalibacterium, Lachnospiraceae, Blautia, Roseburia,

Clostridium and Eubacterium (Gardiner et al., 2020; Vasquez et al., 2022).

Gut microbes also produce branched-chain fatty acids (BCFA), which are derived from the

fermentation of branched-chain amino acids, such as valine, leucine, and isoleucine (Rist et

al., 2013; Pieper et al., 2016). As a marker of protein fermentation, BCFA synthesis is has

been negatively correlated with dietary fiber levels (He et al., 2017; Zhang et al., 2020a;

Vasquez et al., 2022). Isobutyrate and isovalerate are considered as the major BCFA in the

gastrointestinal tract (Rios-Covian et al., 2020; Vasquez et al., 2022). Bacteria such as

Clostridium, Propionibacterium, Streptococcus, and Bacteroides are BCFA producers in pigs

(Rist et al., 2013; Gardiner et al., 2020; Vasquez et al., 2022). In addition, isobutyric acid-

producing taxa have also been positively correlated with feed efficiency, with higher

abundances of Christensenellaceae, Oscillibacter, Cellulosilyticum, Rothia, Subdoligranulum,

and Leeia observed in pigs with high feed efficiency (McCormack et al., 2017; Reyer et al.,

2020).

Another important microbial metabolite is lactic acid (LA), which is mainly produced from

carbohydrate fermentation (Gardiner et al., 2020; Vasquez et al., 2022). Lactic acid helps lower

the pH of the stomach, thereby preventing the growth of pathogenic bacteria, such as

Escherichia coli (Vasquez et al., 2022). In addition, lactic acid can be utilized by SCFA-

producing microbiota to produce SCFA, particularly propionate and butyrate, via a metabolite

cross-feeding mechanism (Brestenský et al., 2017; Vasquez et al., 2022).

The interaction between microbial FAs and the host is facilitated by the activation of host

receptors, which are G protein-coupled receptors/free fatty acid receptors (GPRs/FFARs) and

hydroxy-carboxylic acid receptors (HCARs) (Offermanns, 2017; Priyadarshini et al., 2018;

Kimura et al., 2020; Metzler-Zebeli, 2021). Among the GPRs/FFARs family, GPR43/FFAR2

and GPR41/FFAR3 have been identified as the major receptors of SCFA which are expressed

on white adipocytes, immune cells, and enterocytes (Brown et al., 2003; Mielenz, 2017; He et

al., 2020). These two receptors also have different affinities for SCFA types in the following

order: acetate=propionate>butyrate for FFAR2 and propionate=butyrate>acetate for FFAR3
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(He et al., 2020). Because of the tremendous benefits of microbial FAs, it is important to further

understand their signaling pathways in promoting gut homeostasis, especially in relation to

transport systems, nutrient metabolism, gut motility and development, immune responses, and

barrier functions.

2.6.1. SCFA-host signaling associated with transport system

Once microbial SCFA are produced by the commensal gut microbiota, they are then

transferred to the intestinal cells by a specific transport system. Two main mechanisms of

SCFA absorption that have been proposed: passive and active absorption. Passive transport

is the transport of undissociated SCFA by diffusion across the cell membrane. Active transport

of the dissociated SCFA anions occurs via several transporters, namely: 1) SCFA-HCO3
-

exchange, 2) SCFA-monocarboxylate transporters (MCTs), and 3) SCFA-sodium-coupled

monocarboxylate transporters (SMCTs) (Vidyasagar et al., 2005; Sivaprakasam et al., 2017;

Ali et al., 2022; Jadhav et al., 2022).

In the SCFA-HCO3
- exchange transport mechanism, SCFA anions bind to HCO3

- to form SCFA-

HCO3
-, followed by transporter-mediated exchange (Harig et al., 1991; 1996; Vidyasagar et

al., 2005). The second SCFA transport mechanism involves monocarboxylate transporters

(MCTs), which function as H+-coupled electroneutral transporters (Ali et al., 2022; Jadhav et

al., 2022). For instance, MCT1 plays an important role in butyrate transport and showed high

expression in lymphocyte cells (Hadjiagapiou et al., 2000; Ali et al., 2022). The third transport

mechanism of SCFA anions across intestinal epithelial cells is carried out by sodium-coupled

monocarboxylate transporters (SMCTs) (Takebe et al., 2005; Ali et al., 2022). Two types of

SMCTs have been identified, namely SMCT1 (electrogenic transport) and SMCT2

(electroneutral transport). In pigs, SMCT1 and SMCT2 are expressed on the apical membrane

of the small intestine (Metzler-Zebeli, 2021; Metzler-Zebeli et al., 2022a). Both SMCT1 and

SMCT2 have different affinities for SCFA, with the corresponding Na+ stoichiometry: SCFA =

2:1 and 1:1, thus SMCT2 contributes more to lactate transport (Sivaprakasam et al., 2017).

Furthermore, the affinity of SMCT1 is highest for butyrate, followed by propionate and then

acetate (Miyauchi et al., 2004; Iwanaga and Kishimoto, 2015).

2.6.2. SCFA-host signaling associated with nutrient metabolism

Microbial SCFA are also involved in nutrient signaling and metabolism, such as glucose,

proteins, lipids, and electrolytes, via multiple signaling pathways, such as: 1) FFARs/FXR-

glucagon-like peptide 1 (GLP1)/ peptide YY (PYY) pathway, 2) FFAR-AMP-activated protein



15

kinase (AMPK) pathway, 3) FFARs-cyclic adenosine monophosphate (cAMP)/ protein kinase

A (PKA) pathway, and 4) FFARs-mitogen-activated protein kinase (MAPK)/ protein kinase C

(PKC) pathway activation (Cantó and Auwerx, 2010; Flint et al., 2012; Rinttilä and Apajalahti,

2013; den Besten et al., 2013; He et al., 2020).

Accumulating evidence suggests that SCFA may modulate glucose and lipid metabolism by

activating FFARs. Based on in vitro and in vivo experiments, SCFA-induced FFAR2 effectively

regulates glucose and protein levels by producing several regulatory hormones, such as GLP1,

insulin, and/or leptin, and by secreting peptide YY from SCFA-induced FFAR3 (Pingitore et

al., 2019; Gardiner et al., 2020; He et al., 2020). Likewise, activation of SCFA-induced FFAR2

can also improve the uptake of electrolytes such as calcium (Ca2+) (Kimura et al., 2014; He et

al., 2020). In contrast, SCFA-induced GLP1 secretion can be inhibited by other factors, such

as bile acid secretion (Ducastel et al., 2020). A recent study showed that activation of the

farnesoid X receptor (FXR), a bile acid receptor, modulated SCFA-induced GLP1 secretion in

human and mouse cell lines, as indicated by reduced FFAR2 gene expression (Ducastel et

al., 2020).

Bile acids play an important role in lipid emulsification and digestion as well as in the absorption

of fat-soluble vitamins (Hofmann, 2009; Lin et al., 2019; Lin et al., 2020; Vasquez et al., 2022).

In general, there are different types of bile acids produced in the digestive tract for lipid

metabolism, namely: primary, secondary, and tertiary bile acids (Bai et al., 2022; Shi et al.,

2023). Primary bile acids are conjugated bile acids produced in the liver with taurine or glycine

and are mostly reabsorbed in the distal ileum (Grüner and Mattner, 2021; Vasquez et al.,

2022). A small fraction of primary bile acids is then converted to secondary and tertiary bile

acids, such as deoxycholic acid and lithoxycholic acid, which are produced for instance via 7α-

hydroxylation by Clostridium and Eubacterium (Zhan et al., 2020; Guo et al., 2020; Grüner

and Mattner, 2021; Shi et al., 2023) or via 7β-dehydroxylation by specific gut bacteria (Ridlon

et al., 2014; 2016). Primary and secondary bile acids can activate FXR, which is highly

expressed in the small intestine and liver, and subsequently modulate lipid metabolism

(Fiorucci et al., 2009; Ding et al., 2015; Grüner and Mattner, 2021). In addition, some bacterial

genera such as Lactobacillus, Clostridium, Bacteroides, Bifidobacterium, and Enterococcus

are involved in the production of free primary bile acids via bile salt hydrolases by

deconjugating taurine or glycine from conjugated bile acids (Wahlström et al., 2016; Lin et al.,

2019; Lin et al., 2020; Vasquez et al., 2022). Several studies had also shown that microbial

hydrolysis of bile acids indirectly regulated the lipid homeostasis by lowering serum cholesterol

and triglyceride levels (Begley et al., 2006; Shokryazdan et al., 2017; Vasquez et al., 2022).
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This clearly indicates that changes in the gut microbiota can lead to altered bile acid

composition in the gut and consequently affect bile acid signaling and digestion.

The second SCFA-induced metabolic signaling pathway is through regulation of the AMP/ATP

ratio via activation of AMP-activated protein kinase (AMPK) (He et al., 2020; Tang and Li,

2021). This pathway affects lipolysis by regulating the expression of key lipolytic enzymes,

such as hormone-sensitive lipase and adipose triglyceride lipase (Cantó and Auwerx, 2010;

Tang et al., 2020). In addition, AMPK activation also modulates glycogen and protein synthesis

and glucose transport, thereby affecting protein and glucose levels (Hardie, 2004; He et al.,

2020). According to other previous studies, SCFA-induced AMPK activation may contribute to

lipid metabolism by increasing the expression of peroxisome proliferator-activated receptor-

gamma coactivator -1alpha in adipose tissue (Mollica et al., 2017; Tang and Li, 2021). In this

context, this receptor regulates the transcriptional activity of peroxisome proliferator-activated

receptors (Jäger et al., 2007; He et al., 2020). Decreased plasma levels of cholesterol,

triglycerides, or free fatty acids resulting from inhibited intracellular lipolysis suggest a

regulatory effect of SCFA on lipid metabolism via GPRs signaling (He et al., 2020).

The next signaling mechanism that also contributes to the regulation of lipid metabolism is the

FFAR-cAMP/PKA pathway (He et al., 2020). Here, once stimulated by SCFA, FFARs then

couple with beta receptors, such as the beta-adrenergic receptor, to generate cAMP through

activation of adenylyl cyclase. This is then followed by the activation of cAMP/PKA, which leads

to the phosphorylation and activation of hormone-sensitive lipase. Finally, this enzyme

catalyzes the breakdown of triglycerides and diglycerides, resulting in the release of free fatty

acids and glycerol (Carmen and Víctor, 2006). The last potential signaling pathway associated

with SCFA-induced lipid metabolism is the activation of protein kinase C (PKC), which is

stimulated by phorbol ester PMA both independently and dependently via mitogen-activated

protein kinase (MAPK). It is suggested that activation of the MAPK/PKC pathway may stimulate

the hormone-sensitive lipase activity to metabolize lipids (Langfort et al., 2003).

2.6.3. SCFA-host signaling associated with gut histomorphology and motility

SCFA contribute significantly to the development of intestinal structure and motility. Basically,

the development of intestinal structure is closely related to epithelial cell proliferation and highly

influenced by the activity of intestinal microbiota (e.g., Lactobacillaceae and

Ruminococcaceae) through the production of SCFA (Zhong et al., 2019; Martin-Gallausiaux et

al., 2021; van der Hee and Wells, 2021; Vasquez et al., 2022). Several studies had shown that

SCFA, especially butyrate, effectively improved intestinal histomorphological measures, such
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as increased villus height and decreased crypt depth, thereby improving nutrient absorption

(Liu, 2015; Park et al., 2016; Shang et al., 2018). Likewise, butyrate also has been shown to

have another beneficial effect in the form of reduced apoptosis (Liu, 2015). In addition, MCFA

and PUFA are also known to be involved in improving intestinal histomorphology. For example,

Dierick et al. (2004) reported that administration of MCFA to weaned pigs significantly

increased villus length in the small intestine, combined with decreased crypt depth and

intraepithelial lymphocyte count. Similarly, Liu et al. (2012) demonstrated that weaned piglets

supplemented with long-chain (n-3) PUFA had greater villus height and villus height: crypt

depth ratio.

In addition to influencing gut histomorphology, SCFA play a role in the regulation of gut motility,

which aids in the transfer of feed material along the gastrointestinal tract. Growing evidence

suggests that gut motility is influenced in part by SCFA through multiple signaling pathways,

such as 1) the FFARs-cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)

pathway, and 2) the FFARs-peptide YY (PYY) pathway (Forbes et al., 2015; Blakeney et al.,

2019; Gardiner et al., 2020). A study investigating gut motility showed that branched-chain

fatty acids, i.e., isovaleric acid, can modulate the contractibility of lower intestinal smooth

muscle cells via the GPRs-activated cAMP/PKA pathway (Blakeney et al., 2019). SCFA affect

gut motility by releasing intestinal peptides, especially PYY (Cherbut et al., 1997; Yuan et al.,

2020). Studies have shown that SCFA could stimulate the secretion of PYY by activating

FFAR, resulting in the inhibition of motility in the lower part of the intestinal tract (Cherbut et

al., 1997; 1998; Psichas et al., 2015).

2.6.4. SCFA-host signaling associated with gut immune response

Gut commensal microbiota play an important role in modulating host innate and adaptive

immune responses (Read and Holmes, 2017). This modulatory effect can be achieved through

several potential SCFA-activated signaling pathways, including: 1) FFARs-PRRs-NF-kB

pathway, 2) FFARs-MAPK pathway, 3) FFARs-histone deacetylases (HDACs) pathway, and

4) SMCTs-HDACs pathway (Wu et al., 2012; Sun et al., 2017).

The host recognizes harmful and non-harmful agents at the intestinal mucosa via the activation

of PRRs, including Toll-like receptors (TLRs) and nucleotide binding oligomerization receptors

(NODs) (Perry and Arsenault, 2022). Upon activation by their respective ligands, these

receptors initiate inflammatory responses, for example, via NF-κB and MAPK pathways (He et

al., 2020). Among various ligands, lipopolysaccharide (LPS) on the cell wall of Gram-negative

bacteria is an inflammatory stimulator. After LPS induces TLRs (e.g., TLR4/TLR2) in epithelial
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and immune cells, the NF-κB or MAPK pathway is initiated, leading to the release of various

gut inflammatory chemokines and cytokines, such as tumor necrosis factors (TNFs),

interleukins (ILs), and interferons (IFNs) (Liu and Malik, 2006; Park and Lee, 2013; He et al.,

2020). While LPS induces inflammation through the TLR signaling, SCFA blocks LPS-induced

inflammation through different pathways, i.e., GPRs/FFARs and HDACs pathways. Several

studies also demonstrate that activation of SCFA-induced FFARs, especially acetate,

propionate and butyrate, can inhibit NF-kB and MAPK signaling pathways and subsequently

suppress the intestinal expression of pro-inflammatory of TNFα, IL1β, IL4, IL5, and IL6

(Nakajima et al., 2017; Pirozzi et al., 2018; Xu et al., 2019; Metzler-Zebeli et al., 2022a), and

upregulates anti-inflammatory IL10 expression from Treg cells (Zeng and Chi, 2015;

Sakaguchi et al., 2008; Vasquez et al., 2022). Likewise, BCFA also show ameliorative effects

on the pro-inflammatory cytokines TNFα and IFNγ in pigs (Boudry et al., 2013; Vasquez et al.,

2022). Moreover, SCFA, especially butyrate, can stimulate B cells to produce secretory

immunoglobulin A to counteract harmful microbial infections (Liu et al., 2021). Apart from

inhibiting NF-κB and MAPK activity through the LPS-induced TLRs pathway, SCFA are also

considered to reduce inflammation by inhibiting HDACs activity, either via stimulation of FFARs

or transported SMCTs (Chang et al., 2014; Gurav et al., 2015; Sun et al., 2017). Among the

SCFA, butyrate has been extensively studied, and its ability to inhibit HDACs is greater than

that of propionate and acetate (Davie, 2003; Thangaraju et al., 2009). The host immune

response is also modulated by the activation of lactic acid-induced HCARs. A study by Shin et

al. (2017) revealed that activation of HCARs effectively suppressed macrophage migration to

reduce inflammation.

2.6.5. SCFA-host signaling associated with gut barrier function

SCFA are also considered to have an essential role in improving intestinal barrier function.

Mechanistically, microbiota colonizing the gastrointestinal tract, either gram-positive or gram-

negative, are recognized by host receptors, i.e., TLRs. After activating the TLRs-NF-kB

signaling pathway, microbes stimulate mucus and antimicrobial secretion, mucin (MUC)

transcription, and regulate tight junction protein (TJP) expression in epithelial cells (Hedemann

et al., 2009; Groschwitz and Hogan, 2009; Liu et al., 2021). Concurrently, SCFA control these

signaling pathways after initially stimulating fatty acid-specific receptors, i.e., FFARs or HCARs

(Priyadarshini et al., 2018; Metzler-Zebeli et al., 2022a).

As the first line of defense, the epithelial mucus layer provides a lubricant that helps trap

invasive bacteria or toxins and facilitates their removal through the luminal flow (Zhang et al.,
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2015; Broom and Kogut, 2018). The intestinal mucus layer is largely composed of mucins,

which are secreted by mature goblet cells (Broom and Kogut, 2018). Several types of mucins

have been identified in the gastrointestinal tract of chickens and pigs, but the most studied are

mucin-2 (MUC2) and mucin-4 (MUC4) (Deplancke and Gaskins, 2001; Chen et al., 2015).

Mucin secretion along the intestinal epithelium has been found to increase distally, which

appears to reflect an increase in the microbial population (Broom and Kogut, 2018). Several

studies showed that SCFA, especially butyrate, strongly influenced mucus secretion and mucin

transcription in the intestinal epithelial cells (Shimotoyodome et al., 2000; Willemsen et al.,

2003; Hedemann et al., 2009).

Another potential mechanism by which SCFA improve gut integrity is by regulating the

expression of tight junction proteins, mainly claudins (CLDN), occludins (OCLN), and zonula

occludens (ZO) (Turner, 2009; Groschwitz and Hogan, 2009). CLDN and OCLN are major

transmembrane proteins that form a selective paracellular barrier, whereas ZO is a major

cytoplasmic protein located at the peripheral membrane (Robinson et al., 2015). Studies have

shown that SCFA such as butyrate and propionate, could upregulate intestinal TJPs, such as

CLDN1, CLDN3, CLDN4, OCLN, and ZO1 in pigs (Grilli et al., 2016; Diao et al., 2019).

Likewise, a recent study by Metzler-Zebeli et al. (2022a) revealed that SCFA modulated the

expression of OCLN, CLDN4, E-cadherin and junction adhesion molecule-like protein in the

jejunum of porcine fetuses. Futhermore, the increased SCFA-activated barrier function may

also reduce the risk of cell death, known as apoptosis. It is important to note that LPS-induced

dysbiosis is one of the causes of apoptosis (Negroni et al., 2015). The reducing effect of SCFA

on intestinal apoptosis can be identified from the expression of apoptosis inhibitory proteins

(Ruemmele et al., 2003). Several studies have also suggested that SCFA, especially butyrate,

play an important role in modulating the apoptosis inhibitory protein expression in epithelial

cells (Meng et al., 1999; Ruemmele et al., 2003).

2.6.6. SCFA-host signaling associated with oxidative status

It is widely assumed that oxidative stress is one of the major causes of the adverse

consequences of stress in poultry and pigs. In response to this oxidative stress, the antioxidant

defense system uses several mechanisms to restore a homeostatic state, one of which is to

increase the production of antioxidant enzymes, such as superoxide dismutase and

glutathione peroxidase. In addition to the diet, LPS-induced dysbiosis has also been identified

as another factor affecting oxidative stress in poultry, characterized by decreased expression

of antioxidant enzymes (Surai et al., 2019). To mitigate these negative effects, microbially
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derived SCFAs play an important role in regulating oxidative status by modifying the production

and activity of antioxidant enzymes. This is supported by several studies in mice showing that

SCFA effectively suppressed oxidative stress induced by either LPS or other stressors by

modulating the activity of the antioxidant enzymes (Ranganna et al., 2014; Liu et al., 2017;

Huang et al., 2017).

2.7. Application of Ussing chamber and organ bath to investigate SCFA-host signaling

The Ussing chamber and organ bath are two ex vivo techniques that can be implemented in

animal studies and provide valuable insights into intestinal permeability and muscle

contractibility in many animal species (Blakeney et al., 2019; Baskara et al., 2021). Technically,

the Ussing chamber technique allows the measurement of electrophysiological parameters,

including short-circuit current and tissue conductance as main indicators for net ion flux and

tissue permeability (Metzler-Zebeli et al., 2017a; Baskara et al., 2021). In the measurement

process, the intestinal mucosal layer is commonly used, whereas the outer serous layers

(Tunica serosa and Tunica muscularis) are often stripped away, depending on the thickness

of the serosa itself (Baskara et al., 2021). For calculation, the short-circuit current is determined

as the net amount of electrogenic charge transfer across the epithelium, whereas the tissue

conductance is calculated as the inverse of the transepithelial resistance (Baskara et al., 2021).

To date, this technique has been increasingly used to investigate the microbial transport of

fatty acids, such as short-, medium-, and long-chain fatty acids, by various monocarboxylate

transporters, such as the sodium-dependent monocarboxylate transporters (SMCTs) or the

monocarboxylate transporters (MCTs) in porcine intestine (Metzler-Zebeli et al., 2021b; 2022a;

Lerch et al., 2022). It was also found that SCFA treatment can modify the short-circuit current

and tissue conductance in the jejunum of fetal pigs (Metzler-Zebeli et al., 2022a).

The organ bath is an ex vivo technique that helps to study gut contractibility by measuring

changes in intestinal muscle tension (Cai, 2015; Baskara et al., 2021; Metzler-Zebeli et al.,

2021b). Briefly, the organ bath is equipped with force transducers, which are connected to a

four-channel bridge amplifier, and data are collected using a kymograph data acquisition

software (Baskara et al., 2021; Metzler-Zebeli et al., 2021b; Lerch et al., 2022). It is important

to note that, the viability of intestinal cut samples must be ensured prior to measurement, one

of the ways being the addition of acetylcholine (Baskara et al., 2021; Metzler-Zebeli et al.,

2021b). The contraction or relaxation of the intestinal muscles is recorded as a positive or

negative change in tension (Metzler-Zebeli et al., 2021b). According to a recent study using

this technique, the addition of SCFA reduced muscle contraction in fetal porcine jejunal tissue
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(Metzler-Zebeli et al., 2022a). Likewise, a study by Blakeney et al. (2019) showed that the

branched-chain fatty acid, i.e., isovaleric acid, caused muscle relaxation in the rat colon. To

date, information on the modulatory effects of microbial fatty acids (e.g., SCFA/BCFA and lactic

acid) on host mucosal signaling using these two ex vivo techniques is still limited, both in pigs

and chickens, hence more experiments are required to gain a broader understanding.

2.8. Probiotics as an alternative to antibiotics and their role in modulating gut

microbes

For decades, antimicrobial growth promoters (AGPs) in feed have been used intensively in

chicken and pig farms due to their benefits in improving the growth and performance of these

monogastric animals. However, since the emergence of antibiotic-resistant gut microbes and

residues in animal products, the use of antibiotics in feed has been restricted in many countries

(Gadde et al., 2017). Under these conditions, probiotics have been recommended as

alternative feed additives to replace antibiotics (Fathima et al., 2022). Indeed, some evidence

suggests that AGPs effectively inhibit the growth and proliferation of pathogenic microbes and

prevent toxic interference (Gaskins et al., 2002; Gadde et al., 2017). However, AGPs also have

some drawbacks, such as reducing the total number and diversity of gut microbes (Alagawany

et al., 2018; Forgie et al., 2019), which indirectly affects the disruption of the gut microbial

balance. Furthermore, there is some evidence that AGPs have the potential to disrupt the

production of antimicrobial peptides, tight junction proteins, and immune factors due to gut

microbial imbalance (Gadde et al., 2017; Forgie et al., 2019; Raheem et al., 2021). Probiotics

are considered to address these drawbacks, where they can eliminate pathogenic bacteria

without disrupting the balance of the gut microbial community (Jha et al., 2020).

In recent years, the use of probiotics as feed additives has increased rapidly in both poultry

(Raheem et al., 2021; Shini and Bryden, 2021) and swine (Barba-Vidal et al., 2018; Zhang et

al., 2023) farms. Probiotics are defined as live microorganisms that provide health benefits to

the host when administered in adequate cell counts (Yang et al., 2018; Chen et al., 2022a).

Probiotics can be administered as a single or multiple strains/species with a combination of

different microorganisms such as bacteria and yeast (Neveling and Dicks, 2021). Some genera

of bacteria commonly used as probiotics in studies include Lactobacillus spp., Bacillus spp.,

Bifidobacterium spp., Pediococcus spp., Streptococcus spp., Paenibacillus spp., and

Enterococcus spp., whereas the genus for yeast is Saccharomyces spp. (Barba-Vidal et al.,

2018; Markowiak and Śliżewska, 2018; Neveling et al., 2020). Studies in chickens and piglets

have shown that probiotics can restore gut microbiota homeostasis by inhibiting pathogen
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invasion and promoting the growth of beneficial bacteria. For instance, administration of

Bacillus-based probiotics increased the numbers of Lactobacillus, Bifidobacterium and Bacillus

and reduced the colonization of Escherichia coli and Salmonella spp. in the small intestine

and ceca of broiler chickens at either the starter or finisher phase (Zhen et al., 2018; Arif et al.,

2021; Wang et al., 2021c). Similarly, supplementation of lactic acid-based probiotics, such as

Lactobacillus spp., Bifidobacterium spp. and Enterococcus spp., has been shown to suppress

the development of the pathogens Campylobacter spp. and Salmonella spp. in the ceca of

broiler chickens (Ghareeb et al., 2012; Prado-Rebolledo et al., 2017; El-Sharkawy et al., 2020).

In piglets, the provision of lactic acid-based probiotics or Bacillus-based probiotics in the diet

can modify the abundance of certain bacteria, such as Lactobacillus, Clostridium,

Peptococcus, Streptococcus, Erysipelotrichaceae, Coprococcus, and Oscillibacter either in the

intestinal digesta or feces of weaned piglets (Upadhaya et al., 2017; Shin et al., 2019; Xin et

al., 2020; Moturi et al., 2021; Lee et al., 2022; Pang et al., 2022) and inhibit the development

of pathogenic bacteria such as Escherichia coli and Salmonella spp. (Trevisi et al., 2011; Hu

et al., 2014; Guerra-Ordaz et al., 2014; Naqid et al., 2015). Consequently, probiotics can

reduce the incidence of diarrhea in weaned piglets (Pupa et al., 2022).

2.9. Potential action mode of probiotics in promoting gut health in chickens and pig lets

As previously mentioned, probiotics exert health-promoting effects on the host by balancing

the gut microbial composition and inhibiting pathogens. This positive effect is inseparable from

the favorable effects of probiotics in supporting the growth of beneficial microbes and their

ability to produce antimicrobial substances and fermentable metabolites, such as SCFA/BCFA

and lactic acid (LeBlanc et al., 2017; Oh et al., 2021; Ding et al., 2021; Vasquez et al., 2022).

In addition, there is growing evidence that probiotics can improve intestinal barrier function

and immune function in both chickens and piglets, whether challenged with pathogens or not,

and can effectively alleviate postweaning diarrhea in piglets (Su et al., 2022). Although there

have been many studies investigating the effects of probiotics on gut microbial colonization

and intestinal development have been intensively conducted. However, these observations

have focused on the postweaning period, whereas their effects during the suckling period have

not been elucidated. Therefore, opportunities for further research are wide open.

To date, much research is being conducted to discover the possible mechanisms by which

probiotics may improve gut function and prevent diarrhea. According to the results of previous

studies, improved immunity and gut integrity after probiotic supplementation may be correlated

with increased concentrations of gut microbial fatty acids, especially SCFA (Sakata et al., 2003;
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Wang et al., 2019; Peng et al., 2022). Such microbial fatty acids can trigger ligand-sensing

host receptors and initiate various intracellular signaling pathways to overcome dysbiosis and

restore intestinal homeostasis (Raheem et al., 2021).

Therefore, to understand how probiotics act in maintaining gut homeostasis and overcoming

LPS-induced dysbiosis, it is necessary to further undestand the possible signaling pathways

from different types of probiotics to the host. In the following, probiotics were categorized into

4 groups, namely: 1) lactic acid-based probiotics, 2) Bacillus-based probiotics, 3)

Clostridium-based probiotics, and 4) yeast-based probiotics.

Figure 4. A flow chart showing the potential action mode of probiotics in improving gut health and

performance in chickens and piglets.

2.9.1. Lactic acid-based probiotics

Lactic acid-based probiotics are a type of probiotics that are widely used in research. Some of

the bacterial genera included in this type of probiotics are Lactobacillus, Enterococcus,
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Bifidobacterium, Pediococcus, and Streptococcus. These probiotics can produce lactic acid

as their main fermentation product, which functions to lower the lumen pH, thus potentially

inhibiting pathogens (Wu et al., 2018). In addition to lactic acid production, this type of probiotic

can also increase luminal SCFA concentrations. For example, several studies have shown

that administration of Lactobacillus spp. can increase the concentrations of lactic acid and

SCFA, but not BCFA, including total SCFA, acetate, propionate and/or butyrate in the digesta

and feces of grower-finisher broilers, either challenged or not with pathogens and mycotoxins

(Wu et al., 2018; Wang et al., 2021a; Chen et al., 2022c). Likewise, a study by Barba-Vidal et

al. (2017a) also showed that weaned piglets receiving Bifidobacterium spp. had higher levels

of total SCFA in the colon when challenged with pathogens. These results clearly indicate that

the mechanism of lactic acid-based probiotics in overcoming pathogen-induced dysbiosis is

by producing lactic acid and increasing SCFA levels. In this regard, the increase in SCFA

concentrations is likely due to the enrichment of SCFA-producing microbes in the gut, in which

these microbes utilize lactic acid to convert to SCFA through a cross-feeding mechanism

(Vasquez et al., 2022). A study by Wang et al. (2020) showing that broilers supplemented with

Enterococcus faecium had a higher abundance of butyrate-producing bacteria, such as

Ruminococcaceae and Eubacterium.

Once produced, SCFA are thought to activate GPRs/FFARs and subsequently inhibit the

LPS-induced NF-κB and MAPK pathways (He et al., 2020; Vasquez et al., 2022). This, in turn,

regulates pro- and anti-inflammatory cytokines, modulates the expression of TJPs, and

increases antioxidant enzyme levels to counteract gut inflammation (Liu et al., 2021; Ali et al.,

2022). As confirmed by previous studies, dietary administration of lactic acid-based probiotics,

e.g., Enterococcus spp. or Pediococcus spp., significantly increased the expression of first line

of defense genes, e.g., MUC2 and CLDN1, as well as upregulated IL10 and downregulated

pro-inflammatory cytokines, such as NF-κB, TNFα, TLR4, IL1β, IL4, and IL8 in broiler chickens

challenged with pathogens, such as E. coli, Salmonella spp. and Clostridium perfringens

(Huang et al., 2019; Wu et al., 2019; Ateya et al., 2019; Lan et al., 2020). Similar findings were

also found in piglet studies, showing that Lactobacillus spp. improved intestinal morphology,

antioxidant enzymes, and TJPs (e.g., OCLN, ZO1, and CLDN1) and increased the expression

of anti-inflammatory IL10, but decreased pro-inflammatory cytokines (e.g., TNFα and IL1β) in

weaned piglets challenged with or without LPS (Li et al., 2019; Sun et al., 2020; Chen et al.,

2020). It has also been reported that Lactobacillus spp. supplementation effectively reduced

diarrhea scores in weaned piglets (Dowarah et al., 2017).
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2.9.2. Clostridium-based probiotics

The following groups of probiotics are Clostridium-based probiotics, of which Clostridium

butyricum is the most used species in studies (Guo et al., 2020). C. butyricum produces

butyrate and acetate, thereby contributing to the intestinally produced SCFA concentrations in

the gut. In terms of mode of action, these probiotics mainly affect the host by activating the

butyrate/SCFA-stimulated FFARs/GPRs in the epithelial cells and then blocking LPS-induced

TLRs-NF-κB signaling pathway to improve gut immunity and integrity (Guo et al., 2020). Apart

from the NF-κB pathway, it has also been suggested that C. butyricum-derived butyrate/SCFA

may affect gut development by modulating the AMP-activated protein kinase (AMPK) or Akt

signaling pathway (Yan and Ajuwon, 2017; Mishra et al., 2020). According to previous studies,

C. butyricum supplementation markedly increased cecal SCFA content in broiler chickens and

subsequently improved innate immune response, barrier function, and oxidative status, as

indicated by downregulation of pro-inflammatory cytokines (e.g., IL1β, IL6, and TNFα) as well

as increasing TJPs (e.g., OCLN and ZO1) and antioxidant enzymes (e.g., SOD and GPx) in

the small intestine (Liao et al., 2015; Li et al., 2021; Liu et al., 2022). Similarly, C. butyricum

has been shown to suppress the growth of pathogens, such as E. coli, Salmonella and

Clostridium perfringens in the grower-finisher broilers (Yang et al., 2012). In addition, dietary

administration of C. butyricum increased the levels of butyric acid, propionic acid, acetic acid,

and total acid in the cecum of weaned piglets. At the same time, C. butyricum also improved

intestinal morphology, increased first-line defense genes (e.g., of MUC1, MUC4, OCLN, ZO1,

ZO2, and CLDN1), modulated genes related to the immune system (e.g., IL1β, TNFα, IL6, IL8,

and 1L10), and decreased the rate of diarrhea in weaned piglets (Zong et al., 2019; Fu et al.,

2021).

2.9.3. Bacillus-based probiotics

Another type of probiotic that has been extensively studied is Bacillus-based probiotics,

including B. coagulans, B. subtilis, B. pumilus, B. amyloliquefaciens, and B. licheniformis.

Unlike lactic acid- or Clostridium-based probiotics, Bacillus spp. probiotics are considered to

exert immunoregulatory effects involving not only through fermentation acids, but also via the

production of quorum-sensing peptides, such as competence and sporulation factors (CSF)

(Solomon et al., 1996; Lazazzera et al., 1997). CSF is a key molecule that is crucial for

interbacterial communication and for bacterial proliferation and sporulation (Tam et al., 2006;

Okamoto et al., 2012). To improve host immune function, CSF is proposed to activate the

MAPK pathways, i.e., Akt and p38 MAPK, and subsequently increase the expression of anti-
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inflammatory of IL10, and decrease some pro-inflammatory mediators, such as IL4, IL6, and

TNFα in the intestinal cells (Okamoto et al., 2012). In addition, CSF has been shown to protect

epithelial cells from oxidative stress (Okamoto et al., 2012; Suva et al., 2016). According to

studies in chickens, dietary supplementation of Bacillus spp., such as B. coagulans, B. pumilus

and B. subtilis, could enhance the immune response as indicated by an increase in IL10 and

a decrease in IFN-γ expression (Zhen et al., 2018; Bilal et al., 2021). These probiotics also

increased the abundance of SCFA-producing bacteria in the ceca, such as Lactobacillus and

Clostridium, and suppressed the growth of pathogenic E. coli and Salmonella. The similar

response was also observed in piglet studies where supplementation of probiotic Bacillus spp.,

i.e., B. licheniformis and B. subtilis, could modify SCFA/BCFA levels and regulate the

expression of pro-inflammatory cytokines, such as TLR4, IL2, IL6, IL1β, and TNFα in both the

small and large intestine of weaned piglets (Wang et al., 2021b). Bacillus spp. were also able

to increase the number of Lactobacillus, suppress pathogens, i.e., Salmonella spp. and E. coli,

and reduce the incidence of diarrhea in piglets after weaning (Hu et al., 2014; Barba-Vidal et

al., 2017b; Sun et al., 2022).

2.9.4. Yeast-based probiotics

The last group of probiotics are yeast-based probiotics, including Saccharomyces cerevisiae

and Saccharomyces boulardii. Saccharomyces spp. probiotics have been shown to effectively

suppress intestinal inflammation by binding to specific pathogens or toxins via mannose

residues on their cell surface. This formed binding has the potential to inhibit MAPK and/or

NF-kB signaling pathways which are induced by LPS-producing pathogens such as E. coli

and Salmonella spp. or by Fusarium-derived mycotoxins (Zanello et al., 2011; Martins et al.,

2011; Chang et al., 2017). In addition, supplementation with Saccharomyces-based probiotics

can increase the abundance of short-chain fatty acid-producing bacteria (Kiros et al., 2019). It

has been reported that inclusion of Saccharomyces spp. in the diet of chickens could improve

histomorphological measures, increase the abundance of beneficial bacteria, i.e.,

Enterococcus and Brevibacillus, and inhibit E. coli-induced upregulation of proinflammatory

TLR4, NF-κB, and IL1β in the small intestine (Wang et al., 2016). A similar response was also

observed in weaned piglets, where the administration of dietary Saccharomyces spp.

increased the concentrations of SCFA, i.e., isobutyrate and valerate, decreased the pro-

inflammatory of IL6 and TNFα, and improved the antioxidant capacity, in both the small and

large intestine (Zanello et al., 2011; Zhang et al., 2020a). In addition, the incidence of diarrhea
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in weaned piglets was significantly reduced after receiving Saccharomyces spp. in their diet

(Zhang et al., 2020a).

2.10. Factors influencing the efficacy of probiotics

The use of probiotics as an alternative to antibiotics in chicken and pig production has become

increasingly popular in recent decades (Jha et al., 2020; Abd El-Hack et al., 2022). However,

results obtained from several studies show that the effects of probiotics on gut health and

performance parameters are still inconsistent. The inconsistency of the results observed in

different studies may be due to several factors, including: 1) the type and dose of probiotics

used (e.g. strain/species, single/multi-species), 2) the age of the animals (e.g. suckling or

weaning phase for piglets; starter, grower, or finisher phase for chickens), 3) the duration of

probiotic supplementation, 4) the diet provided (e.g., feed type and composition, nutrient

content, and feeding pattern), and 5) the health status of the animals (e.g. healthy or

pathogen-infected state) (Lambo et al., 2021; Vasquez et al., 2022).

The type and dosage of probiotics is considered as a crucial factor in influencing the efficacy

of probiotics (Lambo et al., 2021). Several studies have shown that different probiotic species

or strains are revealed to have different capacities to promote gut health and livestock

production (Wang and Gu, 2010; Al-Shawi et al., 2020). In addition, multi-species or strain

probiotics exert greater effects and benefits compared to mono-species or strain probiotics

(Timmerman et al., 2004; Lambo et al., 2021). Different combinations in multi-species or strain

probiotics have also been shown to have different modulatory effects on growth performance,

intestinal histomorphology, immune response, and the ability to inhibit pathogen colonization

of the gastrointestinal tract of chickens and piglets (Lu et al., 2018; Neveling and Dicks, 2021).

The use of low and high doses of probiotics also showed differential expression of TJPs and

microbial abundance in the small and large intestine (Li et al., 2012; Bilal et al., 2021). The

efficacy of probiotics is also strongly influenced by age, which may be related to differences in

gut microbial abundance and diversity between young and old animals (Ocejo et al., 2019).

The duration of probiotic administration is also another factor to consider as it determines the

efficacy of the probiotics (Vasquez et al., 2022). Different results have been observed in

several variables between short-term and long-term administration, such as the expression of

genes related to the gut barrier and immune response, histomorphology, and growth

performance (Musa et al., 2019; Kan et al., 2021).
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2.11. Meta-analytical approach to address inconsistency in probiotic studies

There are many qualitative reviews on the effect of probiotics in chickens and pigs (Shini and

Bryden, 2021; Barba-Vidal et al., 2018). However, the different results between the original

studies due to changes in direct and indirect factors cannot be considered in this way (Sales,

2014). In this regard, conducting a meta-analysis is considered the most appropriate method

to address this complexity by generalizing the overall treatment effect (Metzler-Zebeli et al.,

2019a). This method allows data from existing randomized controlled animal trials to be

statistically combined, and the results can then be summarized under different conditions. In

recent years, the trend towards meta-analysis studies has grown rapidly in various fields of

study. In animal science, meta-analysis is mainly concerned with the relationship between

quantitative variables to predict the average response of a dependent variable in an

experiment, to one, or more, independent variables or covariables (Sauvant et al., 2020).

In general, there are several main steps in conducting a meta-analysis, namely, 1) literature

search, 2) database construction, and 3) data analysis (Metzler-Zebeli et al., 2017c; 2019a).

Literature search is the first step, in which all relevant articles published in scientific journals

are searched and collected using search engines. Once collected, studies are selected

according to strict criteria, which is then followed by database construction. In this step, a

minimum requirement of 3 studies and 10 single observations (treatment means) along with

the standard error for each dependent variable is determined as a prerequisite for estimating

the combined effect size (Lipsey and Wilson, 2001; Metzler-Zebeli et al., 2017c; 2019a).

The next step is data analysis, where descriptive statistics are first performed on the predictor

and dependent variables. The data on the dependent variables are then subjected to mixed

modeling analysis. To avoid positive correlation between intercepts and slopes, an

unstructured variance-covariance matrix is used (St-Pierre, 2001). To account for unequal

variance across studies, the dependent variable is weighted by the inverse of the square of

the standard error (Metzler-Zebeli et al., 2017c; 2019a). The estimates, root mean square error

and coefficient of determination are also calculated and used to assess the fit. To obtain a

more precise prediction of the factors affecting the dependent variable that are influenced by

the independent variable, backward elimination analysis is used (Metzler-Zebeli et al., 2017c;

2019a). In addition, overparameterization of the model is considered with a variance inflation

factor of less than 10 for each independent variable tested (Metzler-Zebeli et al., 2019a).
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3. AIMS AND HYPHOTHESIS OF THE STUDY

According to the thoughts and considerations presented in the introduction part, some

experiments were conducted in this PhD thesis, which were divided into three parts. The first

part included a short-chain fatty acids (SCFA) experiment to clarify SCFA-host signaling in the

jejunum and ceca of laying hens using ex vivo models. The second part was to assess the

modulating effects of probiotics on gut mucosal gene expression, histomorphology, and growth

performance in broiler chickens using a meta-analytical approach. The third part was to

investigate the mother-offspring axis in establishing gut microbial colonization in piglets

throughout the suckling and early postweaning periods using an in vivo model. The detailed

objectives and hypotheses of the three experiments are as follows:

Experiment 1 : Investigating the local effect of specific microbial metabolites (i.e.,

short-chain fatty acids) on the gut barrier function and contractibility in

laying hens as an animal model using ex-vivo models ((Yosi et al. 2022),

further on referred to as manuscript 1)

Objective 1 : To determine the effect of different molar acetate: butyrate ratios, and

SCFA concentrations on the jejunal and cecal contractibility and jejunal

barrier function in laying hens ex vivo.

Hypothesis 1 : Greater contractibility of the jejunal and cecal muscle and mucosal

barrier function will be noted with higher molar butyrate proportions and

total SCFA concentrations.

Key questions that will be addressed in Experiment 1:

1. To what extent do different acetate: butyrate molar ratios and SCFA concentrations affect

the contraction of mid-jejunal and cecal muscles in laying hens using the organ bath

system?

2. To what extent do different acetate: butyrate molar ratios and SCFA concentrations affect

short-circuit current and transepithelial tissue conductivity in the mid-jejunum of laying hens

as indicators for net ion flux and barrier function by using the Ussing chamber?
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Experiment 2 : Assessing the modulatory effect of dietary probiotics on gut barrier and

immune response, histomorphology, and growth performance in broiler

chickens using a meta-analytical approach ((Yosi et al. 2023), further

on referred to as manuscript 2)

Objective 2 : To evaluate the effects of probiotics on the gut barrier and immune-

related gene expression, histomorphology, and growth in broiler

chickens either challenged with pathogens or not.

Hypothesis 2 : It was hypothesized that the meta-analysis will confirm the results from

individual studies both at the structural and gene expression levels that

probiotics can support gut histomorphology, barrier function, and

immune response in broilers under non- or pathogen-challenged

conditions.

Key questions that will be addressed in Experiment 2:

1. Does the meta-analysis confirm the findings from the individual studies that probiotics can

modulate the expression of genes related to gut barrier function and immune response in

broiler chickens either with or without pathogen challenge?

2. Does the meta-analysis confirm the findings from the individual studies that probiotics can

improve the histomorphological measures in broiler chickens either with or without pathogen

challenge?

3. Does the meta-analysis confirm the findings from the individual studies that probiotics can

improve growth performance in broiler chickens either with or without pathogen challenge?

4. Does the meta-analysis confirm the findings from the individual studies that probiotics exert

different responses in broiler chickens under non-challenged and challenged conditions,

both at the level of gut structure and gene expression?

5. Does the meta-analysis confirm the findings from the individual studies that probiotics exert

different responses in broiler chickens between different ages and gut segments, both at

the level of gut structure and gene expression?

6. Does the meta-analysis confirm the findings from the individual studies that dietary

metabolizable energy, crude protein, and days post-infection modify the modulating effects

of probiotics on the gut barrier and immune-related gene expression, histomorphology, and

growth performance in broiler chickens?
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Experiment 3 : Investigating the mother-offspring axis in establishing gut microbial

colonization in suckling and newly weaned piglets using in vivo model

(further on referred to as manuscript 3)

Objective 3 : To assess: 1) the changes that occur in the bacterial and fungal

communities in sow feces during the lactation period as well as in gastric

and cecal digesta of piglets from day 3 of life until one week after

weaning; and 2) bacterial and fungal taxa in cecal digesta of the piglets

postweaning that associate with the fecal consistency

Hypothesis 3 : 1) microbial communities in piglet’s gut would reflect the microbial

composition in sow feces during the suckling phase; and 2) the

association of higher fecal scores with microbial taxa in cecal digesta

will let identify taxa that are linked to a lower gut homeostatic state

postweaning.

Key questions that will be addressed in Experiment 3:

1. To what extent does progressing lactation influence the composition and abundance of

bacterial and fungal communities in sow feces?

2. To what extent do microbes from sow feces contribute to the composition and abundance

of bacterial and fungal communities in the gastric and cecal digesta of piglets during the

suckling and early postweaning periods? 

3. How do the bacterial and fungal communities of the gastric and cecal digesta of piglets

develop from suckling to early postweaning?

4. What is the fecal consistency score of piglets within one week after weaning?

5. To what extent do bacterial and fungal taxa in the cecal digesta correlate with fecal

consistency score in newly weaned piglets?
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Short-chain fatty acids promote jejunal barrier function and caecal muscle 
contractibility in laying hens ex vivo
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aUnit Nutritional Physiology, Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of 
Veterinary Medicine Vienna, Vienna, Austria; bChristian-Doppler Laboratory for Innovative Gut Health Concepts of Livestock, University of 
Veterinary Medicine Vienna, Vienna, Austria; cDepartment of Animal Science, Faculty of Agriculture, University of Sriwijaya, Palembang, 
Indonesia; dInstitute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Public Health, University of 
Veterinary Medicine Vienna, Vienna, Austria; eDepartment of Animal Nutrition and Feed Science, Faculty of Animal Science, Universitas Gadjah 
Mada, Yogyakarta, Indonesia

ABSTRACT
1. Short-chain fatty acids (SCFA) exert beneficial actions in the gut; nevertheless, information about 
the effect of SCFA on physiological responses in the small intestine of chickens is rare.
2. The aim of this study was to assess the effect of 1) different molar acetate:butyrate ratios (Ac:But; 
Experiment 1; 78.5% acetate and 7.3% butyrate versus 71.4% acetate and 14.0% butyrate) and 2) SCFA 
concentrations (Experiment 2; final concentration in chambers: 70.5 versus 141 µmol SCFA/ml buffer) 
on the jejunal and caecal contractibility and jejunal barrier function in laying hens. The change in 
muscle contractibility due to the SCFA was measured in mid-jejunal and caecal segments (n = 4 each 
per hen) from four laying hens using the organ bath system after precontraction with acetylcholine 
for 15 min. Changes in short-circuit current (ISC) and transepithelial tissue conductivity (GT) as 
indicators for net ion flux and barrier function, respectively, were measured in mid-jejunal tissue 
(n = 3/hen and treatment), mounted into Ussing chambers.
3. In Experiment 1, the addition of SCFA, irrespective of the Ac:But ratio, decreased jejunal muscle 
tension (P < 0.05), jejunal GT as well as caused a less negative ISC (P < 0.05). In Experiment 2, the 
increasing SCFA concentrations increased the caecal muscle contraction and jejunal ISC by 75.6% 
while decreasing the GT by up to 19.6% (P < 0.05).
4. In conclusion, results demonstrate that increasing butyrate proportions and SCFA concentrations 
stimulate caecal muscle contraction, thereby increasing caecal mixing and emptying in vivo. Jejunal 
ISC and GT support a strong SCFA sensing capacity in the jejunum, as both, more butyrate and higher 
SCFA, increased mucosal ion uptake and barrier function.
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Introduction

Short-chain fatty acids (SCFA) are the major primary pro-
ducts from fermentation, and contribute to the animal’s 
energy supply when absorbed (Byrne et al. 2015; Stumpff 
2018). The main SCFA produced in the gastrointestinal tract 
are straight-chain SCFA, namely acetate, butyrate, and pro-
pionate, originating from the microbial degradation of car-
bohydrates (Macfarlane and Macfarlane 2012). These have 
beneficial effects in relation to gut function, inflammatory 
signalling, regulation of glucose homoeostasis and metabo-
lism, appetite regulation and inhibition of colon cancers 
(Corrêa-Oliveira et al. 2016; Larraufie et al. 2017). 
Simultaneously, branched-chain fatty acids are produced by 
microbial activity on dietary and host-derived proteins; spe-
cifically, branched amino acids valine, isoleucine, and leucine 
are fermented to isobutyric acid, 2-methylbutyric acid, and 
isovaleric acid, respectively (Macfarlane and Macfarlane 
2012). Branched-chain fatty acids are less well characterised 
than SCFA and are commonly considered to be damaging to 
the gut (Blakeney et al. 2018). Nevertheless, during microbial 
fermentation in the intestines both types of SCFA are pro-
duced. Therefore, intestinal digesta comprises a mix of 
straight- and branched-chained fatty acids and their actual 

molar proportions depend on the respective microbial sub-
strate, which should be considered when investigating effects 
of single SCFA.

Acetate and propionate show potential to promote small 
intestinal barrier function, as demonstrated in the duodenum 
of mice (Wan Saudi and Sjöblom 2017). Moreover, in mice, 
butyrate accelerated gastrointestinal transit (Touw et al. 2017), 
whereas branched-chain fatty acids caused relaxation of colonic 
smooth muscles (Blakeney et al. 2018). Evidence exists that 
butyrate strengthens the epithelial barrier, reduces inflamma-
tion and increases the production of mucins and antimicrobial 
peptides in the distal chicken gut (Onrust et al. 2015), whereas it 
is unclear whether butyrate has similar actions in the small 
intestine of chickens. As both single and mixed SCFA can be 
used as dietary supplements, it should be clarified whether SCFA 
alters gut contractibility, especially in the small intestines. 
Changes in gut motility are associated with alterations in nutri-
ent digestion and passage rate; the latter generally being faster in 
the small rather than in the large intestine (Kolakshyapati et al. 
2019). The extent of digestion and retention time in the respec-
tive gut segments, in turn, influences the intestinal substrate 
availability for microbial activity and time for fermentation, 
thereby modulating the production and profile of SCFA.
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Overall, more evidence exists for straight- and branched- 
chained SCFA effects in the colon, whereas similar roles in 
the jejunum and caecum have been less well investigated. 
These two intestinal segments, however, play crucial roles in 
birds, because the jejunum is the longest part of the intestine 
and is important for nutrient assimilation, whereas the caeca 
are the gut section in which the highest microbial activity can 
be found (Oakley et al. 2014; Metzler-Zebeli et al. 2019). The 
objective of the following trial was to investigate the effects of 
different molar ratios of SCFA (i.e. acetate:butyrate ratio) 
and luminal SCFA concentrations on the jejunal and caecal 
motility and jejunal barrier function in chickens ex vivo. It 
was hypothesised that greater contractibility of the jejunal 
and caecal muscles and mucosal barrier function would be 
seen with higher molar butyrate proportions and total SCFA 
concentrations.

Material and methods

Animals and experimental procedures

The protocol relating to the handling of experimental ani-
mals was approved under the Good Scientific Practice 
Guidelines of the Institutional Ethics Committee of the 
University of Veterinary Medicine Vienna (ETK-54/03/ 
2019). Two separate ex vivo trials were performed to inves-
tigate the effect of butyrate concentration (Experiment 1) 
and the effect of the total SCFA concentration 
(Experiment 2). Each of the two experiments comprised an 
electrophysiological element performed in the Ussing cham-
ber and gut motility was measured in tissues in an organ 
bath. In each of the two experiments, the jejunum and caeca 
from four hens from a commercial strain (Lohmann Luna) at 
the beginning of their laying period from a local organic layer 
farm were used. The hens arrived two days before the experi-
ments began and were housed in pens together. Until the 
morning of the organ bath and Ussing chamber experiments, 
hens had free access to a commercial, corn-soybean meal- 
based layer diet (Königshofer, Ebergassing, Austria; 17.8% 
crude protein, 12.0% ash, 5.8% ether extracts, 4.2% crude 
fibre, 3.7% calcium, 0.8% lysine, 0.6% phosphorus, 0.4% 
methionine and 0.17% sodium on an as-fed basis) and 
fresh water.

Gut tissue collection was similar to that described in 
Baskara et al. (2021). Hens were euthanised with an overdose 
of sodium pentobarbital (20 mg/kg; Thiopental, Sandoz 
GmbH, Vienna, Austria) by i.v. injection into the caudal 
tibial vein followed by exsanguination. After opening the 
abdomen, the whole gastrointestinal tract was removed. In 
order to distinguish between distal jejunum and ileum, the 
distribution of the mesenteric arteries (McLelland 1975) was 
followed, which categorises the gut section distal to the 
Meckel’s diverticulum as distal jejunum. Two 25-cm gut 
sections were taken from the jejunum of each hen, one 
proximal and one distal to Meckel’s diverticulum towards 
the ileum, and both caeca were collected. The gut samples 
were immediately placed into ice-cold modified Krebs- 
Henseleit (KH) buffer for the organ bath and Ussing cham-
ber experiments. Buffers were gassed with carbogen gas (95% 
O2 and 5% CO2) to allow respiration of the tissues. The time 
elapsing from euthanasia of the hen until the start of the 
equilibration phase in Ussing chambers and tissue bath was 
not longer than 20 min.

Short-chain fatty acid solutions

To assess molar proportions and concentration-dependent 
effects, two SCFA solutions were prepared, containing phy-
siological concentrations of the predominant SCFA acetate, 
propionate, butyrate, valerate and caproate, as well as the 
branched-chain SCFA iso-butyrate and iso-valerate (Sigma- 
Aldrich, Vienna, Austria; Table 1). The stock solution con-
tained 1.96 mmol SCFA/ml and was added to the organ bath 
and Ussing chambers. In Experiment 1, two different molar 
ratios of acetate:butyrate were tested, which were 78.5% 
acetate and 7.3% butyrate (SCFA solution 1; low butyrate) 
versus 71.4% acetate and 14.0% butyrate (SCFA solution 2; 
high butyrate) in the analysed SCFA solutions. Table 1 illus-
trates the analysed concentrations of the single SCFA in the 
organ bath and Ussing chambers. Irrespective of the acetate: 
butyrate ratio, the SCFA solutions added to the Ussing and 
organ bath chambers reached a final concentration of 
140 µmol/ml buffer in each chamber. Similar concentrations 
can be found in the caeca of laying hens, whereas concentra-
tions in the jejunum are normally below 100 µmol/ml. To 
provoke a physiological response in the jejunal tissue and to 
have a direct comparison to the caecal tissue in the present 
study, the same SCFA concentration as for the caeca for the 
jejunal tissue was used in Experiment 1 and 2. In Experiment 
2, two different concentrations of SCFA were tested, which 
were created by adding different amounts of the SCFA solu-
tion 2 from Experiment 1 to the chambers. The low SCFA 
concentration resembled that found in the distal parts of the 
small intestine in chickens.

Measurement of gut motility

The experimental procedure to monitor gut motility was 
performed according to previously published studies (Cai 
et al. 2015; Blakeney et al. 2018; Baskara et al. 2021). The 
jejunal sample proximal to the Meckel’s diverticulum and 
one caeca were used. Contraction measurements were per-
formed as described in Baskara et al. (2021). Four samples 
per gut segment from each hen were excised (1 cm in length) 
and their lumen flushed with KH buffer (Table 2), warmed to 
37°C and gassed with carbogen to remove digesta residues. 
Both ends of the gut samples were tied with silk suture 
without occluding the lumen, and placed in a 20 ml water- 
jacketed organ bath chamber maintained at 37°C (ISO-02, 
MDE Heidelberg, Germany) and continuously gassed with 
carbogen (95% O2–5% CO2). The lower silk suture was fixed 
at the bottom of the chamber, whereas the upper silk suture 
was attached to a force transducer (SEN-03-34, MDE 
Heidelberg, Germany) which was connected to a four- 
channel bridge amplifier (EXP-SG-4, MDE Heidelberg, 

Table 1. Composition of short-chain fatty acids (SCFA) in the organ bath and 
Ussing chamber in Experiments 1 and 2.

Experiment 1 Experiment 2

Item Low butyrate High butyrate Low SCFA High SCFA
Concentration (µmol/mL)
Acetate 110 100 50.4 100.7
Propionate 15 15 7.7 15.4
Butyrate 10 20 10.2 20.4
Isobutyrate 1 1 0.5 0.9
Valerate 2 2 0.9 1.9
Isovalerate 1 1 0.5 1.0
Caproate 0.5 0.5 0.3 0.5
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Germany). Continuous data were collected using advanced 
kymograph data acquisition software S.P.E.L. (Advanced 
ISOSYS, MDE Heidelberg, Germany). The tension of each 
tube piece was adjusted to an initial tension of 1.0 g or 10 
mN, and the segment was equilibrated for 20 min. After this, 
the KH buffer was replaced three times in 5 min intervals. 
The viability of the jejunal and caecal samples was tested by 
contraction stimulated by the addition of acetylcholine 
(ACh) to reach a final concentration of 10 µM in the cham-
ber buffer before testing the effect of the SCFA solutions. 
When the contractions became stable in all chambers, which 
took about 10 min, the SCFA solution was added and the 
response was recorded as positive or negative change in 
tension. The response was measured for 15 min. Following 
this, the chambers were cleaned three times using a brush 
and rinsed in at least three-bath volumes of KH buffer at 
5 min intervals to remove the previous solution before the 
addition of the next SCFA solution. Responses to the SCFA 
were calculated as the decrease or increase in tension com-
pared to the mean muscle tension prior to addition. The 
mean tension, measured at peak increase or decrease in 
tone after the addition of the respective test SCFA solution, 
was compared to the mean tension 1 min before addition. 
The increase or decrease in muscle tone was measured, and 
the contraction induced by the respective SCFA was calcu-
lated as the percentage decrease or increase from the level of 
tone prior to the addition of the respective SCFA solution. 
Positive changes in muscle tension indicated increased con-
traction of the muscles, whereas a negative value indicate 
muscle relaxation.

Measurement of gut electrophysiological parameters

Effects of SCFA on jejunal electrophysiology were tested 
from four gut sample replicates per hen, using a similar 
procedure as described in Baskara et al. (2021). In omitting 
the first centimetre, 12 consecutive jejunal gut samples, distal 
to Meckel’s diverticulum, were prepared, which were opened 
at the mesentery, rinsed with modified KH buffer (Table 2) to 
remove digesta particles and stripped of the outer serosal 

layers (Metzler-Zebeli et al. 2017; Baskara et al. 2021). After 
mounting in the chambers, the jejunal tissue was allowed to 
rest to allow equilibration for 10 min under open-circuit 
conditions. In both experiments, either the respective SCFA 
solution or concentration or modified KH buffer as control 
were added to the mucosal side. Modified KH buffer was 
added to allow volume adjustment on the serosal side. 
Electrophysiological measurements, including short-circuit 
current (ISC) and transepithelial tissue conductance (GT), 
which are indicators for net ion flux and tissue permeability, 
respectively, were recorded for 20 min after the addition of 
the respective solutions. As the major response occurred in 
the first minutes after the addition, the chemical effect on 
mucosal nutrient flux and permeability was assessed by 
comparing the ISC and GT for 1 min before the addition of 
the test SCFA. The peak current and resistance response of 
the exposed tissue (ΔISC and ΔGT) obtained within 5 min 
after the addition of the SCFA or buffer was used as the 
control treatment. At the beginning and end of the experi-
ment buffer samples from the mucosal and serosal sites of the 
Ussing chamber were collected to determine the SCFA 
concentration.

Analysis of SCFA

Total SCFAs in the stock solutions, as well as in the mucosal 
and serosal buffers from the Ussing chambers, were deter-
mined using gas chromatography (GC). For this, 200 μl of 
1.8 mol hydrochloric acid and the internal standard 
4-methylvaleric acid (Sigma-Aldrich) were added to 600 μl 
of the test sample. Samples were vortexed and centrifuged at 
20,000 × g for 20 min at 4°C and the clear supernatant was 
transferred into glass vials for GC. The measurement of 
SCFA was conducted according to the method of Qumar 
et al. (2016) using GC apparatus (Shimadzu GC Plus with 
FID detector, Shimadzu, Kyoto, Japan) that was equipped 
with a 30 m × 0.53 mm i.d. × 0.53 μm capillary column 
(Trace TR Wax, Thermo Fisher Scientific, Waltham, MA). 
The injector and detector had temperatures of 170°C and 
220°C, respectively. Helium was used as the carrier gas.

Statistical analysis

Data were tested for normal distribution and outliers using 
the Shapiro–Wilk test and UNIVARIATE procedure in SAS 
(Version 9.4; SAS Stat Inc.). To compare treatment effects on 
intestinal muscle contraction and permeability, the respec-
tive data were subjected to ANOVA using the PROC MIXED 
in SAS. The data of each of the two experiments were ana-
lysed separately. For gut motility parameters, the data were 
analysed as repeated measures over time to determine 
whether SCFA modified the basal tension of the intestinal 
tissue pieces after addition of the test solution. Fixed effects 
included gut segment, SCFA treatment, basal versus post- 
addition of SCFA, and the respective two-and three-way- 
interactions. In the second model, gut motility data were 
analysed per gut segment to account for the differing treat-
ment effects across gut segments. In this model, the fixed 
effect of SCFA treatment and the random effect of hen and 
chamber was included. The second model was used to ana-
lyse the data from intestinal electrophysiology, i.e. ISC and 
GT. A third model was used to analyse the mucosal and 
serosal SCFA concentrations from Experiment 2, using the 

Table 2. Composition of Krebs-Henseleit (KH) buffer and modified KH buffer 
used in the organ bath and Ussing chamber.

Concentration

Item g/L mmol/L

KH buffer used in organ batha

NaCl 6.90 118.1
NaHCO3 2.10 25.0
KCl 0.35 4.7
MgSO4 0.30 1.2
CaCl2 0.17 1.2
KH2PO4 0.16 1.2
D-Glucose 1.50 8.3
Modified KH buffer used in Ussing chambera

NaCl 6.72 115.0
NaHCO3 2.10 25.0
Na2HPO4.2H2O 0.42 2.4
KCl 0.37 5.0
CaCl2.2H2O 0.17 1.2
MgCl2 0.11 1.2
NaH2PO4.H2O 0.05 0.4
Mannitol 0.36 2.0
D-Glucose 1.80 10.0
HEPES 1.19 5.0
Kanamycin sulphate 0.10 0.2

aBuffer pH 7.4.
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MIXED procedure in SAS. This model included the fixed 
effects of SCFA treatment and gut section and their two-way- 
interaction. In all models, the experimental unit was the 
chamber replicate within each hen sample. Degrees of free-
dom were approximated using the method of Kenward- 
Roger (ddfm = kr). Least square means were computed and 
significance declared at P ≤ 0.05 and trends at 0.05 < P ≤ 0.10. 
Pairwise comparisons among least square means were per-
formed using the probability of difference option in SAS. The 
orthogonal polynomial contrast statement was used to estab-
lish linear (Experiment 1 and 2) and quadratic (only 
Experiment 2) relationships for ac:but-ratios 
(Experiment 1) and SCFA concentrations (Experiment 2) 
for gut electrophysiological data.

Results

Experiment 1

In the organ bath, the average stable muscle tension after 
stimulation with ACh differed between gut segments and 
amounted to 1.36 and 1.58 g for the jejunal and caecal 
segments, respectively, across acetate:butyrate ratios 
(P < 0.001; Table 3). The addition of the SCFA solutions, 
irrespective of the acetate:butyrate ratio, caused a decrease in 
muscle tension which corresponded to an average decrease 
in muscle contractibility of 12.8% in the jejunum compared 
to before the addition of the SCFA solutions (P < 0.05; 
Table 4). The SCFA addition to the caecal gut samples, in 
turn, tended (P < 0.10) to increase the muscle contractibility 
by up to 59.3% for the high butyrate solution after addition.

With regards to the gut electrophysiological measures, the 
addition of SCFA resulted in a less negative ISC as indicated 
by the greater ΔISC compared to the control. This effect was 
irrespective of the acetate:butyrate ratio (P < 0.05; Table 5). 
Expressing this difference as the percentage change to the 
basal measurement showed a linear decrease (P < 0.05) in 
ΔISC, amounting to 165% for the higher butyrate ratio com-
pared to the control. In contrast, the GT only showed an 
effect after the SCFA addition when expressed as 
a proportional change, as indicated by the more negative 
ΔGT (P < 0.001).

Experiment 2

The SCFA analysis confirmed that the buffer in each organ 
bath and Ussing chamber contained either 70.5 (low SCFA) or 
141 µmol SCFA/ml buffer (high SCFA; Table 1). With respect 
to gut motility, the average muscle tension after the pre- 
contraction with ACh was similar among gut segments and 
amounted to 1.65 and 1.44 g for jejunal and caecal tissues, 
respectively, for the two SCFA concentrations (Table 6).

Muscle tension linearly increased (P < 0.05) with higher 
SCFA concentrations in the caecum (Table 6). When expres-
sing the data as the percentage change in contractibility in 
the caeca, there was a trend for a linear increase with the 
increasing SCFA concentrations (P < 0.10; Table 7).

The response of jejunal tissue in the Ussing chambers 
showed a less negative ISC after the addition of the increasing 
SCFA concentrations (P < 0.001; Table 8). Orthogonal poly-
nominal contrasts showed a quadratic effect for the change in 
ISC (P < 0.001), which indicated that the difference in jejunal 
ISC mainly existed between the control and SCFA solutions, 
irrespective of the SCFA concentration.

In contrast, the ΔGT linearly decreased (P < 0.001) after 
the addition of the increasing SCFA concentrations. In order 
to characterise changes in the SCFA absorption, SCFA con-
centrations in mucosal (Table 9) and serosal buffers 
(Table 10) of the Ussing chambers were measured. As the 
modified KH buffer was used as the control and SCFA solu-
tions were added to the mucosal side, results for the serosal 
side are mainly presented.

Serosal propionate was lowest for the low SCFA concen-
tration compared to the other two treatments, as indicated by 
the quadratic relationship (P = 0.040). Serosal buffer con-
tained similar concentrations of isobutyrate, isovalerate, 
valerate and caproate between added SCFA concentrations, 
but less of the respective SCFA compared to the control 
(P < 0.05). Changes in the molar SCFA profiles on the serosal 
side among the three treatments indicated a higher propor-
tion of acetate and butyrate in the high concentration, but 
less propionate, isobutyrate and isovalerate, valerate and 
caproate in the buffer, compared to the other two treatments 
(P < 0.05). For the low SCFA concentration, the serosal 
buffer contained proportionally the most isobutyrate, isova-
lerate, valerate and caproate compared to the control and 
high SCFA concentration (P < 0.05).

Discussion

There is much research on the importance of the microbiota 
in the upper digestive tract of chickens. Nevertheless, 
a literature search revealed a lack of knowledge regarding 
whether microbial metabolites, such as SCFA, could modu-
late gut motility and barrier function in the small intestines 
of chickens. Due to the beneficial actions of butyrate (Liao 
et al. 2020), various strategies have been used in poultry 
nutrition to stimulate intestinal function, but focus has 
been on the hindgut to date (Ravn et al. 2018; Ząbek et al. 
2020). Fermentation in the gut produces a mixture of SCFA, 
whereas, in in vitro studies, typically single SCFA were 
investigated (Larraufie et al. 2017; Blakeney et al. 2018). 
Therefore, this trial investigated the effects of SCFA mixtures 

Table 3. Effect of SCFA solutions with different acetate:butyrate ratios on muscle tension in jejunum and caeca of laying hens before (basal) and after the addition 
of the SCFA (Experiment 1).

Basal contraction SCFA additiona,b P-value

Muscle tension (g) Low butyrate High butyrate Low butyrate High butyrate SEM Basal vs. SCFA addition Ac:But-ratio Basal vs. SCFA ×Ac:But ratio
Jejunum 1.44 1.29 1.13 1.11 0.154 0.037 0.450 0.567
Caeca 1.74 1.42 1.97 2.29 0.290 0.032 0.989 0.202

Values are least squares means and standard error of means (SEM), n = 16 per gut site and treatment. Ac, acetate; But; butyrate; SCFA, short-chain fatty acids; vs., 
versus. 

aLow butyrate = acetate:butyrate-ratio of 78.5% acetate and 7.3% butyrate in the analysed SCFA solution; high butyrate = acetate:butyrate-ratio of 71.4% acetate 
and 14.0% butyrate in the analysed SCFA solution. 

bSCFA concentration in the organ bath chamber was 140 µmol SCFA/mL buffer.
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with different acetate:butyrate ratios (Experiment 1) and 
concentrations (Experiment 2) on gut physiological features 
using jejunal and caecal samples from laying hens. The pre-
sent results demonstrated a strong effect of SCFA on caecal 
muscle contraction, as well as jejunal ion flux (ISC) and GT, 
whereas the effect of SCFA on jejunal contractibility was 
equivocal. Dose-response relationships indicated that higher 
luminal butyrate and total SCFA concentrations can pro-
mote jejunal barrier function. When interpreting the results 
for gut contractibility, only 1 cm segments were used, which 
possibly interrupted the action of the migrating motor com-
plexes, segmentation and propulsion movements, which may 
have been especially the case for the jejunal segmental pieces. 
This may have contributed to the ambiguous results for 

jejunal motility seen in Experiment 1 and 2. Since concen-
trations of SCFA that corresponded to caecal concentrations 
were used, but were higher than typically seen in the jeju-
num, the protocol ensured that the local concentration 
would not be too small to cause any effect. Despite such 
differences, results from both experiments confirmed that 
the jejunum in chickens reacts to microbial metabolites, 
modifying its physiological response.

In Experiment 1, the results for jejunal motility showed 
immediate muscle relaxation as result of the SCFA addition, 
which, if the same for the intact mid-jejunum, may modify 
digestive and absorptive processes in this part of the gut. 
However, slower contractions may have reduced segmenta-
tion and peristalsis, although slower digesta movement 
would have allowed more time for enzymes to act on feed 
particles and may have promoted increased nutrient avail-
ability for absorption. The SCFA solution with the higher 
butyrate proportion was used to test its effects in Experiment 
2, whereby the high SCFA concentration corresponded to the 
amount added in Experiment 1. The low SCFA concentra-
tion was only half the high concentration, and was closer to 
the concentration expected in the distal small intestine of 
chickens (Rehman et al. 2007). Therefore, it may be that the 
lower SCFA concentration did not reach the threshold con-
centration to trigger a response in the jejunal tissue, but the 
higher concentration should have generated a response simi-
lar to Experiment 1. When comparing basal muscle tension 
from both experiments, the tension was approximately 0.3 g 
higher in Experiment 2 after pre-contraction with ACh than 
in Experiment 1. This may have interfered with any potential 
SCFA effect in addition to an interruption in nerve conduc-
tion. Although animals were kept and treated similarly and 
originated from the same farm, the hens used in Experiment 
1 and 2 showed a different stress response. The ACh addition 
in Experiment 2, although being at the same concentration as 
in Experiment 1 and in previous recent experiments (Baskara 
et al. 2021; Metzler-Zebeli et al. 2021) greatly excited the 
muscles, thereby depleting intracellular Ca and preventing 
further contractions. However, the replenishment of Ca in 
the muscles occurs directly after the addition of ACh. The 
ACh concentration used in the present study was calculated 
to balance the muscle tonus and has been used previously, 
thereby not inhibiting potential treatment effects (Baskara 
et al. 2021; Metzler-Zebeli et al. 2021).

Increased caecal contractions after the addition of SCFA 
suggest that this promoted caecal digesta mixing and empty-
ing, and may have progressed fermentation. Of note, caecal 
contractibility tended to be enhanced in a dose-dependent 
fashion in both experiments. Hence, higher concentrations 
of SCFA and increased butyrate fermentation stimulated cae-
cal functionality. At this point, it is only possible to speculate 

Table 4. Effect of SCFA solutions with different acetate:butyrate ratios on 
muscle contractibility in the jejunum and caeca of laying hens (Experiment 1).

Contractibility (%)a-c Low butyrate High butyrate SEM P-value

Jejunum −16.4 −9.2 3.66 0.125
Caeca 27.0 59.3 17.48 0.060

Values are least squares means and standard error of means (SEM), n = 16 per 
gut site and treatment. SCFA, short-chain fatty acids. 

aLow butyrate = acetate:butyrate-ratio of 78.5% acetate and 7.3% butyrate in 
the analysed SCFA solution; high butyrate = acetate:butyrate-ratio of 71.4% 
acetate and 14.0% butyrate in the analysed SCFA solution. 

bSCFA concentration in the organ bath chamber was 140 µmol SCFA/mL buffer. 
cThe response to the SCFA solutions was calculated as the proportional 

decrease or increase in tension within 15 min after the addition of the 
SCFA solution. The tension measured at peak decrease or increase in tone 
after the addition of the SCFA solution was compared to the mean tension 
1 min prior to the addition.

Table 5. Basal electrophysiological measurements of the jejunum and changes 
in the tissue response to the addition of SCFA solutions with different acetate: 
butyrate ratios in laying hens (Experiment 1).

Itema,b Control
Low 

butyrate
High 

butyrate SEM P-value
Basal measurements
ISC (µA/cm2) −18.9 −22.0 −17.3 4.76 0.593
GT (mS/cm2) 10.7 8.8 10.6 3.25 0.746
Response to SCFA addition
ΔISC (µA/cm2) 0.17e 32.2d 30.2d 8.71 0.006
ΔIsc (% of basal value)c −1.3d −110.4e −165.2f 44.38 0.015
ΔGT (mS/cm2) −0.85 −2.2 −3.3 1.23 0.142
ΔGT (% of basal value) −3.8d −22.7e −20.0e 3.63 <0.001

Values are least squares means and standard error of means (SEM), n = 16 per 
treatment. SCFA, short-chain fatty acids. 

aLow butyrate = acetate:butyrate-ratio of 78.5% acetate and 7.3% butyrate in 
the analysed SCFA solution; high butyrate = acetate:butyrate-ratio of 71.4% 
acetate and 14.0% butyrate in the analysed SCFA solution. 

bΔISC is the difference between the maximal ISC value obtained from 5 min after 
addition of the SCFA solution and the basal value determined 1 min before 
the addition; ΔGT is the difference between the GT value obtained from 5 min 
after the addition of the SCFA solution and the basal GT 1 min before the 
addition. 

cOrthogonal polynominal contrast: linear effect, P < 0.001. 
d,e,fLeast squares means within a row with different lowercase superscripts 

differ (P < 0.05).

Table 6. Effect of increasing SCFA concentrations on muscle tension in jejunum and caeca of laying hens before (basal) and after the addition of the SCFA 
(Experiment 2).

Basal contraction SCFA additiona-c P-value

Muscle tension (g) Low SCFA High SCFA Low SCFA High SCFA SEM Basal vs. SCFA addition SCFA amount Basal vs. SCFA addition × amount

Jejunum 1.67 1.64 1.75 1.82 0.189 0.249 0.836 0.635
Caeca 1.44 1.44 1.80 1.91 0.290 0.012 0.723 0.737

Values are least squares means and standard error of means (SEM), n = 16 per gut site and treatment. SCFA, short-chain fatty acids; vs., versus. 
aLow SCFA, SCFA concentration in the organ bath chamber equalled 70.5 µmol SCFA/mL buffer. 
bHigh SCFA, SCFA concentration in the organ bath chamber equalled 141 µmol SCFA/mL buffer. 
cThe response to the SCFA solutions was calculated as the proportional decrease or increase in tension within 15 min after the addition of the SCFA solution. The 

tension measured at peak decrease or increase in tone after the addition of the SCFA solution was compared to the mean tension 1 min prior to the addition.
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about the signalling pathways triggered by SCFA, including 
various types of receptors such as muscarinic acetylcholine 
receptors, L-type calcium channels, histamine, nicotine or 
serotonin receptors (Rehman et al. 2012; Cai et al. 2015). 
Moreover, different activation routes are feasible that may 
have mediated the SCFA effects, such as activation of tran-
scription factors (e.g. peroxisome proliferator-activated recep-
tors) or G-protein receptors, which have different affinities for 
various SCFA (Kumar et al. 2020). Consequently, these recep-
tors may have responded according to various acetate:butyrate 
ratios and SCFA concentrations in the present study.

Results for the less negative ISC of the jejunal tissue 
after addition of SCFA (irrespective of the acetate:buty-
rate ratio) in Experiment 1 suggested an increased muco-
sal-to-serosal cation flux or reduced anion flux. As SCFA 
were added on the mucosal side, increased co-transport 
of sodium (Na+) ions due to the activation of the sodium 
monocarboxylate transporters (SMCT)-1 and −2 may 
have been feasible, being expressed at the apical mem-
brane of the small intestine (Sivaprakasam et al. 2018; 
Metzler-Zebeli et al. 2019). In considering the different 
stoichiometry that SMCT-1-mediated transport is electro-
genic (Na+:SCFA stoichiometry = 2:1), whereas SMCT- 
2-mediated transport is electroneutral (Na+:SCFA 

stoichiometry = 1:1; Den Besten et al. 2013; 
Sivaprakasam et al. 2018), this may explain the ΔISC of 
31 µA/cm2 measured across acetate:butyrate ratios in 
Experiment 1. This trial showed a similar increase in 
ISC in Experiment 2 (ΔISC = 29 µA/cm2) irrespective of 
the SCFA concentration, which indicated that a certain 
saturation of the mucosal-to-serosal Na+ symport may 
have occurred, not allowing any further increase in 
SCFA uptake. Accordingly, the low SCFA concentration 
appeared to be sufficient to saturate mucosal transport 
capacity. As the focus of the present study was on actual 
changes in jejunal functioning, the contribution of the 
paracellular to the transcellular transport still needs to 
be verified in future research. The buffer concentrations 
on the serosal side in Experiment 2 may have supported 
a certain saturation of the SCFA transport mechanisms 
when comparing the low and high concentrations. 
However, the buffer reservoirs in the Ussing chambers 
were covered, but not hermetically sealed, allowing some 
evaporation leading to concentration of the buffers. 
Therefore, results for the SCFA concentrations in the 
buffers should be interpreted with care. This, for instance, 
may explain the variation observed for the low and high 
SCFA concentrations compared to the stock solutions 
and calculated amounts in each chamber. Moreover, in 
order not to destroy the mucosal layer, each sample was 
carefully cleaned but not stripped, allowing microbes to 
be present and active during the incubation. 
Consequently, the results indicated that some microbial 
activity (especially in the serosal buffers from the control 
treatment) was present in the mucosa, along with epithe-
lial metabolism of SCFA (Schroeder 2019).

The dose-response relationship towards the lower acetate 
and higher butyrate proportion in Experiment 1 was noted, 
when results for the ΔISC were expressed as percentage change, 
which indicated increased transport of butyrate and higher 
affinity for SCFA transporters for butyrate. By contrast, the 

Table 7. Effect of increasing SCFA concentrations on muscle contractibility in 
jejunum and caeca of laying hens before (basal) and after the addition of the 
SCFA (Experiment 2).

Contractibility (%)a-c Low SCFA High SCFA SEM P-value

Jejunum 4.6 9.7 8.08 0.335
Caeca 12.7 34.8 12.17 0.089

Values are least squares means and standard error of means (SEM), n = 16 per 
gut site and treatment. SCFA, short-chain fatty acids. 

aLow SCFA, SCFA concentration in the organ bath chamber equalled 70.5 µmol 
SCFA/mL buffer. 

bHigh SCFA, SCFA concentration in the organ bath chamber equalled 141 µmol 
SCFA/mL buffer. 

cThe response to the SCFA solutions was calculated as the proportional 
decrease or increase in tension within 15 min after the addition of the 
SCFA solution. The tension measured at peak decrease or increase in tone 
after the addition of the SCFA solution was compared to the mean tension 
1 min prior to the addition.

Table 8. Basal electrophysiological measurements of the jejunum and changes 
in the tissue response to the addition of increasing SCFA concentrations in 
laying hens (Experiment 2).

Itema-c Control Low SCFA High SCFA SEM P-value
Basal measurements
ISC (µA/cm2) −54.1 −43.8 −35.2 10.97 0.259
GT (mS/cm2) 13.5 9.7 11.1 1.91 0.214
Response to SCFA addition
ΔISC (µA/cm2) 0.54g 29.7f 29.6f 5.79 <0.001
ΔIsc (% of basal value)d,e −2.5f −77.2g −74.0g 4.76 <0.001
ΔGT (mS/cm2) d −0.82f −1.7g −3.3g 0.77 0.046
ΔGT (% of basal value)d −4.6f −15.9g −19.6g 2.56 <0.001

Values are least squares means and standard error of means (SEM), n = 16 per 
treatment. SCFA, short-chain fatty acids. 

aLow SCFA, SCFA concentration in the organ bath chamber equalled 70.5 µmol 
SCFA/mL buffer. 

bHigh SCFA, SCFA concentration in the organ bath chamber equalled 141 µmol 
SCFA/mL buffer. 

cΔISC is the difference between the maximal ISC value obtained from 5 min after 
addition of the SCFA solution and the basal value determined 1 min before 
the addition; ΔGT is the difference between the GT value obtained from 5 min 
after the addition of the SCFA solution and the basal GT 1 min before the 
addition. 

dOrthogonal polynominal contrast: linear effect, P < 0.05. 
eOrthogonal polynominal contrast: quadratic effect, P < 0.05. 
f,gLeast squares means within a row with different lowercase superscripts differ 

(P < 0.05).

Table 9. Concentrations and molar proportions of SCFA in the buffer at the 
mucosal side after the addition of increasing concentrations of SCFA to the 
mucosal side of the jejunal tissue in the Ussing chamber (Experiment 2).

Fixed 
effect, 

P-value
Contrastsd, 

P-value

Item Control
Low 
SCFA

High 
SCFA SEM

SCFA 
conc. Linear Quadratic

Concentration (µmol/mL)
Total SCFA 4.6c 91.5b 172.0a 7.58 <0.001 <0.001 0.730
Acetate 1.9c 67.2b 126.1a 5.90 <0.001 <0.001 0.665
Proprionate 0.74c 9.9b 18.6a 0.82 <0.001 <0.001 0.807
Isobutyrate 0.37c 0.68b 1.2a 0.04 <0.001 <0.001 0.123
Butyrate 0.61c 11.6b 22.5a 0.85 <0.001 <0.001 0.954
Isovalerate 0.33c 0.67b 1.1a 0.05 <0.001 <0.001 0.338
Valerate 0.30c 1.0b 1.9a 0.07 <0.001 <0.001 0.533
Caproate 0.40c 0.48bc 0.64a 0.04 0.003 <0.001 0.344
Molar proportions (% of total SCFA)
Acetate 40.6b 73.0a 73.1a 0.77 <0.001 <0.001 <0.001
Proprionate 16.1a 10.9b 10.8b 0.13 <0.001 <0.001 <0.001
Isobutyrate 8.1a 0.87b 0.70b 0.16 <0.001 <0.001 <0.001
Butyrate 13.2 12.9 13.2 0.26 0.606 0.960 0.320
Isovalerate 7.2a 0.77b 0.67b 0.28 <0.001 <0.001 <0.001
Valerate 6.3a 1.2b 1.1b 0.20 <0.001 <0.001 <0.001
Caproate 8.5a 0.55b 0.39b 0.20 <0.001 <0.001 <0.001

Values are least squares means and standard error of means (SEM), n = 16 per 
treatment. SCFA, short-chain fatty acids; conc., concentration. 

a,b,cLeast squares means within a row with different lowercase superscripts 
differ (P < 0.05). 

dOrthogonal polynominal contrasts.
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jejunal GT did not respond in a dose-dependent fashion in 
Experiment 1, which suggested similar signalling for acetate 
and butyrate in relation to mucosal barrier function, as both 
SCFA solutions equally reduced the paracellular permeability. 
However, the dose-response dependency for ΔGT in 
Experiment 2 due to actual SCFA concentration added at the 
mucosal side seemed to be more important for the paracellular 
permeability than the acetate:butyrate ratio. The existence of this 
dose-response may indicate that signalling pathways were inde-
pendent from the epithelial SCFA uptake capacity in the 
jejunum.

In conclusion, the results demonstrated dose-response 
relationships for the stimulation of caecal muscle contraction 
by increasing butyrate proportions and SCFA concentra-
tions, which, in the in vivo condition, may increase caecal 
digesta mixing and emptying. In contrast, results for any 
SCFA effect on jejunal contractibility were equivocal, but 
they may point towards a certain relaxation effect on the 
jejunal muscles. Meanwhile, gut electrophysiological para-
meters, including ΔISC and ΔGT, supported a strong capacity 
in the jejunal epithelium for SCFA. The data suggested 
saturation of the SCFA transport processes and improved 
barrier function in the jejunal epithelium with more butyrate 
and higher luminal SCFA concentrations. This should be 
followed up at molecular level in future studies.
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Simple Summary: The supplementation of diets for broiler chickens has increased due to the increas-
ing demand of consumers for antibiotic-free broiler products. Nevertheless, the benefits of probiotics
for intestinal barrier and immune functions, as well as on growth performance in chickens, are still
controversially discussed. In performing a meta-analysis, we found that dietary supplementation
with probiotics of various genera/species can enforce intestinal barrier function. Moreover, our meta-
regressions indicated that in pathogen-challenged birds, probiotics might effectively help reduce
gut inflammation by suppressing the expression of pro-inflammatory cytokines. Probiotics further
sustained the intestinal histomorphology and hence digestive and absorptive processes in challenged
and non-challenged chickens.

Abstract: Data published in the literature about the favorable effects of dietary probiotics on gut
health in broiler chickens are inconsistent. To obtain a more comprehensive understanding, we
conducted a meta-analysis to assess the effects of probiotics on the gut barrier and immune-related
gene expression, histomorphology, and growth in chickens that were either challenged or non-
challenged with pathogens. From the 54 articles published between 2012 and 2022, subsets of data,
separately for non-challenged and challenged conditions, for response variables were created. The
mean dietary probiotic concentrations ranged from 4.7 to 6.2 and 4.7 to 7.2 log10 colony-forming
unit/kg under non-challenged and challenged conditions, respectively. Probiotics increased the
expression of genes for mucins and tight junction proteins in the jejunum and ileum at weeks 3 and
6. The stimulatory effect of probiotics on tight junction protein expression was partly stronger in
challenged than in non-challenged birds. Meta-regressions also showed an anti-inflammatory effect
of probiotics under challenged conditions by modulating the expression of cytokines. Probiotics
improved villus height at certain ages in the small intestine while not influencing growth performance.
Dietary metabolizable energy, crude protein, and days post-infection modified the effects of probiotics
on the observed variables. Overall, meta-regressions support the beneficial effects of probiotics on
gut integrity and structure in chickens.

Keywords: barrier function; broilers; gastrointestinal tract; growth; histomorphology; immune
response; meta-analysis; pathogen; probiotics

1. Introduction

The use of antibiotic growth promoters in chicken farms has been banned in many
countries worldwide. Probiotics are considered a promising alternative for livestock
animals, including poultry, as they seem to exert a favorable effect on gut health [1]. To
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date, various microbial genera have been investigated for use as probiotics in poultry diets,
including Lactobacillus, Bacillus, Enterococcus, Bifidobacterium, and Saccharomyces [1]. Several
studies show potential beneficial effects of probiotics on growth performance, absorptive
and secretory processes, as well as expression of genes related to host defense mechanisms,
barrier function, and inflammation in broiler chickens [2–4]. For instance, dietary probiotics,
such as B. subtilis and B. pumilus, have been shown to stimulate host defense mechanisms
at the ileal epithelium by modulating tight junction protein expression in the grower
and finisher phases [2]. Other probiotics, such as L. acidophilus and L. plantarum, have
been reported to exert anti-inflammatory effects in the small intestine by moderating pro-
inflammatory nuclear factor-kappa B (NF-kB) signaling, which, in turn, leads to lower
transcript levels pro-inflammatory cytokines in the jejunum and ileum [3,4]. However, the
reported effects of probiotics on the gut epithelial response in chickens are inconsistent [5,6].
Multiple factors may be behind the controversial findings, including direct (e.g., strain and
level of probiotics) and indirect factors (e.g., age of birds, intestinal sampling spot, and
health status). Although the relationship between dietary probiotics and gene expression
levels related to intestinal integrity and immunity in chickens has been described in recent
qualitative reviews [7,8], the variation in results of the dependent variable due to influencing
factors cannot be assessed in this manner [9]. The conductance of a meta-analysis is
considered the most suitable method to address this complexity by generalizing the overall
treatment effect, in our case, the effect of probiotics, presented in published studies [10,11].
To obtain a more comprehensive understanding of the efficacy of probiotics, investigations
on each response variable were performed separately between original studies with or
without pathogen challenge. Therefore, the present meta-analysis aimed to investigate
the effects of dietary supplementation of probiotics on the expression of genes associated
with intestinal barrier function and immune response, histomorphology, and growth
performance in broiler chickens under non-challenged or pathogen-challenged conditions.
Furthermore, we assessed the effects of dietary metabolizable energy, crude protein, and
days post-infection as additional predictors to obtain a more accurate prediction on the
observed variables.

2. Materials and Methods
2.1. Literature Search

For the identification of original articles, a literature search was conducted using
5 public search generators, including Scopus, PubMed, Web of Science, Science Direct, and
Google Scholar (Figure 1). Research articles investigating the effects of dietary probiotics on
the expression levels of genes related to intestinal barrier function and immune response in
broiler chickens that were published in scientific journals between January 2012 and July
2022 were considered for data extraction. To identify adequate articles, the following search
terms were used in different combinations: probiotic, direct-fed microbes, gut, intestine,
barrier function, gut permeability, gut integrity, tight junction proteins, immune response,
inflammatory cytokines, gut inflammation, intestinal immunity, chicken, and broiler.

2.2. Selection of Studies

Stringent criteria were applied in the decision to exclude or include the research ar-
ticles in the present meta-analysis (Figure 1). The quality assessment criteria used in this
study included detailed information on probiotics (type and level of dietary probiotics),
chicken strain, body weight and age of chickens, rearing period, and number of chickens
per treatment, diet composition, experimental design, including randomization of treat-
ments, description of statistical analysis, and intra-study error (if standard deviation was
provided, then it was converted to standard error). Only probiotics that were administered
via the diet were considered in this study. In addition, studies investigating the combined
effects of dietary probiotics with other treatments on target parameters were also included.
From these studies, only data for control and probiotic treatments were considered. Regard-
ing gene expression measurements, only studies that applied quantitative real-time PCR
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analysis and in which the relative gene expression was calculated using the 2−ddCt method
were included. Moreover, only literature data from in vivo experiments was considered.
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2.3. Construction of Database

After screening the literature, we identified 54 eligible research articles that met the
quality criteria (Figure 1). A minimum requirement of 3 studies and 10 single observations
(treatment means) along with the standard error (SE) for each dependent variable was set
as requirement for calculating the combined effect size [10,11]. The main predictive variable
was the dietary probiotic concentration. Information about the probiotic species used was
mandatory. Reported expression levels of genes related to intestinal barrier function and
immune response in various intestinal segments (e.g., duodenum, jejunum, ileum, and
ceca) were extracted as dependent variables. Moreover, details provided on the chickens
(strain, sex, age, and start body weight), experimental setup (experimental design, number
of treatments, rearing period, number of chickens per group, and sampling days), pathogen
challenge (species or strain of pathogen, administration route, and days post-infection),
ingredients and nutritional composition of the diet, and gene expression analysis (e.g.,
reference genes) were extracted as probable additional prediction variables in the regression
analysis. When available, histomorphology data such as villus height, crypt depth, and
villus height/crypt depth ratio, as well as growth performance, including average daily
feed intake (ADFI), average daily body weight gain (ADG), and feed conversion ratio (FCR)
were also extracted. If data from the articles were presented in graphical form, they were
extracted using Web Plot Digitizer software (Version 4.5; Ankit Rohatgi, Pacifica, CA, USA).

Two databases were constructed: one for data from research with pathogen challenge
and the other for data from studies without pathogen challenge (Figure 1). The next step
was to construct datasets for individual dependent variable categories separately for data
with or without pathogen challenge, i.e., one dataset each for gut barrier and immune
response-related gene expression, histomorphology measures (i.e., villus height, crypt
depth, and villus height/crypt depth ratio), and growth performance (i.e., ADG, ADFI, and
FCR). Datasets for gut barrier and immune-related gene expression and histomorphology
were further subdivided; one sub-dataset was created for each gut segment. For each gut
segment, the sub-sets were then grouped by age of the chicken. The dataset for growth
performance was divided into sub-datasets based on the stage of the rearing period: starter
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(1–3 weeks), finisher (4–6 weeks), and overall (1–6 weeks) periods. As there were not
enough studies available to investigate each probiotic strain or species separately, results
for the various species/strains of probiotics were analyzed together in this meta-analysis.
A reference list of the sub-datasets of broiler studies is presented in Table S1.

The screening for the non-challenge studies showed that the minimum number of
studies and observations for gene expression variables related to intestinal barrier function
and immune response were fulfilled for the jejunum and ileum at weeks 3 and 6 of life. Ad-
equate numbers of studies and observations for histomorphology variables were available
for the jejunum and ileum at weeks 3 and 6 of life. For growth performance variables, the
extracted data for the starter, finisher, and entire rearing period also met the requirement.
For the studies with pathogen challenge, with respect to the expression of genes related to
the intestinal barrier, the variables for the jejunum at weeks 2 to 5 of life, ileum at weeks
3 and 4 of life, and ceca at week 4 of life provided the required number of studies and
observations. The variables related to the immune response met the requirement for the
jejunum and ileum at weeks 2 to 4 and ceca at week 2 of life. For histomorphology variables,
the minimum requirement of studies and observations existed for the data with pathogen
challenge for the duodenum at week 5 of life, jejunum at weeks 2, 3, and 5 of life, and ileum
at weeks 3 and 5 of life. Adequate numbers of studies and observations were also available
for growth variables of starter, finisher, and overall periods. Only dependent variables that
met the minimum requirements will be presented.

To create comparability among response variables across studies, the log2fold values
for the gene expression data were calculated in each sub-dataset between control and
probiotic treatment for un-challenged and pathogen-challenged data. Positive and negative
log2fold values indicate increased and decreased expression, respectively. Data were
processed and displayed as fold change, which was calculated using logarithmic scale to
base 2. As dietary metabolizable energy (ME) and crude protein (CP) can affect nutritional
metabolism and growth performance, these variables were included as additional predictor
variables for both databases. Specifically for the data from pathogen challenge studies, days
post-infection (DPI), defined as the interval from the first day of pathogen administration
to sample collection, was also incorporated as an additional predictor.

2.4. Data Analysis

Descriptive statistics on the predictive variable (dietary probiotic concentration) and
dependent variables (expression of gut barrier and immune-related genes in the jejunum,
ileum, and ceca; histomorphology measures in the duodenum, jejunum, and ileum; and
growth parameters) were performed separately for the dataset with or without pathogen
challenge using the SAS MEANS procedure (version 9.4; SAS Inst. Inc., Cary, NC, USA), as
previously described [10,11]. Mixed modeling of each dependent variable was established
using the MIXED procedure similar to Metzler-Zebeli et al. [10,11].

Yij = α0 + β1Xij + si + biXij + eij

where Yij = expected outcome for the dependent variable Y observed at level j (j = 2, . . . , n) of
the predictor variable X in the study i, whereas n is the number of treatment means in study
i, α0 = overall intercept across all studies (fixed effect), β1 = overall regression coefficient of
Y on X across all studies (fixed effect), Xij = the value j of continuous variable X in study
i, si = random effect of the study i (i = 1, . . . ), bi = the random effect of study i on the regression
coefficient of Y on X in study i, and eij = the unexplained error. Thus, the model’s random effect
components consist of si + biXij + eij, and the distributions are displayed below as follows:

eij ∼ iid N
(

0, σe
2
)

and
[

Si
bi

]
∼ iid N

[(
0
0

)
, Σ

]
,
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which assumes that eij is normally distributed with a mean of 0 and constant variance and that
si and bi are normally distributed, have means of 0, and Σ is their variance–covariance matrix:

Σ =

[
σs

2 σsb
σsb σb

2

]
As predictor variables for both study and dietary probiotic concentration were ex-

amined. The initial random effects included the slope and intercept based on the study
and concentration of dietary probiotics. To prevent positive correlation between intercept
and slope, an unstructured variance–covariance matrix (type = UN) was used [12]. The
dependent variable was weighted by the inverse of its squared SE (SE of the treatment mean
taken directly from the studies) to consider unequal variance between studies. The squared
terms of the predictor variables were entered into the model to check for a quadratic rela-
tionship if significant (p < 0.05). The variance–covariance matrix, in this case, was modeled
as variance components (TYPE = VC). For the current data set, there was no significant
quadratic correlation; instead, the predictor and response variables showed only linear
relationships. The GPLOT technique was used to display the data. To assess the quality
of fit, estimates, root mean square error (RMSE), and R2 were calculated. For established
relationships, alteration in the quantity of the dependent variables as affected by dietary
probiotic concentration was shown for an assumed probiotic concentration in the diet of
4 log10 colony forming units (CFU)/kg.

We performed backward elimination analyses for the datasets with and without
pathogen challenge to obtain more accurate predictions of the factors influencing the de-
pendent variables that were affected by the dietary probiotic concentration [10,11]. This
enabled us to simultaneously assess how the response variable was affected by the pre-
dictors of dietary probiotic concentration, dietary probiotic concentration squared, and
dietary ME and CP level, as well as DPI specifically for pathogen challenge datasets. Con-
sideration of variance inflation factors smaller than 10 (which presupposes no substantial
multicollinearity among the tested predictor variables) for each continuous independent
variable served to limit model over-parameterization [10,11].

3. Results
3.1. Database Description

The main characteristics of the 54 studies that met the selection criteria are presented
in Table S1. Of the 54 studies, 14 and 28 studies were without and with pathogen chal-
lenge, respectively, whereas 12 studies provided data for challenged and un-challenged
conditions. Overall, nine different genera and various species within these genera were
administrated as probiotics in the included studies (Figure 2): Bacillus (29 studies) and
Lactobacillus (19 studies) were predominantly used, followed by Enterococcus (6 studies),
Saccharomyces (4 studies), Pediococcus (4 studies), Clostridium (3 studies), Bifidobacterium
(3 studies), Paenibacillus (2 studies), and Streptococcus (1 study). Eight different Bacillus
species (B. subtilis, B. licheniformis, B. coagulans, B. amyloliquefaciens, B. mesentericus, B. methy-
lotrophicus, B. tequilensis, and B. pumilus), nine species for Lactobacillus (L. acidophilus, L.
plantarum, L. fermentum, L. reuteri, L. casei, L. animalis, L. gallinarum, L. johnsonii, and L.
salivarius), three species for Bifidobacterium (B. animalis, B. bifidum, and B. thermophilum),
two species each for Enterococcus and Pediococcus (E. faecium, E. fecalis, P. acidilactici, and P.
pentosaceus), one species each for Clostridium, Streptococcus, Paenibacillus, and Saccharomyces
(C. butyricum, S. faecalis, P. polymyxa, and S. cerevisiae) were administered. In addition,
36 studies used only one mono-species probiotic, 7 studies used more than one mono-
species probiotic, 8 studies used multi-species probiotics, and 3 studies used both mono-
and multi-species probiotics. The experimental diets were mainly composed of corn, wheat,
barley, bran, rice, distiller grain, and sorghum, with soybean meal, fish meal, corn gluten
meal, corn protein powder, rapeseed meal, peanut meal, and cottonseed meal as protein
feedstuffs (Table S1). The experimental diets did not contain other bioactive compounds.
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Dietary ME/CP ratios were constant, with a mean of 0.6 and 0.7 for the starter and finisher
diets, respectively, for the various response variables.
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Descriptive statistical results of the predictor and dependent variables for the database
without pathogen challenge are presented in Tables S2–S4. For these data, means of dietary
probiotic concentrations across genera/species for the starter phase (1–3 weeks of age)
ranged from 4.7 to 5.7 log10 CFU/kg, and those for the finisher phase (4–6 weeks of age)
ranged from 5.7 to 6.2 log10 CFU/kg for the various categories of response variables.
The means of dietary ME levels for the starter period were 12.3–12.5 MJ/kg, whereas
those for the finisher period were 12.8–13.0 MJ/kg. Dietary CP levels for the starter and
finisher phases showed means of 21.3–21.6% and 19.4–19.6%, respectively, for the various
response variables.

The results of descriptive statistics for predictor variables and dependent variables of
the database with pathogen challenge are presented in Tables S5–S8. Several pathogens
were included in the original studies, such as Escherichia coli, Clostridium perfringens, Eimeria
(E. tenella, E. maxima, E. acervulina, E. mivati, E. brunetti, E. mitis, and E. praecox), Salmonella
(S. enteritidis, S. pullorum, and S. minnesota), Listeria monocytogenes, as well as the fungi
Fusarium graminearum and aflatoxins. For these data, the means of dietary probiotic con-
centrations across genera/species for the starter and finisher phases ranged from 4.6 to
5.6 log10 CFU/kg and 4.6 to 7.2 log10 CFU/kg, respectively, for the various categories of
response variables. The respective means for the dietary ME level for starter and finisher
periods were 12.0–12.6 MJ/kg and 12.4–12.8 MJ/kg for various dependent variables. The
dietary CP levels in the starter phase showed a mean of 20.8–21.9%, whereas those in the
finisher phase were 19.0–20.5% for a different category of response variables. In addition,
the mean DPI for measuring gut barrier and immune gene expression for the starter and
finisher ages ranged from 3.4 to 14.3 days and 7.6 to 28.7 days, respectively, for various
intestinal segments. The mean DPI for the histomorphology variables were 5.2–10.3 days
for the starter phase and 30.6–32.0 days for the finisher phase. For growth variables, the
mean DPI for the starter and finisher ages were 10.8 and 33.2 days, respectively.
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3.2. Probiotic Effects on Gut Barrier and Immune-Related Gene Expression

The results for the meta-regressions between probiotics and gut barrier and immune-
related gene expression without pathogen challenge are presented in Table 1, whereas those
with pathogen challenge can be found in Table 2. Irrespective of the pathogen challenge,
most relationships between probiotics and gene expression levels were established for the
jejunum and ileum.

Table 1. Prediction of relative expression (fold change) of jejunal and ileal expression of genes related
to gut barrier function and immune response in broiler chickens at weeks 3 to 6 of life without
pathogen challenge.

Response Variable (Y) 1,2 nTreat
Parameter Estimates Model Statistics

Intercept SEIntercept Slope SESlope RMSE R2 p-Value

Jejunum, Week 3
MUC2 10 0.95 0.149 0.053 0.023 0.336 0.40 0.049
ZO1 11 0.99 0.046 0.019 0.007 0.104 0.46 0.023

OCLN 13 0.96 0.247 0.084 0.037 0.612 0.32 0.044
CLDN1 11 0.99 0.111 0.041 0.017 0.251 0.39 0.041

IL1B 11 1.01 0.060 −0.012 0.009 0.135 0.15 0.241
IFNG 14 1.02 0.058 −0.003 0.009 0.154 0.01 0.773
TLR2 11 1.07 0.181 0.014 0.028 0.407 0.03 0.621

Jejunum, Week 6
MUC2 10 0.99 0.449 0.156 0.065 0.902 0.42 0.044
ZO1 14 1.00 0.170 0.069 0.022 0.382 0.45 0.009

OCLN 16 0.94 0.245 0.067 0.032 0.604 0.24 0.056
CLDN1 12 1.00 0.266 0.060 0.034 0.533 0.23 0.112

Ileum, Week 3
MUC2 10 0.89 0.217 0.095 0.030 0.439 0.57 0.012
ZO1 11 0.97 0.171 −0.016 0.023 0.347 0.05 0.510

OCLN 13 0.85 0.150 0.064 0.020 0.338 0.47 0.009
CLDN1 10 0.96 0.115 0.036 0.016 0.233 0.39 0.054

Ileum, Week 6
MUC2 15 0.98 0.538 0.130 0.074 1.211 0.19 0.103
ZO1 14 0.86 0.463 0.127 0.062 0.930 0.26 0.061

OCLN 16 0.97 0.115 0.034 0.015 0.259 0.26 0.043
CLDN1 11 0.94 0.362 0.087 0.049 0.728 0.26 0.112

nTreat, number of treatment means; SE, standard error; RMSE, root mean square error; MUC2, mucin−2; ZO1,
zonula occludens-1; OCLN, occludin; CLDN1, claudin-1; IL1B, interleukin-1beta; TLR2, Toll-like receptor-2;
IFNG, interferon-gamma. 1. Probiotic genera included for these response variables were Bacillus, Bifidobacterium,
Lactobacillus, Clostridium, Enterococcus, Pediococcus, Paenibacillus, and Saccharomyces. 2. Data were calculated as
log2fold change between probiotic and control treatments and expressed in fold change using a logarithmic scale
to base 2.

Without the pathogen challenge (Table 1), increasing probiotic concentrations lin-
early increased the jejunal expression of MUC2, ZO1, OCLN, and CLDN1 at week 3 of life
(R2 = 0.32–0.46; p < 0.05). For a probiotic concentration of 4 log10 CFU/kg, this would corre-
spond to an increase in expression levels of these genes by 0.21-, 0.08-, 0.34-, and 0.16-fold,
respectively. Likewise, at 6 weeks of life, increasing probiotic concentrations linearly in-
creased the jejunal expression of MUC2 and ZO1 (R2 = 0.42–0.45; p < 0.05). Accordingly, the
administration of a probiotic concentration of 4 log10 CFU/kg in the diet would increase
the jejunal MUC2 and ZO1 expression levels by 0.62- and 0.28-fold, respectively. In the
ileum, increasing probiotic concentrations linearly increased the expression of MUC2 and
OCLN of life at week 3 of life and of OCLN at week 6 of life (R2 = 0.26–0.57; p < 0.05), which
corresponds to an upregulation of the MUC2 and OCLN expressions by 0.38-, 0.26- and
0.14-fold, respectively, for an assumed dietary probiotic concentration of 4 log10 CFU/kg.
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Table 2. Prediction of relative expression (fold change) of jejunal, ileal, and cecal expression of genes
related to barrier function and immune response in broiler chickens from weeks 2 to 5 of life with
pathogen challenge.

Response Variable (Y) 1,2,3,4 nTreat
Parameter Estimates Model Statistics

Intercept SEIntercept Slope SESlope RMSE R2 p-Value

Jejunum, Week 2
ZO1 14 0.99 0.026 0.015 0.004 0.070 0.51 0.004

OCLN 16 0.71 0.909 0.170 0.137 2.420 0.10 0.234
CLDN1 14 0.94 0.226 0.041 0.035 0.601 0.10 0.264
CLDN3 10 1.00 0.040 0.103 0.007 0.089 0.97 <0.001

IL1B 10 1.00 0.015 −0.009 0.003 0.035 0.63 0.006
IL10 14 1.04 0.247 0.015 0.039 0.606 0.01 0.707

IFNG 10 1.00 0.037 −0.037 0.006 0.083 0.82 <0.001
Jejunum, Week 3

MUC2 10 0.93 0.238 0.051 0.037 0.538 0.19 0.205
ZO1 17 0.97 0.098 0.036 0.014 0.260 0.31 0.021

OCLN 17 0.94 0.177 0.062 0.025 0.473 0.28 0.028
CLDN1 14 0.80 0.617 0.138 0.091 1.524 0.16 0.155

IL1B 17 1.00 0.074 −0.042 0.010 0.198 0.53 0.001
IL6 12 1.01 0.096 −0.030 0.013 0.216 0.35 0.044
IL10 13 0.91 0.290 0.152 0.042 0.719 0.54 0.004

IFNG 18 1.00 0.106 −0.022 0.016 0.303 0.11 0.190
TNFA 10 1.01 0.066 −0.026 0.010 0.150 0.45 0.033

Jejunum, Week 4
ZO1 12 1.06 0.085 0.034 0.013 0.192 0.40 0.026

OCLN 12 0.99 0.283 0.056 0.043 0.634 0.15 0.220
IL1B 10 0.98 0.113 0.076 0.017 0.227 0.72 0.002
IFNG 14 0.99 0.186 0.038 0.028 0.458 0.13 0.198

Jejunum, Week 5
MUC2 13 0.97 0.206 −0.004 0.026 0.358 0 0.890

Ileum, Week 2
IFNG 10 1.04 0.231 −0.015 0.036 0.517 0.02 0.677
TLR4 10 1.03 0.048 −0.035 0.007 0.107 0.75 0.001

Ileum, Week 3
ZO1 16 0.96 0.196 0.050 0.028 0.483 0.19 0.096

OCLN 16 0.98 0.207 0.056 0.029 0.509 0.21 0.077
CLDN1 11 0.98 0.239 0.010 0.035 0.479 0.01 0.785

IL10 10 0.97 0.178 0.013 0.026 0.358 0.03 0.626
IFNG 12 1.01 0.043 −0.032 0.006 0.097 0.71 0.001

Ileum, Week 4
ZO1 11 0.98 0.062 0.042 0.009 0.141 0.71 0.001

OCLN 11 0.93 0.143 0.070 0.021 0.325 0.56 0.008
CLDN1 11 0.89 0.263 0.082 0.038 0.597 0.34 0.059
TNFA 10 0.95 0.121 −0.023 0.016 0.244 0.21 0.185

Ceca, Week 2
IL6 18 0.96 0.093 −0.034 0.013 0.270 0.31 0.017
IL8 10 0.83 0.251 −0.001 0.031 0.518 0 0.967
IL10 10 1.12 0.571 0.213 0.081 1.014 0.47 0.030

Ceca, Week 4
ZO1 10 1.21 0.198 0.119 0.033 0.401 0.62 0.007

nTreat, mean number of treatments; SE, standard error; RMSE, root mean square error; MUC2, mucin-2; ZO1,
zonula occludens-1; OCLN, occludin; CLDN1,-3, claudin-1,-3; IL6,-8,-10,-1B, interleukin-6,-8,-10,-1beta; TLR4,
Toll-like receptor-4; IFNG, interferon-gamma; TNFA, tumor necrosis factor-alpha. 1. Probiotic genera included
for these response variables were Bacillus, Bifidobacterium, Lactobacillus, Paenibacillus, Clostridium, Enterococcus,
Pediococcus, Streptococcus, and Saccharomyces. 2. Pathogens included for these response variables were E. coli, C.
perfringens, S. enteritidis, E. maxima, E. tenella, E. acervulina, E. mivati, E. brunetti, E. mitis, E. praecox, F. graminearum,
S. pullorum, S. minnesota, L. monocytogenes, and Aflatoxin B1. 3. Means of days post-infection ranged from 3.4 to
28.7 days for various ages and gut segments. 4. Data were calculated as log2fold change between probiotic and
control treatments and expressed in fold change using a logarithmic scale to base 2.
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Regarding the meta-regressions with data from the pathogen challenge (Table 2), a
positive linear relationship could be established between jejunal CLDN3 expression and
probiotic concentration at week 2 of life (R2 = 0.97; p < 0.001). Here, an assumed dietary
probiotic concentration of 4 log10 CFU/kg would increase the jejunal CLDN3 expression
by 0.41-fold. Meta-regressions showed that increasing probiotic concentrations linearly
increased the jejunal ZO1 expression from weeks 2 to 4 of life (R2 = 0.31–0.51; p < 0.05) and
that of OCLN from week 3 of life (R2 = 0.28; p = 0.028). Likewise, dietary probiotics positively
influenced the expression of ZO1 and OCLN in the ileum at week 4 of life (R2 = 0.56–0.71;
p < 0.05), amounting to an increase of 0.17- and 0.28-fold with an assumed probiotic
concentration of 4 log10 CFU/kg, respectively. In the ceca, expression of ZO1 linearly
increased with increasing dietary probiotic concentrations at week 4 of life (R2 = 0.62;
p = 0.007), which corresponded to a 0.48-fold increase with a probiotic concentration of
4 log10 CFU/kg.

Under pathogen-challenged conditions, increasing dietary probiotic concentrations
linearly decreased jejunal IFNG expression at week 2 of life (R2 = 0.82; p < 0.001; Table 2),
which would correspond to a 0.15-fold decrease with a probiotic concentration of 4 log10
CFU/kg in the diet. Similarly, a negative linear relationship existed between the jejunal IL1B
expression with increasing probiotic concentrations at weeks 2 and 3 of life (R2 = 0.53–0.63;
p < 0.05). In contrast, a dietary probiotic concentration of 4 log10 CFU/kg would increase
the jejunal IL10 expression by 0.61-fold at week 3 of life (R2 = 0.54; p = 0.004). Moreover,
expression of jejunal IL6 and TNFA linearly decreased at week 3 of life (R2 = 0.35–0.45;
p < 0.05), amounting to 0.12- and 0.10-fold, respectively, with a probiotic concentration
of 4 log10 CFU/kg. Like in the jejunum, increasing concentrations of dietary probiotics
linearly downregulated the expression of TLR4 and IFNG in the ileum at weeks 2 and 3 of
life, respectively (R2 = 0.71–0.75; p = 0.001; Table 2). At the cecal mucosa, higher probiotic
concentrations decreased IL6 expression (R2 = 0.31; p = 0.017; Table 2) but increased the
expression of IL10 (R2 = 0.47; p = 0.030) by 0.14- and 0.85-fold, respectively, at week 2 of life,
with an assumed dietary probiotic concentration of 4 log10 CFU/kg.

3.3. Probiotic Effects on Gut Histomorphology

For the data without pathogen challenge (Table 3), increasing probiotic concentrations
linearly increased jejunal villus height at weeks 3 and 6 of life (R2 = 0.28–0.66, p < 0.05), and
the jejunal villus height/crypt depth ratio at week 3 of life (R2 = 0.42; p = 0.009). In the ileum,
a similar positive linear relationship between the probiotic concentration and villus height
was observed at week 6 of life (R2 = 0.58; p < 0.001) and ileal villus height/crypt depth ratio
at week 3 and 6 of life (R2 = 0.41–0.65; p < 0.05). For the results with the pathogen challenge
(Table 4), increasing probiotic concentrations linearly increased the villus height in the
duodenum at week 5 of life (R2 = 0.53; p = 0.002). A similar relationship was found for
the jejunal villus height at week 3 of life (R2 = 0.42; p = 0.005). Moreover, dietary probiotic
concentrations showed a negative relationship with crypt depth (R2 = 0.28–0.71; p < 0.05)
but a positive linear relationship with jejunal villus height/crypt depth ratio (R2 = 0.29–0.40;
p < 0.05) at weeks 2, 3, and 5 of life. In the ileum, increasing probiotic concentrations linearly
increased the crypt depth and decreased the villus height/crypt depth ratio at week 5 of
life (R2 = 0.37–0.41; p < 0.05).

Table 3. Prediction of jejunal and ileal histomorphology (fold change) in broiler chickens at weeks 3
and 6 of life without pathogen challenge.

Response Variable (Y) 1,2 nTreat
Parameter Estimates Model Statistics

Intercept SEIntercept Slope SESlope RMSE R2 p-Value

Jejunum, Week 3
Villus Height 15 1.00 0.030 0.022 0.004 0.080 0.66 <0.001
Crypt Depth 15 0.99 0.041 −0.005 0.006 0.110 0.05 0.411

Villus Height/Crypt Depth 15 1.00 0.064 0.029 0.009 0.171 0.42 0.009
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Table 3. Cont.

Response Variable (Y) 1,2 nTreat
Parameter Estimates Model Statistics

Intercept SEIntercept Slope SESlope RMSE R2 p-Value

Jejunum, Week 6
Villus Height 19 1.00 0.032 0.011 0.004 0.084 0.28 0.020
Crypt Depth 19 1.00 0.061 0.008 0.008 0.163 0.05 0.348

Villus Height/Crypt Depth 19 1.01 0.050 0.004 0.007 0.133 0.02 0.529
Ileum, Week 3
Villus Height 11 0.98 0.037 0.003 0.005 0.083 0.03 0.585
Crypt Depth 11 1.00 0.058 −0.016 0.008 0.130 0.29 0.088

Villus Height/Crypt Depth 11 0.99 0.065 0.023 0.009 0.147 0.41 0.034
Ileum, Week 6
Villus Height 17 0.99 0.023 0.014 0.003 0.058 0.58 0.000
Crypt Depth 17 1.00 0.048 −0.004 0.006 0.119 0.02 0.570

Villus Height/Crypt Depth 17 1.01 0.022 0.015 0.003 0.055 0.65 <0.001

nTreat, number of treatment means; SE, standard error; RMSE, root mean square error. 1. Probiotic genera included
for these response variables were Bacillus, Bifidobacterium, Lactobacillus, Clostridium, Enterococcus, and Saccharomyces.
2. Data were calculated as log2fold change between probiotic and control treatments and expressed in fold-change
using a logarithmic scale to base 2.

Table 4. Prediction of duodenal, jejunal, and ileal histomorphology (fold change) in broiler chickens
from weeks 2 to 5 of life with pathogen challenge.

Response Variable (Y) 1,2,3,4 nTreat
Parameter Estimates Model Statistics

Intercept SEIntercept Slope SESlope RMSE R2 p-Value

Duodenum, Week 5
Villus Height 15 1.01 0.026 0.013 0.003 0.046 0.53 0.002
Crypt Depth 15 0.99 0.037 0.008 0.005 0.063 0.18 0.117

Villus Height/Crypt Depth 15 1.01 0.042 0.002 0.005 0.073 0.01 0.776
Jejunum, Week 2

Villus Height 11 0.98 0.050 0.012 0.007 0.113 0.23 0.132
Crypt Depth 11 1.00 0.020 −0.014 0.003 0.046 0.71 0.001

Villus Height/Crypt Depth 11 0.98 0.088 0.029 0.013 0.197 0.38 0.044
Jejunum, Week 3

Villus Height 17 0.99 0.040 0.019 0.006 0.106 0.42 0.005
Crypt Depth 17 1.01 0.035 −0.012 0.005 0.093 0.29 0.027

Villus Height/Crypt Depth 17 0.97 0.085 0.038 0.012 0.226 0.40 0.007
Jejunum, Week 5

Villus Height 17 1.00 0.026 0.005 0.003 0.052 0.13 0.148
Crypt Depth 17 0.99 0.024 −0.007 0.003 0.049 0.28 0.029

Villus Height/Crypt Depth 17 1.01 0.030 0.009 0.004 0.059 0.29 0.025
Ileum, Week 3
Villus Height 13 1.01 0.020 0.006 0.003 0.046 0.30 0.052
Crypt Depth 13 1.00 0.057 0.007 0.008 0.127 0.06 0.434

Villus Height/Crypt Depth 13 1.00 0.035 −0.001 0.005 0.077 0 0.873
Ileum, Week 5
Villus Height 15 0.99 0.055 0.000 0.007 0.095 0 0.962
Crypt Depth 15 0.99 0.030 0.010 0.004 0.052 0.37 0.016

Villus Height/Crypt Depth 15 1.00 0.025 −0.009 0.003 0.043 0.41 0.011

nTreat, number of treatments means; SE, standard error; RMSE, root mean square error. 1 Probiotic genera included
for these response variables were Bacillus, Lactobacillus, Enterococcus, and Saccharomyces. 2. Pathogens included
for these response variables were E. coli, C. perfringens, S. enteritidis, E. maxima, E. tenella, E. acervulina, E. mitis, E.
praecox, and F. graminearum. 3. Means of days post-infection ranged from 5.2 to 32.0 days for various ages and gut
segments. 4 Data were calculated as log2fold change between probiotic and control treatments and expressed in
fold change using a logarithmic scale to base 2.
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3.4. Probiotic Effects on Growth Performance

The meta-regression results for the growth performance in broiler chickens without
and with pathogen challenges are presented in Tables 5 and 6, respectively. Both under
pathogen and non-pathogen challenges, dietary probiotics did not affect the ADFI, ADG,
and FCR of broilers either in the starter, finisher, or overall phases.

Table 5. Prediction of growth performance of broiler chickens at starter (weeks 1–3), finisher (weeks
4–6), and overall (weeks 1–6) periods without pathogen challenge.

Response Variable (Y) 1 nTreat
Parameter Estimates Model Statistics

Intercept SEIntercept Slope SESlope RMSE R2 p-Value

Starter, Week 1–3
ADFI (g) 33 48.79 2.405 0.253 0.334 8.736 0.02 0.455
ADG (g) 30 32.52 1.267 0.215 0.176 4.425 0.05 0.234

FCR 33 1.46 0.050 −0.002 0.007 0.180 0 0.741
Finisher, Week 4–6

ADFI (g) 29 148.29 7.481 0.600 1.025 25.025 0.01 0.563
ADG (g) 26 73.80 4.703 0.661 0.644 15.012 0.04 0.315

FCR 29 1.99 0.057 −0.006 0.008 0.189 0.02 0.422
Overall, Week 1–6

ADFI (g) 32 97.98 4.503 0.443 0.624 15.736 0.02 0.483
ADG (g) 26 53.54 2.414 0.514 0.333 7.705 0.09 0.135

FCR 32 1.77 0.030 −0.007 0.004 0.105 0.07 0.132

nTreat, number of treatments means; SE, standard error; RMSE, root mean square error; ADFI, average daily feed
intake; ADG, average daily weight gain; FCR, feed conversion ratio. 1 Probiotic genera included for these response
variables were Bacillus, Bifidobacterium, Lactobacillus, Clostridium, Enterococcus, and Saccharomyces.

Table 6. Prediction of growth performance of broiler chickens at starter (week 1–3), finisher (week 4–6),
and overall (week 1–6) periods with pathogen challenge.

Response Variable (Y) 1,2,3 nTreat
Parameter Estimates Model Statistics

Intercept SEIntercept Slope SESlope RMSE R2 p-Value

Starter, Week 1–3
ADFI (g) 22 51.82 2.483 0.132 0.347 7.456 0.01 0.709
ADG (g) 22 34.72 2.260 0.270 0.316 6.787 0.04 0.403

FCR 22 1.49 0.066 −0.007 0.009 0.198 0.03 0.464
Finisher, Week 4–6

ADFI (g) 13 142.90 16.708 1.388 2.474 40.945 0.03 0.586
ADG (g) 13 68.16 11.278 0.758 1.670 27.638 0.02 0.659

FCR 13 2.04 0.135 −0.003 0.020 0.330 0 0.879
Overall, Week 1–6

ADFI (g) 17 95.08 4.156 0.102 0.634 11.776 0 0.874
ADG (g) 17 55.76 4.857 0.259 0.741 13.760 0.01 0.731

FCR 17 1.75 0.091 −0.007 0.014 0.257 0.02 0.626

nTreat, number of treatment means; SE, standard error; RMSE, root mean square error; ADFI, average daily feed
intake; ADG, average daily weight gain; FCR, feed conversion ratio. 1. Probiotic genera included for these response
variables were Bacillus, Bifidobacterium, Lactobacillus, Enterococcus, and Saccharomyces. 2. Pathogens included for
these response variables were E. coli, C. perfringens, S. enteritidis, E. maxima, E. tenella, E. acervulina, E. mivati, E.
mitis, and E. praecox. 3. Means of days post-infection for the starter, finisher, and overall periods were 10.8, 33.2,
and 34.9 days, respectively.

3.5. Backward Elimination Analysis

The backward elimination analysis was conducted separately for data without (Table 7)
and with pathogen challenge (Tables 8 and 9). For the data of chickens without pathogen
challenge, backward elimination analysis showed that dietary probiotic concentration was
the main factor influencing the expression of MUC2, ZO1, and OCLN in jejunum and ileum
and CLDN1 in jejunum at week 3 of life (R2 = 0.36–0.57; p < 0.05). Moreover, increasing
dietary ME levels counteracted the positive relationship between dietary probiotic con-
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centration and jejunal MUC2 expression at week 6 of life (R2 = 0.70; p < 0.05). In contrast,
an increasing dietary CP level potentiated the increase in jejunal OCLN expression with
increasing dietary probiotic concentrations at week 6 of life (R2 = 0.62; p < 0.05). The
positive relationship between dietary probiotic concentration and jejunal ZO1 expression
was potentiated by dietary ME but counteracted by dietary CP at week 6 of life (R2 = 0.70;
p < 0.05). Both dietary ME and CP levels counteracted the increase in ileal ZO1 expression
with increasing dietary probiotic concentrations at week 6 of life (R2 = 0.76; p < 0.05). For
the gut histomorphology, backward elimination analysis showed that dietary probiotics
were the only factor influencing the jejunal villus height at week 6 of life (R2 = 0.28; p = 0.02).
A higher dietary ME level potentiated the increase in jejunal and ileal villus height/crypt
depth ratio at week 3 of life (R2 = 0.68–0.72; p < 0.05) but counteracted the increase in
ileal villus height/crypt depth ratio at week 6 of life (R2 = 0.76; p < 0.05) with higher
concentrations of dietary probiotics. In addition, an increasing dietary CP level potentiated
the positive relationship between dietary probiotic concentration and ileal villus height at
week 6 of life (R2 = 0.72; p < 0.05).

Table 7. Best-fit equations showing the response variables of gut barrier function-related gene expres-
sion and histomorphology (fold change) in relation to increasing dietary probiotics, metabolizable
energy, and crude protein level in broiler chickens without pathogen challenge using backward
elimination technique.

Response
Variable (Y) 1,2 Predictor (X) nTreat

Parameter Estimates Model Statistics

Intercept SEIntercept Slope SESlope RMSE R2 VIF p-Value

Jejunum, Week 3
MUC2 10 0.95 0.149 0.336 0.40

Probiotic (CFU/kg) 0.053 0.023 1.00 0.050
ZO1 11 0.99 0.046 0.101 0.49

Probiotic (CFU/kg) 0.019 0.007 1.00 0.016
OCLN 13 0.95 0.233 0.594 0.36

Probiotic (CFU/kg) 0.009 0.004 1.00 0.030
CLDN1 11 7.37 2.871 0.209 0.62

Dietary ME (MJ/kg) −0.514 0.231 1.00 0.057
Probiotic (CFU/kg) 0.039 0.014 1.00 0.026

Villus Height 15 −0.83 0.946 0.073 0.74
Dietary ME (MJ/kg) 0.146 0.076 1.00 0.077
Probiotic (CFU/kg) 0.022 0.004 1.00 0.000

Villus
Height/Crypt

Depth
15 −4.69 1.627 0.125 0.72

Dietary ME (MJ/kg) 0.456 0.130 1.00 0.004
Probiotic (CFU/kg) 0.029 0.007 1.00 0.001

Jejunum, Week 6
MUC2 10 26.72 9.897 0.688 0.70

Dietary ME (MJ/kg) −1.961 0.754 1.00 0.035
Probiotic (CFU/kg) 0.152 0.050 1.00 0.018

ZO1 14 0.34 4.308 0.309 0.70
Dietary ME (MJ/kg) 0.749 0.325 1.20 0.044

Dietary CP (%) −0.460 0.182 1.19 0.030
Probiotic (CFU/kg) 0.071 0.018 1.01 0.003

OCLN 16 −13.01 3.829 0.440 0.62
Dietary CP (%) 0.702 0.193 1.00 0.003

Probiotic (CFU/kg) 0.072 0.023 1.00 0.009
Villus Height 19 1.00 0.032 0.084 0.28

Probiotic (CFU/kg) 0.011 0.004 1.00 0.020
Ileum, Week 3

MUC2 10 0.88 0.217 0.439 0.57
Probiotic (CFU/kg) 0.095 0.030 1.00 0.012

OCLN 13 0.85 0.150 0.338 0.47
Probiotic (CFU/kg) 0.064 0.020 1.00 0.009

CLDN1 10 0.96 0.115 0.233 0.39
Probiotic (CFU/kg) 0.036 0.016 1.00 0.054
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Table 7. Cont.

Response
Variable (Y) 1,2 Predictor (X) nTreat

Parameter Estimates Model Statistics

Intercept SEIntercept Slope SESlope RMSE R2 VIF p-Value

Crypt Depth 11 1.00 0.058 0.130 0.29
Probiotic (CFU/kg) −0.016 0.008 1.00 0.088

Villus
Height/Crypt

Depth
11 −4.09 2.538 0.122 0.68

Dietary ME (MJ/kg) 0.856 0.348 3.20 0.044
Dietary CP (%) −0.256 0.129 3.20 0.087

Probiotic (CFU/kg) 0.023 0.008 1.00 0.021
Ileum, Week 6

ZO1 14 57.76 14.077 0.582 0.76
Dietary ME (MJ/kg) −3.390 0.755 1.71 0.001

Dietary CP (%) −0.695 0.299 1.72 0.043
Probiotic (CFU/kg) 0.116 0.039 1.02 0.014

OCLN 16 7.27 2.943 0.231 0.45
Dietary ME (MJ/kg) −0.489 0.228 1.02 0.052
Probiotic (CFU/kg) 0.031 0.014 1.02 0.045

Villus Height 17 −0.02 0.382 0.049 0.72
Dietary CP (%) 0.052 0.019 1.00 0.019

Probiotic (CFU/kg) 0.014 0.003 1.00 <0.001
Villus

Height/Crypt
Depth 17 2.49 0.603 0.048 0.76

Dietary ME (MJ/kg) −0.114 0.046 1.01 0.028
Probiotic (CFU/kg) 0.015 0.003 1.01 <0.001

nTreat, number of treatment means; SE, standard error; RMSE, root mean square error; VIF, variance inflation factor;
ME, metabolizable energy; CP, crude protein; MUC2, mucin-2; ZO1, zonula occludens-1; OCLN, occludin; CLDN1,
claudin-1. 1 Probiotic genera included for these response variables were Bacillus, Bifidobacterium, Lactobacillus,
Clostridium, Enterococcus, Pediococcus, Paenibacillus, and Saccharomyces. 2 Data were calculated as log2fold change
between probiotic and control treatments and expressed in fold change using a logarithmic scale to base 2.

Table 8. Best-fit equations showing the gut barrier and immune-related gene expression (fold change) in
relation to increasing levels of dietary probiotics, metabolizable energy, and crude protein, as well as days
post-infection in broiler chickens with pathogen challenge using backward elimination technique.

Response
Variable (Y) 1,2,3,4 Predictor (X) nTreat

Parameter Estimates Model Statistics

Intercept SEIntercept Slope SESlope RMSE R2 VIF p-Value

Jejunum, Week 2
ZO1 14 6.23 1.644 0.048 0.81

Dietary ME (MJ/kg) −0.512 0.145 1.49 0.005
Dietary CP (%) 0.054 0.016 1.50 0.006

Probiotic (CFU/kg) 0.015 0.003 1.00 0.000
CLDN3 10 1.00 0.040 0.089 0.97

Probiotic (CFU/kg) 0.103 0.007 1.00 <0.001
IL1B 10 1.00 0.015 0.035 0.63

Probiotic (CFU/kg) −0.009 0.003 1.00 0.006
IFNG 10 1.00 0.037 0.083 0.82

Probiotic (CFU/kg) −0.037 0.006 1.00 0.000
Jejunum, Week 3

ZO1 17 14.06 3.798 0.201 0.64
Dietary ME (MJ/kg) −0.517 0.190 1.26 0.018

Dietary CP (%) −0.316 0.099 1.26 0.007
Probiotic (CFU/kg) 0.032 0.011 1.01 0.012

OCLN 17 9.41 3.919 0.424 0.46
Dietary CP (%) −0.404 0.187 1.00 0.048

Probiotic (CFU/kg) 0.060 0.023 1.00 0.020
IL1B 17 −2.10 1.215 0.169 0.68

Dietary CP (%) 0.146 0.057 1.01 0.023
Probiotic (CFU/kg) −0.040 0.009 1.01 0.001

IL6 12 −4.66 1.799 0.145 0.77
Days post-infection −0.022 0.008 1.12 0.021
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Table 8. Cont.

Response
Variable (Y) 1,2,3,4 Predictor (X) nTreat

Parameter Estimates Model Statistics

Intercept SEIntercept Slope SESlope RMSE R2 VIF p-Value

Dietary CP (%) 0.285 0.088 1.11 0.012
Probiotic (CFU/kg) −0.034 0.009 1.01 0.005

IL10 13 0.35 0.382 0.637 0.67
Days post-infection 0.066 0.033 1.01 0.072
Probiotic (CFU/kg) 0.057 0.038 1.01 0.002

TNFA 10 1.01 0.066 0.150 0.46
Probiotic (CFU/kg) −0.026 0.010 1.00 0.033

Jejunum, Week 4
ZO1 12 11.29 2.383 0.113 0.83

Days post-infection 0.018 0.008 2.07 0.066
Dietary ME (MJ/kg) −0.828 0.194 2.05 0.003
Probiotic (CFU/kg) 0.032 0.008 1.02 0.003

IL1B 10 5.03 1.414 0.164 0.87
Dietary CP (%) −0.204 0.071 1.00 0.024

Probiotic (CFU/kg) 0.076 0.012 1.00 0.000
Ileum, Week 2

TLR4 10 −2.07 0.604 0.052 0.95
Dietary CP (%) 0.143 0.028 1.00 0.001

Probiotic (CFU/kg) −0.035 0.004 1.00 <0.001
Ileum, Week 3

ZO1 16 11.94 4.302 0.409 0.46
Dietary CP (%) −0.514 0.201 1.00 0.024

Probiotic (CFU/kg) 0.048 0.024 1.00 0.063
OCLN 16 12.02 4.638 0.441 0.45

Dietary CP (%) −0.517 0.217 1.00 0.033
Probiotic (CFU/kg) 0.054 0.025 1.00 0.052

IFNG 12 1.01 0.043 0.097 0.71
Probiotic (CFU/kg) −0.032 0.006 1.00 0.001

Ileum, Week 4
ZO1 11 3.67 0.826 0.098 0.87

Dietary ME (MJ/kg) −0.208 0.064 1.08 0.012
Probiotic (CFU/kg) 0.036 0.006 1.08 0.001

OCLN 11 7.67 1.803 0.208 0.84
Dietary CP (%) −0.335 0.089 1.06 0.006

Probiotic (CFU/kg) 0.058 0.014 1.06 0.003
CLDN1 11 12.08 3.798 0.438 0.69

Dietary CP (%) −0.557 0.189 1.06 0.018
Probiotic (CFU/kg) 0.062 0.029 1.06 0.061

Ceca, Week 2
IL6 18 0.96 0.093 0.270 0.31

Probiotic (CFU/kg) −0.034 0.013 1.00 0.017
IL10 10 46.42 16.880 0.735 0.79

Days post-infection 0.506 0.177 1.96 0.029
Dietary ME (MJ/kg) −3.868 1.412 1.97 0.034
Probiotic (CFU/kg) 0.200 0.059 1.01 0.015

Ceca, Week 4
ZO1 10 −4.26 0.721 0.147 0.96

Days post-infection 0.727 0.095 1.00 0.0001
Probiotic (CFU/kg) 0.014 0.001 1.00 <0.001

nTreat, number of treatment means; SE, standard error; RMSE, root mean square error; VIF, variance inflation factor;
ME, metabolizable energy; CP, crude protein; MUC2, mucin-2; ZO1, zonula occludens-1; OCLN, Occludin; CLDN1,-
3, claudin-1,-3; IL6, -10, -1B, interleukin-6, -10, -1beta; TLR4, Toll-like receptor-4; IFNG, interferon-gamma; TNFA,
tumor necrosis factor-alpha. 1. Probiotic genera included for these response variables were Bacillus, Bifidobacterium,
Lactobacillus, Paenibacillus, Clostridium, Enterococcus, Pediococcus, Streptococcus, and Saccharomyces. 2. Pathogens
included for these response variables were E. coli, C. perfringens, S. enteritidis, E. maxima, E. tenella, E. acervulina, E.
mivati, E. brunetti, E. mitis, E. praecox, F. graminearum, S. pullorum, S. minnesota, L. monocytogenes, and Aflatoxin
B1. 3. Means of days post-infection ranged from 3.4 to 17.3 days for various ages and gut segments. 4. Data were
calculated as log2fold change between probiotic and control treatments and expressed in fold change using a
logarithmic scale to base 2.
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Table 9. Best-fit equations showing the gut histomorphology response variables (fold change) in relation
to increasing levels of dietary probiotics, metabolizable energy, and crude protein, as well as days post-
infection in broiler chickens with pathogen challenge using backward elimination technique.

Response
Variable (Y) 1,2,3,4 Predictor (X) nTreat

Parameter Estimates Model Statistics

Intercept SEIntercept Slope SESlope RMSE R2 VIF p-Value

Duodenum, Week 5
Villus Height 15 0.78 0.073 0.035 0.75

Days post-infection 0.007 0.002 1.02 0.007
Probiotic (CFU/kg) 0.012 0.003 1.02 0.001

Jejunum, Week 2
Crypt Depth 11 0.14 0.261 0.032 0.88

Dietary CP (%) 0.040 0.012 1.00 0.011
Probiotic (CFU/kg) −0.013 0.002 1.00 0.000

Villus
Height/Crypt

Depth
11 0.98 0.088 0.197 0.38

Probiotic (CFU/kg) 0.029 0.013 1.00 0.044
Jejunum, Week 3

Villus Height 17 −3.67 1.782 0.072 0.77
Days post-infection −0.007 0.004 1.26 0.070
Dietary ME (MJ/kg) 0.385 0.144 1.25 0.019
Probiotic (CFU/kg) 0.019 0.004 1.02 0.000

Crypt Depth 17 −1.06 0.828 0.080 0.51
Dietary CP (%) 0.098 0.039 1.01 0.026

Probiotic (CFU/kg) −0.011 0.004 1.01 0.020
Villus

Height/Crypt
Depth

17 6.18 1.979 0.191 0.60

Dietary CP (%) −0.247 0.094 1.01 0.020
Probiotic (CFU/kg) 0.036 0.010 1.01 0.004

Jejunum, Week 5
Crypt Depth 17 −2.85 1.084 0.037 0.62

Dietary ME (MJ/kg) 0.301 0.085 1.00 0.003
Probiotic (CFU/kg) −0.008 0.002 1.00 0.005

Villus
Height/Crypt

Depth
17 1.20 0.067 0.048 0.57

Days post-infection −0.007 0.002 1.07 0.010
Probiotic (CFU/kg) 0.012 0.003 1.07 0.002

Ileum, Week 3
Villus Height 13 0.95 0.019 0.029 0.74

Days post-infection 0.006 0.001 1.00 0.002
Probiotic (CFU/kg) 0.006 0.002 1.00 0.010

Ileum, Week 5
Crypt Depth 15 1.28 0.072 0.034 0.75

Days post-infection −0.009 0.002 1.02 0.001
Probiotic (CFU/kg) 0.012 0.002 1.02 0.001

Villus
Height/Crypt

Depth
15 1.00 0.025 0.043 0.41

Probiotic (CFU/kg) −0.009 0.003 1.00 0.011

nTreat, number of treatment means; SE, standard error; RMSE, root mean square error; VIF, variance inflation
factor; ME, metabolizable energy; CP, crude protein. 1 Probiotic genera included for these response variables were
Bacillus, Lactobacillus, Enterococcus, and Saccharomyces. 2. Pathogens included for these response variables were E.
coli, C. perfringens, S. enteritidis, E. maxima, E. tenella, E. acervulina, E. mitis, E. praecox, and F. graminearum. 3. Means
of days post-infection ranged from 5.2 to 32.0 days for various ages and gut segments. 4 Data were calculated as
log2fold change between probiotic and control treatments and expressed in fold change using a logarithmic scale
to base 2.

Backward elimination analysis for data from studies with pathogen challenge showed
that the dietary probiotics concentration was a major factor influencing the expressions
of CLDN3, IL6, IL10, IL1B, TNFA, and IFNG either in the jejunum, ileum, or ceca at week
2 and 3 of life (R2 = 0.31–0.97; p < 0.05; Table 8). In addition, an increasing dietary ME
level counteracted the positive relationship between dietary probiotic concentration and
ZO1 and IL10 expression either in the jejunum, ileum, or ceca at weeks 2 and 4 of life
(R2 = 0.79–0.87; p < 0.05). Further results showed that dietary CP level counteracted the
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increased expression of ZO1, OCLN, and CLDN1 (R2 = 0.45–0.84; p < 0.05) as well as the
decreased expression of IL6, IL1B, and TLR4 (R2 = 0.68–0.95; p < 0.05) with higher dietary
probiotic concentrations in both the jejunum and ileum from weeks 2 to 4 of life. The
positive relationship between dietary probiotic concentration and jejunal ZO1 expression
was counteracted by a higher dietary ME but potentiated by increasing dietary CP at week
2 of life (R2 = 0.81; p < 0.05). Both dietary ME and CP levels counteracted the increase in
jejunal ZO1 expression with higher concentrations of dietary probiotics at week 3 of life
(R2 = 0.76; p < 0.05). Increasing DPI potentiated increased cecal ZO1 and IL10 expression
(R2 = 0.79–0.96; p < 0.05) and decreased jejunal IL6 expression (R2 = 0.77; p < 0.05) with
increasing dietary probiotic concentrations at weeks 2 and 4 of life.

For the gut histomorphology (Table 9), backward elimination analysis indicated that
dietary probiotic concentration was the only factor influencing the villus height/crypt
depth ratio in the jejunum and ileum at weeks 2 and 5 of life (R2 = 0.38–0.41; p < 0.05).
A higher dietary ME level potentiated an increase in the jejunal villus height (R2 = 0.77;
p < 0.05) but counteracted the decrease in jejunal crypt depth (R2 = 0.62; p < 0.05), with
higher concentrations of dietary probiotics at week 3 or 5 of life. In contrast, increasing
dietary CP levels counteracted the increase in jejunal villus height/crypt depth ratio
(R2 = 0.60; p < 0.05) but potentiated the decrease in jejunal crypt depth (R2 = 0.51–88;
p < 0.05) with increasing dietary probiotic concentrations at weeks 2 and 3 of life. Increasing
DPI potentiated the increase in villus height in the duodenum and ileum at weeks 3 and 5 of
life (R2 = 0.75–0.77; p < 0.05) but counteracted the increase in the jejunal villus height/crypt
depth ratio and ileal crypt depth at week 5 of life (R2 = 0.57–0.75; p < 0.05) with increasing
dietary probiotic concentrations.

4. Discussion

Factors such as type and dosage, chicken breed, rearing stage, the composition of
the basal diet, and the health status of the bird can influence the physiological effects of
probiotics in chickens, adding to the variation among individual studies. Due to that,
literature results on the ability of dietary probiotics to modulate the expression of genes
related to immune response and barrier function in the gastrointestinal tract of broiler
chickens are inconsistent [5,13,14]. Likewise, the effects of dietary probiotics on changes in
histo-morphological parameters of the small intestine and performance in chickens also
vary [15–18]. The original research included in this meta-analysis covers a wide scope of
experimental settings, which should enable inferring predictions for the effect of probiotics
on the target variables. However, it needs to be noted that the present meta-regressions
only provide general trends for probiotic use in chicken diets. The data available for
the individual probiotics did not meet the minimum requirements. Therefore, the data
for the single and multi-species probiotics from the individual studies were combined to
perform the meta-regression analysis. A similar limitation existed for the pathogens and
aflatoxins administrated in the challenge studies. It also needs to be kept in mind that
there is a chance that studies with no or adverse effects of probiotics were not published.
From the parameters that met the minimum selection criteria, meta-regressions support
the effectiveness of probiotics in sustaining small intestinal and cecal barrier function as
well as structural components under non-challenged and challenged conditions while also
controlling pro-inflammatory signaling under challenged conditions. The meta-regressions
also supported that probiotics may effectively counteract potential damage caused by
pathogens or mycotoxins in the lower part of the small intestine, such as oxidative stress
and compromised barrier function. Regressions further indicated a beneficial effect of
probiotics on absorptive and secretory functions by increasing villus height and decreasing
crypt depth in the small intestine, especially under pathogen-challenged conditions. Our
results also provided evidence for the gut segment- and age-specific effects. However,
it needs to be kept in mind that sufficient data were not always available for the same
parameters at the various ages of the birds. Consequently, our results provide a general
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idea about target variables that were modified by the addition of probiotics in the grower-
finisher phase.

Mechanistically, there are several potential modes of action on how the probiotics can
influence mucosal gene expression, depending on the actual species and strain of probi-
otics used. The administrated probiotics across the included non-challenge and challenge
studies were Bacillus, Lactobacillus, Clostridium, Pediococcus, Bifidobacterium, Streptococcus,
Paenibacillus, Enterococcus, and Saccharomyces. Bacteria interact with the host via microbial
metabolites and microbe-associated molecular patterns, which represent specific cell surface
structures [19,20]. Consequently, we can assume that parts of the mucosal signaling may
have been mediated via the activation of G protein-coupled receptors, pattern recognition
receptors, and microbe–microbe interactions, including the production of antimicrobial and
fermentation metabolites [21–23]. Across the various species, the present meta-regressions
supported the anti-inflammatory effects of probiotics under challenged conditions, which
may have subsequently contributed to the upregulation of the mucosal barrier, including
the expression of tight junction proteins and other first line of defense genes. Certain
G protein-coupled receptors sense fermentation end products, such as short-chain and
medium-chain fatty acids [24,25]. Due to the lack of data from the original studies, we
can only speculate about the fermentation acids that changed locally in the gut due to the
probiotic supplementation. Lactobacillus, Enterococcus, Pediococcus, Streptococcus, Paenibacil-
lus, Bifidobacterium, and Bacillus produce lactic acid as a major fermentation product, but
depending on the strain, they also produce short-chain fatty acids [26,27]. Clostridium is
probably mainly signaled via short-chain fatty acids [28,29]. Short-chain fatty acid-induced
G protein-coupled receptor activation may decrease the expression of pro-inflammatory
cytokines via the inhibition of NFKB expression [21]. Unfortunately, we could not extract
sufficient data to assess the probiotic effect on NFKB expression under un-challenged and
challenged conditions as well as on cytokine expression in non-challenged chickens. Nev-
ertheless, moderation of the activation of the pro-inflammatory NF-kB signaling pathway
may be behind the present findings for negative effects of probiotics on the expression of
IL1B and INFG at the jejunal mucosa in week 2 of age and expression of IL1B, IL6, and
TNFA in the challenged birds at week 3 of age. Moreover, based on the coefficient of
determination for the cytokine expression under challenged conditions, probiotics seemed
to be very efficient in the jejunum at week 2 of age and in the ileum at week 3 of age in the
challenged chickens. Simultaneously, probiotics may act as anti-inflammatory agent by
upregulating the expression of IL10 in innate and adaptive immune cells [30], as indicated
by the present results for the jejunum at week 3 and ceca at week 2 of age. Moreover,
Bacillus-based probiotics may not only act as an anti-inflammatory agent via fermentation
acids but by producing quorum-sensing peptides, such as competence and sporulation
factor, which signals via the Akt and p38 MAPK pathways [31,32]. Saccharomyces-based
probiotics, especially Saccharomyces cereviceae, have been shown to effectively suppress
inflammation by binding certain pathogens and toxins via mannose residues on their cell
surface. This may be behind the efficacy of Sacharomyces to control Escherichia coli and
Salmonella spp. as well as and mitigate the effects of Fusarium-produced mycotoxins [33–35],
which were the harmful agent used in the respective challenge studies.

Another mode of action in how fermentation metabolites (especially butyrate) can
modulate pro-inflammatory signaling pathways is via inhibition of histone deacetylases in
macrophages and dendritic cells [22,36]. From the included probiotics, mainly Clostridium
butyricum produces butyrate [37–39]. The other genera as lactic acid-producing bacteria may
have increased the intestinal butyrate levels via cross-feeding [40,41] and hence indirectly
affected the activity of histone deacetylases and modified the expression of pro- and anti-
inflammatory cytokines as well as of genes related to the barrier function and host secretions.
In the absence of actual data for intestinal butyrate levels, however, we can only speculate
whether the presence of the probiotics led to physiologically relevant changes in intestinal
butyrate production. Aside from interacting directly with the host, it can be assumed that
part of the observed effects was mediated via the interaction of the probiotics with the
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commensal microbiota through fermentation acids and antimicrobials [42,43]. The latter
metabolites can help shape the overall microbiota composition and inhibit the proliferation
of pathogens and/or the expression of virulence factors [44,45]. For instance, reuterin
produced by Limosilactobacillus reuteri is effective to control dysbiosis [46,47]. Similarly,
antimicrobial compounds produced by certain Bacillus-based probiotics, such as surfactin,
iturin, and fengycin, have also been reported to be effective against pathogenic bacteria [48].
Any alteration in the microbial composition automatically changes the composition of the
microbial cell surface structures, which are recognized by pattern-recognition receptors at
the gut mucosa and immune cells [49]. Unfortunately, not much data were available for the
expression of pattern-recognition receptors in the included studies. In pathogen-challenged
birds, our meta-regressions support a downregulating effect of the probiotics on TLR4
expression in the ileum at week 2 of age. In the respective original studies, the pathogens
that were administrated were Gram-negative bacteria, such as Escherichia coli and Salmonella
spp. [50,51], which comprise highly immune-reactive lipopolysaccharide recognized by
TLR-4 [20]. This finding may indicate that probiotics effectively inhibited the proliferation of
the administrated pathogens and/or moderated the TLR-4 activation. Harmful agents, such
as Eimeria, fungi, and mycotoxins, likely signaled via different pattern recognition receptors
than TLR-4. In general, it is thinkable that probiotics mediated their anti-inflammatory
effect via lower ligand-specific activation of the respective pattern recognition receptors.
This, in turn, probably led to a lower NFkB expression and/or gene expression within the
AMP-activated protein kinase, MAPK, or Akt-signaling pathways [52,53], and ultimately
to a downregulation in expression levels of pro-inflammatory cytokines (e.g., IL1B, IL6,
INFG, and TNFA) at the investigated gut sites.

The literature results suggested a protective effect of probiotics on intestinal integrity
due to increased mucus production [54,55] and by stimulating the expression of tight
junction proteins [55–57]. The present meta-regressions confirmed this assumption. How-
ever, fewer data were available for MUC2 expression from the challenge studies; therefore,
the present findings mainly support the beneficial effects of probiotics in non-challenged
birds. Moreover, the stimulating effect of probiotics on the MUC2 expression seemed to
last longer in the jejunum than in the ileum of chickens under non-challenged conditions,
which may be related to the length of the small intestine and age-related maturation of
the immune system in the older chicken [42,58]. The aforementioned effects of probiotics
on lower pro-inflammatory cytokine expression may explain their stimulatory effect on
the expressions of CLDN3, OCLN, and ZO1 in the jejunum, OCLN and ZO1 in the ileum,
and ZO1 in the ceca at week 2, 3, or 4 of age. However, the stimulatory effect was not
consistent for all available tight junction protein genes, especially for the claudin genes,
which might be related to developmental changes in the gut epithelial functioning and the
actual role of the tight junction protein, which needs further investigation. When compar-
ing the non-challenged with the challenged conditions, our meta-regressions indicated an
upregulation of the expression of CLDN1 by the probiotics in non-challenged birds at week
3 of age. Under challenged conditions, however, probiotics did not modify the transcription
of CLDN1 but that of CLDN3 at week 2 of age.

In individual studies, probiotics were shown to modulate gut histo-morphological
parameters [37,59,60]. Our meta-regressions confirm that probiotics can effectively increase
villus height and villus height/crypt ratio in non-pathogen- and pathogen-challenged
conditions. Probiotics may increase villus height by inducing mitotic cell division and
promoting epithelial cell proliferation [61]. Longer villi are associated with improved diges-
tive and absorptive capabilities at the small intestinal mucosa [61]. In addition, probiotics
seemed to have a stronger effect on crypt depth under pathogen-challenged conditions in
both jejunum and ileum. A shallower crypt is associated with slower cell turnover [62],
potentially indicating that the probiotics prevented the disruption of epithelial cells due to
the administrated pathogens.

The backward elimination analysis was helpful in the assessment of the impact of
certain dietary effects on the target variables. According to the best-fit model, higher dietary
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ME and CP levels were important influential factors that counteracted the efficacy of probi-
otics to increase the expression of MUC2, tight junction proteins, and anti-inflammatory
cytokines and decrease pro-inflammatory cytokines in the small intestine and ceca. For
instance, higher dietary CP may act pro-inflammatory in birds under challenged conditions
by stimulating the proliferation of proteolytic taxa in the gut, which could lead to the
activation of TLR4 expression. Of the administrated pathogens and toxins, Salmonella and
Escherichia coli as Gram-negative and proteolytic bacteria, for instance, may have benefited
from increased dietary CP levels. Higher dietary ME, most often caused by a higher starch
content of the diet, has been shown to reduce the number of butyric acid-producing bacteria
and increase Gram-negative bacteria [63,64], which may act as a pro-inflammatory agent.
In contrast to the finding at the gene expression level, the best-fit model also indicated that
higher levels of dietary ME and CP could enhance the effect of probiotics on intestinal villus
height, which may be related to the stimulation of growth and proliferation of intestinal
epithelial cells due to greater nutrient availability [65]. The backward elimination analysis
also suggested a certain recovery of the gut mucosa after the pathogen challenge that
was independent of the probiotics. Accordingly, with increasing time post-infection, the
expression levels of genes for pro-inflammatory cytokines decreased, whereas those of
genes coding for anti-inflammatory cytokines and tight junction proteins increased.

5. Conclusions

This present meta-analysis confirmed the results from individual studies at the gene
expression level that probiotics can support intestinal barrier function in the small intestine
under non-pathogen-challenged conditions in broiler chickens. From the available data
that were used in this present analysis, it can be further deduced that under challenged
conditions with pathogens and mycotoxins, probiotics do not only increase the expression
of barrier function genes, but they mediate anti-inflammatory effects via modulation of
cytokine expression in the small intestine and ceca. The effect of probiotics was not limited
to the changes in gene expression but was also detectable at the structural level, where they
improved villus height and crypt depth and hence influenced absorptive and secretory
processes at the small intestinal epithelium. However, the present meta-regressions did
not support the effect of probiotics on growth performance. Other sources of variation that
could potentially influence or counteract the effects of probiotics in the diet included the
dietary levels of ME and CP as well as the DPI in the challenge studies. Limitations of this
present meta-analysis were that insufficient data were available from individual studies
for the various probiotics and administrated pathogens and mycotoxins. Therefore, the
present meta-regressions provide general trends that should be verified in the future when
more data for the various single and multi-strain probiotics are available.
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to immune response in broiler chickens from weeks 2 to 4 of life with pathogen challenge; Table S7:
Descriptive statistics for predictive and response variables of duodenal, jejunal and ileal histomorphology
(fold change) in broiler chickens at weeks 2, 3, and 5 of life with pathogen challenge; Table S8: Descriptive
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23 LAY SUMMARY

24 During the suckling phase, piglets are commonly housed in the same pen as their mother sows 

25 until weaning. Consequently, mother’s feces are a rich source of microbes for the colonization 

26 of the neonatal gut. In the past, mainly maturational changes in the bacterial community of 

27 piglet’s gut have been investigated, whereas other microbial groups, such as fungi, received 

28 less attention. In the present study, we could show that the bacterial and fungal communities in 

29 sow feces changed with progressing lactation and that bacterial and fungal taxa present in sow 

30 feces were also present in gastric and cecal digesta of the suckling piglets. These findings 

31 support the importance of maternal microbes for the gut colonization of neonatal piglets. In 

32 both, bacterial and fungal communities, weaning left a characteristic mark in the overall 

33 community structures and taxa abundances, which can be explained by the withdrawal of sow 

34 milk and low feed intake. Correlation analysis also revealed potential bacterial and fungal 

35 marker candidates for softer and firm feces.

36

37 TEASER TEXT

38 We investigated the bacterial and fungal communities in the feces of sows during lactation 

39 which appeared to have contributed to the gut colonization of suckling piglets. Postweaning, 

40 we could identify taxa that were linked to firm and softer feces and may serve as bacterial and 

41 fungal marker for the gut homeostatic condition.
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43 ABSTRACT

44 Changes in the gut microbial composition of the sow during lactation may influence the gut 

45 microbial colonization in their offspring, for which less information was available in the 

46 literature. This study aimed to assess: 1) the changes that occur in the bacterial and fungal 

47 communities in sow feces during the 28-day lactation period as well as in gastric and cecal 

48 digesta of piglets until one week after weaning, and 2) bacterial and fungal taxa in cecal digesta 

49 of the piglets postweaning that associate with fecal consistency. Fecal samples from sows for 

50 microbial analysis were collected (n=20) on days postpartum (DPP) 1, 6, 13, 20 and 27, as well 

51 as from weaned piglets for fecal scoring on day of life (DoL) 30 and 34. Gastric and cecal 

52 digesta of piglets was collected on DoL3, 7, 14, 21, 28, 31 and 35 (n=5/sex/DoL). Progressing 

53 lactation affected bacterial and fungal communities in sow feces. Great alterations were 

54 observed within the dominant taxa in sow feces, including 10.3- and 3.0-fold increases in 

55 Lactobacillus from DPP1 to 6 and Kazachstania from DPP1 to 13, respectively (P < 0.001). 

56 Although time- and gut site-related differences existed, bacterial and fungal taxa found in sow 

57 feces were also present in gastric and cecal digesta of piglets, which supports their role for gut 

58 colonization in neonatal piglets. In piglets, bacterial and fungal alpha-diversities showed 

59 certain fluctuations during the suckling period, whereby weaning affected more the fungal than 

60 bacterial diversity at both gut sites (P < 0.05). At both gut sites, Lactobacillus largely increased 

61 from DoL3 to 7 and remained a dominating taxon until DoL35 (P < 0.05). Postweaning, plant-

62 glycan fermenters (e.g., Prevotella-9) seemed to replace milk-glycan fermenting 

63 Fusobacterium and Bacteroides (P < 0.05). In gastric and cecal digesta, Kazachstania, 

64 Tausonia, Candida and Blumeria were dominating fungi from DoL3 to 35, with Kazachstania 

65 becoming even more dominant postweaning (P < 0.001). Fecal consistency was softer on 

66 DoL34 than 30 (P < 0.05). Correlation analysis identified that softer feces were linked to cecal 

67 abundances of plant-glycan and proteolytic bacterial taxa including pathobionts (e.g., 
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68 Clostridium sensu stricto) on DoL34. However, the potential association between cecal mold 

69 and plant-pathogenic fungi Talaromyces, Mrakia, and Blumeria and softer feces are worth to 

70 investigate in the future in relation to (gut) health of piglets.

71

72 KEY WORDS

73 Bacteriome, Lactation, Mycobiome, Piglet, Sow, Weaning
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75 LIST OF ABBREVIATIONS

76 DoL, day of life 

77 DPP, day post-partum
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79 INTRODUCTION

80 The postnatal microbial colonization is a substantial contributor to gut maturation, including 

81 immune and barrier functions (Everaert et al., 2017). Microbes that colonize the piglet’s 

82 gastrointestinal tract after birth originate from the sow (i.e., vagina, skin/nipple surface, 

83 colostrum/milk, and feces), environment, and handling farm staff (Jost et al., 2014; Chen et al., 

84 2018). During the suckling period, piglets are commonly housed in the farrowing pens with 

85 their sows until weaning (Nowland et al., 2019). Hence, changes in the gut microbial 

86 composition of the sow that occur during lactation may influence the gut microbial colonization 

87 in their offspring. Despite increasing knowledge on the gut microbial development in piglets, 

88 alterations in the gut microbial composition of the dam over the course of lactation were rarely 

89 investigated so far. 

90 Moreover, knowledge on the postnatal fungal colonization of the piglet’s gut and whether this 

91 development is driven by the fecal mycobiome of the sow is still scarce. The stomach of 

92 suckling and weaned piglets contains a diverse and complex microbiome (Mann et al., 2014; 

93 Lerch et al., 2023), which contributes to the degradation of nutrients and production of 

94 fermentation metabolites. Although some data for the postnatal development of bacteria in the 

95 stomach exist (Lerch et al., 2023), the development of gastric fungal communities has been 

96 poorly described. Evidence from our group supports the importance to investigate fungal 

97 communities in the neonatal period (Lerch et al., 2023), as some of the fungi found in cecal 

98 digesta represented plant pathogens and mold fungi (Yeh et al., 2021), which may compromise 

99 the development of the immune system (Wang et al., 2023). This rises the need to monitor the 

100 development of the gastrointestinal microbial communities in healthy piglets from pre- and 

101 postweaning more closely. 

102 Scoring the fecal consistency in piglets is also helpful for identifying eubiotic and dysbiotic 

103 gut conditions. Recently, we could show that feces of different colors and consistencies differ 
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104 in their bacterial composition in suckling and newly weaned piglets (Metzler-Zebeli et al., 

105 2023). However, feces are mostly representative for the distal large intestine of piglets; 

106 therefore, targeting the microbial composition in more proximal parts of the gut (e.g., cecum) 

107 and link them to the fecal score may provide further marker taxa for eubiotic and dysbiotic gut 

108 conditions. Especially, the relation between intestinal fungi and fecal score have been little 

109 investigated so far. 

110 The objectives of this study were to assess 1) the changes that occur in the bacterial and fungal 

111 communities in sow feces during the lactation period as well as in gastric and cecal digesta of 

112 piglets from day of life (DoL) 3 until one week after weaning; and 2) bacterial and fungal taxa 

113 in cecal digesta of piglets postweaning that associate with fecal consistency. Our research was 

114 based on the following hypothesis: 1) microbial communities in piglet’s stomach and cecum 

115 would comprise similar bacterial and fungal taxa as sow feces during the suckling phase but 

116 would diverge postweaning; and 2) the association of fecal scores with microbial taxa in cecal 

117 digesta would allow the identification of taxa linked to a lower (dysbiosis) and higher 

118 (eubiotics) gut homeostatic state postweaning.

119

120 MATERIALS AND METHODS

121 Ethical statement

122 All procedures requiring animal handling and treatment have been approved by the institutional 

123 ethics committee of the University of Veterinary Medicine Vienna and National authority in 

124 accordance with the Law for Animal Experiments in Austria (GZ 2020-0.437.208).

125

126 Animals, housing, and experimental procedures

127 The pig experiment was conducted at the pig facility of the University of Veterinary Medicine 

128 Vienna (VetFarm) under production conditions, consisting of two consecutive replicate 
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129 batches. In each replicate batch, 10 sows (Large White) and their litters (Large White × 

130 Piétrain) were used. The experiment lasted from 26 days prior to farrowing, throughout the 28-

131 day lactation period to 7 days after weaning. At the pig facility, sows and their litters were 

132 handled according to standard procedures at the pig facility. Sows were group-housed in pens 

133 during gestation but had access to individual feeders. Five days before farrowing, sows were 

134 transferred to separate farrowing pens (BeFree, Schauer Agrotonic, Prambachkirchen, Austria; 

135 2.3 × 2.6 m in size), which were equipped with a feeder, bowl drinker, and hayrack for the sow 

136 (for environmental enrichment and nesting behavior), as well as a round feeder, small bowl 

137 drinker, and nest with heated flooring for the piglets. All sows gave birth within 48 hours and 

138 were not restrained during the farrowing process and the whole lactation. Piglets were 

139 supplemented with iron by injection on DoL4 (2 mL of Ferriphor 100 mg/mL, OGRIS Pharma 

140 Vertriebs-GmbH, Wels, Austria), followed by castration of male piglets on DoL11 (general 

141 sedation with Stresnil 40 mg/mL, 0.025 mL/kg body weight, Elanco Tiergesundheit AG, Basel, 

142 Switzerland and Narketan 100 mg/mL, 0.1 mL/kg body weight, Vetoquinol Österreich GmbH, 

143 Vienna, Austria). On DoL17, piglets were vaccinated (1 mL Ingelvac CircoFLEX and 1 mL 

144 Ingelvac MycoFLEX, both from Boehringer Ingelheim GmbH, Ingelheim/Rhein, Germany). 

145 On DoL28, sows were removed from the farrowing pens and piglets were transferred to rearing 

146 pens in an outdoor climate house with a heated lying area. Each rearing pen had a size of 3.3 × 

147 4.6 m each and was equipped with one round feeder, nipple and bowl drinkers, and a heated 

148 nest. The animal’s health was monitored daily throughout the experiment. Water was freely 

149 available to sows and piglets throughout the experiment.

150

151 Feed and feeding

152 The feeding protocol of gestating and lactating sows as well as of suckling and weaned piglets 

153 corresponded to the standard protocol at the pig facility. From 26 to 5 days prior to farrowing, 

Page 8 of 44

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Journal of Animal Science



For Peer Review

9

154 sows were provided with gestation diet in the morning (08:00 hour) and afternoon (14:30 hour) 

155 (3-4 kg/meal; Königshofer GmbH, Ebergassing, Austria; Supplementary Table S1 and S2). 

156 After moving the sows to the farrowing pens 5 days before the farrowing date, the sows were 

157 offered lactation diet (approx. 3 kg/meal; Königshofer GmbH, Ebergassing, Austria; 

158 Supplementary Table S1 and S2) in the morning and afternoon (08:00 and 14:30 hours). 

159 Additionally, sows received 500 g of linseeds soaked in water once a day for 5 days prior to 

160 farrowing to avoid constipation. After farrowing, the feed amount of the sows was gradually 

161 increased (approx. 4–9 kg/meal) according to the regular feeding protocol. Litters received 

162 creep feed that was manually prepared at least twice daily (08:00 and 15:00 hours) from DoL3 

163 to 35. The creep feed was a commercial milk replacer (NuriStart Sweet, BIOMIN Holding 

164 GmbH, Part of dsm-firmenich, Getzersdorf, Austria; Supplementary Table S2), which was 

165 prepared according to the manufacturer’s instructions. The milk replacer was offered in liquid 

166 form, by mixing the powder with warm water (45°C) at a ratio of 500 g/L (w/v). From DoL3 

167 to 23, the piglets were given 100% of milk replacer. Then, the milk replacer was gradually 

168 mixed with the prestarter diet from DoL24 to 26 (Königshofer GmbH, Ebergassing, Austria; 

169 Supplementary Table S1 and S2), starting with a ratio of 70:30 (w/w) on DoL24, 50:50 (w/w) 

170 on DoL25, and 30:70 (w/w) on DoL26, respectively, and provided in mash form. After that, 

171 the litters were fed 100% of the prestarter diet as mash on DoL27 and in dry form after weaning 

172 from DoL28 to 35. All diets used in the study met or exceeded the current recommendations 

173 for nutrient requirements (NRC, 2012). Leftover creep feed and spills were collected to 

174 estimate the creep feed intake. 

175

176 Body weight measurement, fecal score, and collection

177 Piglets were weighed at 8 time points, immediately after birth, DoL4, 6, 13, 20, 27, 30, and 34. 

178 Freshly defecated feces of sows or feces after rectal stimulation were collected on days 
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179 postpartum (DPP) 1, 6, 13, 20, and 27 for microbiome analysis. To avoid contamination from 

180 the floor, only the inside part of the defecated feces was used and homogenized with a sterile 

181 spatula before placing them into cryo tubes. The tubes were kept on ice before storage at -80oC 

182 until further analysis. Fecal samples from weaned piglets were collected by means of rectal 

183 stimulation on DoL30 and DoL34 to assess the fecal consistency. To obtain the samples, the 

184 inner anal sphincter was stimulated by inserting a sterile cotton tip and gently rotating it. The 

185 consistency was scored according to: 0 (balls normal), 1 (shaped soft), 2 (pasty), 3 (shaped 

186 very soft), 4 (mild diarrhea), and 5 (watery diarrhea).  

187

188 Gut sampling

189 In each of the two replicate batches, gut samplings took place on DoL3, 7, 14, 21, 28, 31, and 

190 35. On each sampling day, 5 female and 5 male piglets were used for invasive sampling in each 

191 replicate batch. From each litter, one piglet (with alternating sexes on the consecutive sampling 

192 days) was selected per sampling day based on having average body weight within the litter. 

193 Prior to slaughter, piglets were weighed and anesthetized in the ear vein with azaperone 

194 (Stresnil 40 mg/mL, 0.025 mL/kg body weight, Elanco Tiergesundheit AG, Bad Homburg, 

195 Germany) and ketamine (Narketan 100 mg/mL, 0.1 mL/kg body weight, Vetoquinol Österreich 

196 GmbH, Vienna, Austria). Afterwards, piglets were euthanized with embutramide (T61, 0.1 

197 mL/kg body weight, Intervet GesmbH, Vienna, Austria) via intracardiac injection. Piglets were 

198 bled by cutting the neck. Then, the abdomen was opened and the entire gut was removed 

199 aseptically. The stomach and cecum were identified, clamped, and separated. Digesta samples 

200 were then collected from both gut segments. Homogenized digesta samples for microbiome 

201 analysis were snap-frozen in liquid nitrogen and stored at -80°C. 

202

203 DNA extraction, 16S rRNA and ITS sequencing and bioinformatics
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204 For DNA extraction, the protocol as described in Lerch et al. (2023) was used (DNeasy 

205 PowerSoil Pro Kit; Qiagen, Hilden, Germany) with the same modifications including a heating 

206 step and mechanical lysis. The concentration of DNA in each extract was measured with the 

207 Qubit fluorometer (Qubit 4 Fluorometer, Thermo Fisher Scientific, USA) using the Qubit 

208 dsDNA HS Assay Kit (Thermo Fisher Scientific Inc., Waltham, MA, USA). Targeted 16S 

209 rRNA (V3-V4 hypervariable region) and ITS2 amplicon sequencing was performed in an 

210 external laboratory (Novogene, Cambridge, UK). In order to do so, aliquots of the DNA 

211 extracts were sent for library preparation (NEBNext Ultra II DNA Library Prep Kit, Illumina, 

212 San Diego, CA, USA). The 16S rRNA amplicon was amplified using primers 341F-ill (5′-

213 CCTACGGGNGGCWGCAG-3′) and 802R-ill (5′-GACTACHVGGGTATCTAATCC-3′), 

214 and the ITS2 region was amplified using primers ITS3 (5′-GCATCGATGAAGAACGCAGC-

215 3′) and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′). Equimolar pools of samples were 

216 sequenced to generate 250bp paired-end raw reads in the Novaseq 6000 platform (Illumina). 

217 Demultiplexing and trimming of the raw sequences was performed by Novogene.

218 Raw sequencing reads (Fastq files) for the 16S rRNA and fungal ITS amplicons were 

219 processed, aligned, and classified independently using the Divisive Amplicon Denoising 

220 Algorithm 2 (DADA2; version 1.26.0) in R studio (version 1.4.1106) (Callahan et al., 2016). 

221 The ‘file.path’ function was used to pre-filter sequences in order to remove reads with 

222 ambiguous bases for both bacterial and fungal sequences. Afterwards, the forward and reverse 

223 read quality profiles were separately examined using the ‘filterAndTrim’ function (truncQ=5). 

224 To account for the decrease in quality score of the subsequent nucleotides, the total length of 

225 forward and reverse reads was truncated to 220 nucleotides with a maximum error rate of 5 for 

226 both forward and reverse reads. For the fungal ITS amplicons, the first 10 nucleotides of each 

227 read were trimmed to account for the decrease in quality score of the following nucleotides, 

228 and a minimum length of 50 nucleotides was enforced to eliminate very low-length sequences. 
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229 Reads with ambiguities were removed from both amplicon sets, as were reads that exceeded 

230 the probabilistic estimated error of two nucleotides for the ITS reads. For both the 16S rRNA 

231 and ITS amplicons, amplicon sequence variants were inferred after de-replication of the filtered 

232 data and estimation of error rates (Callahan et al., 2016). The inferred forward and reverse 

233 sequences were then merged, with paired sequences that did not perfectly match removed to 

234 control for residual errors, and a sequence table was constructed. The removeBimeraDenovo 

235 () function was used to remove chimeras, and taxonomy was assigned using the SILVA 138.1 

236 ribosomal RNA database for bacteria (Quast et al., 2012) and the UNITE ITS database (version 

237 9.0) for fungi (Nilsson et al., 2019) with a 3% dissimilarity threshold. Alpha-diversity 

238 (Shannon, Simpson, Chao1) analysis was performed using phyloseq (version 1.42.0). For beta-

239 diversity analysis, statistical assessment of dissimilarity matrices (Bray-Curtis) was performed 

240 using the 'adonis2' function in the R package 'vegan' (version 2.6.4) (Oksanen et al., 2022), 

241 separately for the bacterial and fungal composition. The permutational multivariate analysis of 

242 variance (PERMANOVA) was used on the Bray-Curtis distance matrices to assess the 

243 dissimilarities between the bacterial and fungal community structures in sows' feces post-

244 partum and in the gastric and cecal digesta of piglets on the various sampling days during the 

245 suckling period. The statistical significance was determined after 999 random permutations. 

246 The two-dimensional non-metric multidimensional scaling (NMDS) ordination plots generated 

247 by the ggplot2 package using the 'metaMDS' function were used to visualize the clustering of 

248 bacteriomes and mycobiomes in gastric and cecal digesta according to sample type and age as 

249 well as between sow feces and digesta samples of piglets.

250 The datasets generated for this study were deposited into the NCBI Bioproject databank under 

251 accession number PRJNA1103974.

252

253 Statistical analyses
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254 The Shapiro-Wilk test with the UNIVARIATE procedure in SAS (version 9.4; SAS Institute, 

255 Inc., Cary, NC) was used to test the normal distribution of the residuals of all variables. The 

256 residuals were transformed using the Boxcox method and the Transreg procedure in SAS if 

257 they were not normally distributed. All data, both from sows, i.e., gut microbiome, and from 

258 piglets, i.e., body weight, gut microbiome, and fecal score, were subjected to ANOVA using 

259 the MIXED procedure in SAS. Across datasets for sow feces and digesta samples from piglets, 

260 bacterial (> 0.2% of all reads) and fungal taxa (> 0.05% of all reads) were taken into 

261 consideration. The ranked relative abundances were analyzed in SAS. Repeated measures were 

262 used to investigate effects with progressing lactation of the sows (DPP) and increasing age of 

263 the piglets (DoL). For data of the sow, a random model was used that included the fixed effects 

264 of DPP, replicate batch, litter, and the respective two- and three-way interactions. The random 

265 model for data of the piglets included the fixed effects of sex, replicate batch, DoL, litter, and 

266 the respective two- and three-way interactions. For most parameters in piglets, differences 

267 between sexes were not detected and were excluded from the final model. For the growth 

268 performance of the piglets, a separate random model, consisting of the fixed effects replicate 

269 batch, sex, and their interaction, as well as litter size at birth and date of birth as covariates, 

270 was applied. The sow and piglet represented the experimental unit. Degrees of freedom were 

271 approximated by the Kenward-Rogers method (ddfm = kr). Data were reported as the least-

272 square means ± standard errors of the mean (SEM). Multiple pairwise comparisons among 

273 least-square means were performed using the pdiff statement. A significant difference was 

274 defined at P ≤ 0.05 and trends at 0.05 < P ≤ 0.10. Descriptive statistics using PROC MEANS 

275 procedure in SAS were applied to calculate feed intake of sows during late gestation and 

276 lactation, as well as creep feed intake of piglets during suckling period. PROC CORR in SAS 

277 was used to calculate Pearson correlation coefficients between cecal bacterial and fungal taxa 

278 and postweaning fecal scores on DoL30 and 34. To visualize the obtained correlations, heat 
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279 maps were generated using the ‘levelplot()’ function in the lattice package in R Studio (version 

280 2023.06.0). 

281

282 RESULTS

283 Feed intake of sows and piglets and growth performance of piglets

284 The average feed intake of sows during late gestation and lactation period was 3.5 and 6.6 

285 kg/day and sow, respectively (Supplementary Table S3). The average litter size was 13.9 ± 1.7 

286 (SD). The creep feed intake was on average 19.6 g/day and piglet during the suckling period 

287 (Supplementary Table S4). Except for the higher birth weight of male piglets compared to 

288 female piglets (P = 0.014; Supplementary Table S5), body weight and average daily weight 

289 gain was similar during the suckling and early postweaning period.

290

291 Changes in bacterial and fungal abundance and composition in the feces of lactating sows 

292 The PERMANOVA based on Bray-Curtis dissimilarities showed significant separation 

293 between animal (i.e., sows and piglets), age (i.e., DoL and DPP), and gut segment (i.e., feces, 

294 stomach, and cecum) for the bacterial and fungal communities (P < 0.001; Supplementary 

295 Table S6). The non-metric multidimensional scaling (Bray–Curtis distance) demonstrated 

296 separate clustering for the bacterial and fungal communities in sow feces, gastric and cecal 

297 digesta. Time-related clustering of the microbial communities was visible, especially for the 

298 communities in gastric and cecal digesta of the piglets but also for the fungal communities in 

299 sow feces with increasing DPP (Fig. 1A and 1B).

300 Day postpartum did not influence the bacterial species richness (Chao1) in the feces of sows 

301 (Table 1), whereas the bacterial alpha-diversity (Shannon and Simpson) increased from DPP1 

302 to 6 and decreased thereafter until DPP27 (P < 0.05). The DPP affected the fungal species 

303 richness (Chao1) and alpha-diversity (Shannon and Simpson; P < 0.05; Table 1) but in an 
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304 opposite manner compared to the bacterial community. The fungal species richness and alpha-

305 diversity decreased from DPP1 to 13 but increased thereafter until DPP27 (P < 0.05). These 

306 observations were supported by the results from 16S rRNA and ITS2 amplicon sequencing 

307 (Fig. 2A and 2B). As an example, the most abundant genera Lactobacillus increased by 10.3-

308 fold from DPP1 to 6 (P < 0.001), whereas Streptococcus decreased by 3.5-fold from DPP1 to 

309 13 and increased thereafter until DPP27 (P < 0.001). Rikenellaceae RC9 gut group increased 

310 by 1.6-fold from DPP1 to 6 but decreased afterwards on DPP13 by 1.5-fold (P < 0.001), 

311 whereas Terrisporobacter increased from DPP1 to 20 by up to 1.4-fold (P = 0.034). As 

312 examples for fungal taxa, Kazachstania as the most dominating fungi in sow feces increased 

313 by 3.0-fold from DPP1 to 13 but decreased thereafter until DPP27 by up to 1.9-fold (P < 0.001). 

314 The abundance of Tausonia, which was the most dominant taxon on DPP1, declined by 28.9-

315 fold from DPP1 to 13 but remained stable thereafter until DPP27 (P < 0.001). The abundance 

316 of Geotrichum was low on DPP1 and 6, whereas it increased to DPP27 by up to 20.4-fold, 

317 becoming the second dominant fungal genus.

318

319 Age-related changes in bacterial and fungal communities in gastric and cecal digesta of 

320 piglets

321 Day of life did not affect bacterial and fungal species richness (Chao1) but influenced bacterial 

322 (Simpson) and fungal (Shannon, Simpson) alpha-diversity (P < 0.05) in the gastric digesta 

323 (Table 2). Accordingly, the bacterial alpha-diversity decreased from DoL14 to 31, whereas 

324 fungal alpha-diversity decreased from DoL28 to 35 in gastric digesta (P < 0.05). In cecal 

325 digesta, DoL differently affected bacterial and fungal species richness (Chao1) and alpha-

326 diversity (Shannon, Simpson; P < 0.05; Table 2). In terms of relative abundances in gastric 

327 digesta (Fig. 3A), the predominant Lactobacillaceae genera, including Lactobacillus, 

328 Limosilactobacillus, HT002 and Ligilactobacillus, together with Streptococcus largely altered 
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329 their abundances from DoL3 to 7 and/or from DoL28 to 31 and 35 (P < 0.05). Alterations in 

330 relative abundances of fungal genera in gastric digesta were similarly visible (Fig. 3B). For 

331 instance, gastric abundances of Candida and Blumeria largely increased from DoL7 to 14, 

332 whereas those of an unclassified genus Incertae sedis and Kazachstania greatly increased from 

333 DoL28 to 31 (P < 0.05).

334 In cecal digesta, Fusobacterium and Bacteroides were the predominant genera on DoL3, 

335 whereas Lactobacillus became the dominant taxon from DoL7 to 31 (Fig. 3C). Postweaning, 

336 Prevotella-9 became dominant, whereas the abundances of Fusobacterium and Bacteroides 

337 largely dropped compared to the time points during the suckling phase (P < 0.05). The 

338 abundance of Fungi genus Incertae sedis greatly increased from DoL3 to 7 but decreased 

339 thereafter until DoL35 (P < 0.001; Fig. 3D). The abundance of Tausonia decreased 

340 postweaning compared to the suckling phase, whereas the abundance of Kazachstania largely 

341 increased from DoL28 to 35 (P < 0.001). 

342

343 Postweaning fecal scores 

344 The fecal score was 0.67 on DoL30 and increased by 3.1-fold on DoL34 (P < 0.001; Fig. 4A). 

345 The fecal score correlated positively (P < 0.05) with Holdemanella, (r = 0.55) and negatively 

346 with Turicibacter (r = -0.54) and Odoribacter (r = -0.52) but not with fungal genera on DoL30 

347 (Fig. 4B). On DoL34, the fecal score positively correlated with three fungal genera 

348 (Talaromyces, Mrakia, and Blumeria (r > 0.5; P < 0.05; Fig. 4C), as well as with nine bacterial 

349 genera (Clostridium sensu stricto 1, Prevotellaceae NK3B31 group, Parabacteroides, 

350 Terrisporobacter, Romboutsia, Turicibacter, dgA-11 gut group, Prevotellaceae UCG-001, and 

351 Elusimicrobium (r > 0.5; P < 0.05; Fig. 4D).

352

353 DISCUSSION
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354 The present study provides novel information about the alterations of the bacterial and fungal 

355 communities in sow feces. Moreover, our results showed that there was a large overlap in 

356 bacterial and fungal taxa between sow feces and digesta of piglets. These results support the 

357 role that the microbial community in sow feces plays for the neonatal gut colonization of 

358 piglets. For instance, the abundances of Lactobacillus, Streptococcus and Tausonia in gastric 

359 and cecal digesta of piglets corresponded to their abundance in sow feces, especially in the 

360 early suckling phase. Nevertheless, the differences in relative abundances indicated that the 

361 establishment of the microbes in the gut segments depended on the ‘local’ conditions (e.g., 

362 lower stomach pH in stomach and nutrient availability) and other sources of microbes (e.g., 

363 sow colostrum/transient milk and skin). This assumption was supported by the beta-diversity, 

364 demonstrating differently clustering bacterial and fungal communities for sow feces, and 

365 gastric and cecal digesta of piglets. Moreover, our results provide novel data about the fungal 

366 diversity that establishes in the piglet’s gastrointestinal tract from early in life (DoL3) and their 

367 changes in composition after weaning. Especially the large variety of fungal taxa that were 

368 present in gastric and cecal digesta of the piglets on DoL3 are worth to highlight; with 

369 abundance patterns (more in gastric digesta) that resembled to a certain degree the fungal 

370 abundances in sow feces on DPP1. The uptake of feces by the piglets is similar to the concept 

371 of ‘fecal transplants’ (McCormack et al., 2018). Therefore, our results may be useful for future 

372 formulation of transition and lactation diets for sows to modulate their fecal microbiome in 

373 order to target specific developmental stages in the gut microbiome of suckling piglets.

374 Different types of fungi were present in sow feces and piglets’ digesta including common gut 

375 inhabitants (e.g., Kazachstania; Harlow et al., 2024), plant-related fungi (Pietrusińska and 

376 Tratwal, 2020), yeasts (e.g., Candida; Pérez, 2021) and mold fungi (Liew and Mohd-Redzwan, 

377 2018). Metabolically, these fungi probably filled different niches, breaking down residual 

378 dietary carbohydrates (Luo et al., 2021) as well as being involved in epithelial glucose turnover 
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379 (Hu et al., 2023). Some plant-related fungi – some of them plant pathogens (e.g., Blumeria; 

380 Mapuranga et al., 2022) – may have been transient, colonizing the plant feed particles. Their 

381 role in the gut microbe-microbe/host interactions needs further research as some of them are 

382 categorized as plant pathogens. Furthermore, the abundance of Cladosporium, Alternaria, 

383 Fusarium, and Aspergillus in sow feces and piglet’s digesta showed that the animals were 

384 exposed to mold and ergot fungi from the environment and feed and hence potentially to 

385 mycotoxins and ergot alkaloids which may compromise their health (Coufal-Majewski et al., 

386 2016; Deligeorgakis et al., 2023). 

387 Results for the beta-diversity and ANOVA demonstrated that the bacterial and fungal 

388 communities in sow feces were not stable throughout lactation but continuously change in 

389 relative abundances and diversity. This is probably a result of stress and dietary changes around 

390 farrowing as well as the gradual increase in feed intake level during lactation (Jašarević et al., 

391 2017; Lu et al., 2022). More specifically, the bacterial community changed more between 

392 DPP1 and 6, whereas the four dominant fungal taxa showed large changes in their abundances 

393 throughout the lactation phase. Obviously, the fungal community was more susceptible to 

394 changes in fermentable substrate quality and quantity that reached the distal parts of the hindgut 

395 and/or substrate-related microbial interactions with progressing lactation than the bacterial 

396 community. Sows had access to hay as environmental enrichment; as a slowly fermentable 

397 fiber it likely acted as substrate for fibrolytic bacterial (e.g., Treponema and Fibrobacter; Xie 

398 et al., 2018) and fungal taxa (e.g., Mucor; Karimi and Zamani, 2013) in feces. Unfortunately, 

399 we do not have exact data for the hay intake of sows. Of note, the species richness and diversity 

400 of the fungi were greater in cecal digesta of piglets than in sow feces in the first two weeks of 

401 life, which may be linked to the immature immune system and microbe-to-microbe 

402 interactions.

Page 18 of 44

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Journal of Animal Science



For Peer Review

19

403 The most drastic changes in the communities in sow feces were within the dominating lactic 

404 acid bacteria and Tausonia from DPP1 and 6. Streptococcus, Lactobacillus and Tausonia 

405 utilize dietary or host-related glycans (Zúñiga et al., 2018; Ma et al., 2020). As the difference 

406 in the pre-farrowing to post-farrowing diet was mainly the discontinuation of feeding soaked 

407 linseeds, the mucilage of the seed coat (Kajla et al., 2015; Trochine et al., 2022) may have 

408 promoted the growth of Streptococcus and Tausonia. Without linseeds, this may have given a 

409 growth advantage to Lactobacillaceae genera. The piglets showed a similar increase in 

410 Lactobacillaceae in gastric and cecal digesta from DoL3 to 7, which may be advantageous due 

411 to their multiple beneficial effects on the control of gut homeostasis and immune development 

412 (Valeriano et al., 2017; Zhang et al., 2022). From the abundance patterns, it can be assumed 

413 that sow feces were not the only source of Lactobacillaceae for the colonization of the piglet’s 

414 stomach and distal gut. However, their predominance throughout the suckling phase was likely 

415 supported by the milk glycans. 

416 The beta-diversity analysis supported the commonly observed age-related alterations of the gut 

417 bacterial and fungal community in the suckling piglets. The diversity differed for the stomach 

418 and cecum, showing the dependence of the microbial community on the available substrate at 

419 the two gut sites. Despite the full availability of nutrients in the colostrum and milk to gastric 

420 microbes, the abundance patterns of some milk glycan utilizers, such as Lactobacillus, were 

421 similar between the two gut sites. However, the diverging abundance patterns of other milk 

422 glycan fermenters, such as Limosilactobacillus, HT002, and Ligilactobacillus, Actinobacillus, 

423 Fusobacterium and Bacteroides (Garcia-Alija et al., 2022), between gastric and cecal digesta 

424 indicated different substrate availabilities and subsequent cross-feeding relationships, which 

425 may have contributed to the higher diversity in cecal digesta. Moreover, the bacterial and 

426 fungal composition probably reflected the slowly increasing amounts of creep feed as well as 

427 the change in the type of creep feed from the milk replacer to the prestarter from DoL21 to 28. 
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428 Even in very small amounts plant glycans, such as starch, probably supported the growth of 

429 starch-degrading taxa such as Turicibacter, Terrisporobacter, Porphyromonas and Prevotella 

430 in digesta (Umu et al., 2015; Sun et al., 2015; Trachsel et al., 2019). As an example, the starch 

431 component may have proportionally lowered the abundance of milk glycan-fermenting bacteria 

432 in gastric digesta on DoL21. Other bacteria, such as Clostridium sensu stricto, may have thrived 

433 on milk peptides, either from sow milk or milk replacer. 

434 Kazachstania is a commensal yeast in the porcine gut (Summers et al., 2021), which per se 

435 may explain its high presence in sow feces and gastric and cecal digesta of piglets. They feed 

436 on dietary or host-derived sugars, such as glucose and galactose (Kondybayev et al., 2023). 

437 Previously, Kazachstania slooffiae has been linked to the provision of amino acids and energy 

438 to other bacteria, such as Lactobacillus and Prevotella, as well as the host piglet (Summers et 

439 al., 2021; Hu et al., 2023). From the abundance patterns, it is unfortunate that a great part of 

440 the fungal sequences belonged to unclassified fungi in gastric and cecal digesta of piglets for 

441 which we can only assume that they probably utilized milk components. The yeast Candida 

442 increased in gastric more than in cecal digesta of piglets during the suckling phase, which may 

443 be linked to the glycan intake from milk and creep feed. Another high abundant fungus in sow 

444 feces, Geotrichum, which was abundant in < 0.05% of fungal communities in the digesta of the 

445 piglets may exert some positive effects on the host as it has been used as probiotics in ruminant 

446 nutrition to promote productivity and bacterial diversity in dairy cattle (Zaman et al., 2022), 

447 whereas very little is known for pigs. According to its abundance pattern in feces throughout 

448 lactation, the abundance of Geotrichum seemed to be related to the feed intake level of the 

449 sows. 

450 The diversity abundance patterns of the bacterial and fungal communities allowed 

451 distinguishing the time point of weaning. Similar to previous observations in neonatal piglets 

452 (Lerch et al., 2023), the bacterial and fungal diversity in gastric and cecal digesta were 
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453 differently affected by weaning. In the present study, it can be assumed that the weaning-related 

454 removal of sow milk, the mostly plant-based diet and low feed intake as well as changes in the 

455 bacterial crosstalk caused decreasing fungal diversity in cecal digesta from DoL28 

456 (preweaning) to DoL35 (postweaning). It is difficult to relate the changes in the fungal 

457 community postweaning to the action of certain bacteria as our understanding is only 

458 advancing. Weaning changed the bacterial and fungal communities in the sense of milk glycan 

459 fermenters being replaced by plant glycan utilizers. For instance, the removal of the milk 

460 glycans reduced the abundance of Limosilactobacillus and HT002 in gastric digesta. By 

461 contrast, other Lactobacillaceae, such as Lactobacillus and Ligilactobacillus, in gastric and 

462 cecal digesta remained stable or increased in their abundance postweaning, indicating that they 

463 were capable to utilize the glycans in the prestarter diet (i.e., starch and lactose) and derived 

464 from the host. Of note, Bifidobacterium, another genus known for its milk glycan-fermenting 

465 capabilities (Jang and Kim, 2022), only raised in its abundance in gastric digesta on DoL31. 

466 This taxon possibly benefited from the opening niches of Lactobacillaceae but seemed to be 

467 outcompeted again on DoL35, e.g., by HT002 and Ligilactobacillus. In cecal digesta, typical 

468 plant glycan-utilizing taxa, like Prevotellaceae genera and Succinivibro (Tan and Nie, 2020), 

469 became dominating on DoL31 and 35. Regarding the fungal community, especially 

470 Kazachstania seemed to be promoted by postweaning gastric and cecal conditions, potentially 

471 benefiting from increased glucose release from starch fermentation or mucosal glycolysis. 

472 From the abundance of pathobionts, the increase in Campylobacter in cecal digesta 

473 postweaning may be worth mentioning. By contrast, the gut conditions postweaning seemed to 

474 lower the abundance of classified mold and ergot fungi in gastric and cecal digesta. The piglets 

475 from which the gut samples were collected were not diarrhetic. This may be the reason for the 

476 few relationships between cecal microbial genera and fecal consistency on DoL30. Piglets had 

477 firm feces on DoL30; accordingly, they only moderately correlated with three starch-
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478 fermenting and short-chain fatty acid-producing bacteria which included Holdemanella, 

479 Turicibacter and Odoribacter but not Campylobacter. On DoL34, only the positive association 

480 between fecal score and Clostridium sensu stricto 1 may relate softer feces to bacterial toxins. 

481 The other positive correlations with bacterial taxa (e.g., Prevotellaceae NK3B31 group, 

482 Prevotellaceae UCG-001 and Terrisporobacter) may have been indicative for increased 

483 complex carbohydrate fermentation and short-chain fatty acid production in the large intestine, 

484 which are osmotically active and increase the fecal water content (Amat et al., 2020; Niu et al., 

485 2023). The three identified positive correlations of the fecal score with fungi were only with 

486 low abundant genera. Nevertheless, as these taxa were mold and plant pathogenic fungi, an 

487 activation of secretory functions in the large intestine may be thinkable. 

488 In conclusion, this study demonstrated that progressing lactation affected bacterial and fungal 

489 community structure and bacterial richness in sows. Our results also support that sow feces 

490 were a contributing source of microbes for the gut colonization of piglets, as indicated by the 

491 shared bacterial and fungal taxa in sow feces and in the gastric and cecal digesta of piglets. We 

492 could identify microbial taxa in cecal digesta that associated with the fecal scores on DoL30 

493 and DoL34. However, the feces were firm to soft but not liquid diarrhea. Therefore, the 

494 relationships miss information for a low gut homeostatic state postweaning. 

495

496 DISCLOSURES

497 All authors declare no conflict of interest other than the fact that BIOMIN Holding, which is 

498 part of dsm-firmenich provided partial funding for this research but had no influence on data 

499 analysis, data interpretation and preparation of the manuscript

500

501 ACKNOWLEDGEMENTS

Page 22 of 44

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Journal of Animal Science



For Peer Review

23

502 This research was supported by the Austrian Federal Ministry for Digital and Economic Affairs 

503 and the National Foundation for Research, Technology and Development. BIOMIN Holding 

504 GmbH, which is part of dsm-firmenich, financially supported the Christian Doppler Laboratory 

505 for Innovative Gut Health Concepts of Livestock. We thank J. Ehmig, T. Enzinger (Clinical 

506 Department for Farm Animals and Food Systems Science), S. Posseth and T. Strini (VetFarm) 

507 for their excellent help with laboratory analysis, animal caretaking and assistance during 

508 sampling. The first author thanks Austria's Agency for Education and Internationalization, 

509 Mobility Programs and Cooperation (OeAD-GmbH) in cooperation with the ASEAN–

510 European Academic University Network for awarding the Ernst-Mach-ASEA UNINET 

511 scholarship, which is fully funded by the Austrian Federal Ministry of Education, Science and 

512 Research (BMBWF).

513

514 LITERATURE CITED

515 Amat, S., H. Lantz, P. M. Munyaka, and B. P. Willing. 2020. Prevotella in pigs: The positive 

516 and negative associations with production and health. Microorganisms. 8:1584. 

517 doi:10.3390/microorganisms8101584. 

518 Callahan, B. J., P. J. McMurdie, M. J. Rosen, A. W. Han, A. J. A. Johnson, and S. P. Holmes. 

519 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. 

520 Methods. 13:581–583. doi:10.1038/nmeth.3869. 

521 Chen, X., J. Xu, E. Ren, Y. Su, and W. Zhu. 2018. Co-occurrence of early gut colonization in 

522 neonatal piglets with microbiota in the maternal and surrounding delivery environments. 

523 Anaerobe. 49:30–40. doi:10.1016/j.anaerobe.2017.12.002.

524 Coufal-Majewski, S., K. Stanford, T. McAllister, B. Blakley, J. McKinnon, A. V. Chaves, 

525 and Y. Wang. 2016. Impacts of cereal ergot in food animal production. Front. Vet. Sci. 3. 

526 doi:10.3389/fvets.2016.00015.

Page 23 of 44

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Journal of Animal Science



For Peer Review

24

527 Deligeorgakis, C., C. Magro, A. Skendi, H. H. Gebrehiwot, V. Valdramidis, and M. 

528 Papageorgiou. 2023. Fungal and toxin contaminants in cereal grains and flours: systematic 

529 review and meta-analysis. Foods. 12:4328. doi:10.3390/foods12234328.

530 Everaert, N., S. Van Cruchten, B. Weström, M. Bailey, C. Van Ginneken, T. Thymann, and 

531 R. Pieper. 2017. A review on early gut maturation and colonization in pigs, including 

532 biological and dietary factors affecting gut homeostasis. Anim. Feed Sci. Technol. 233:89–

533 103. doi:10.1016/j.anifeedsci.2017.06.011.

534 García-Alija, M., J. J. Du, I. Ordóñez, A. Diz-Vallenilla, A. Moraleda-Montoya, N. Sultana, 

535 C. G. Huynh, C. Li, T. C. Donahue, L.-X. Wang, B. Trastoy, E. J. Sundberg, and M. E. 

536 Guerin. 2022. Mechanism of cooperative N-glycan processing by the multi-modular 

537 endoglycosidase EndoE. Nat. Commun. 13:1137. doi:10.1038/s41467-022-28722-w.

538 Harlow, K., K. L. Summers, W. T. Oliver, J. E. Wells, M. Crouse, B. W. Neville, L. A. 

539 Rempel, I. Rivera, T. G. Ramsay, and C. P. Davies. 2024. Weaning transition, but not the 

540 administration of probiotic candidate Kazachstania slooffiae, shaped the gastrointestinal 

541 bacterial and fungal communities in nursery piglets. Front. Vet. Sci. 10:1–22. 

542 doi:10.3389/fvets.2023.1303984.

543 Hu, J., J. Chen, Q. Hou, X. Xu, J. Ren, L. Ma, and X. Yan. 2023. Core-predominant gut 

544 fungus Kazachstania slooffiae promotes intestinal epithelial glycolysis via lysine 

545 desuccinylation in pigs. Microbiome. 11:31. doi:10.1186/s40168-023-01468-3.

546 Jang, K. B., and S. W. Kim. 2022. Role of milk carbohydrates in intestinal health of nursery 

547 pigs: A review. J. Anim. Sci. Biotechnol. 13:6. doi:10.1186/s40104-021-00650-7.

548 Jašarević, E., C. D. Howard, A. M. Misic, D. P. Beiting, and T. L. Bale. 2017. Stress during 

549 pregnancy alters temporal and spatial dynamics of the maternal and offspring microbiome in 

550 a sex-specific manner. Sci. Rep. 7:1–13. doi:10.1038/srep44182.

551 Jost, T., C. Lacroix, C. P. Braegger, F. Rochat, and C. Chassard. 2014. Vertical mother–

Page 24 of 44

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Journal of Animal Science



For Peer Review

25

552 neonate transfer of maternal gut bacteria via breastfeeding. Environ. Microbiol. 16:2891–

553 2904. doi:10.1111/1462-2920.12238.

554 Kajla, P., A. Sharma, and D. R. Sood. 2015. Flaxseed—a potential functional food source. J. 

555 Food Sci. Technol. 52:1857–1871. doi:10.1007/s13197-014-1293-y.

556 Karimi, K., and A. Zamani. 2013. Mucor indicus: Biology and industrial application 

557 perspectives: A review. Biotechnol. Adv. 31:466–481. doi:10.1016/j.biotechadv.2013.01.009.

558 Kondybayev, A., N. Achir, C. Mestres, I. Collombel, C. Strub, J. Grabulos, N. 

559 Akhmetsadykov, A. Aubakirova, U. Kamidinkyzy, W. Ghanmi, and G. Konuspayeva. 2023. 

560 Growth kinetics of Kazachstania unispora and its interaction with lactic acid bacteria during 

561 qymyz production. Fermentation. 9. doi:10.3390/fermentation9020101.

562 Lerch, F., F. Yosi, J. C. Vötterl, S. Koger, J. Ehmig, S. Sharma, D. Verhovsek, and B. U. 

563 Metzler-Zebeli. 2023. An insight into the temporal dynamics in the gut microbiome, 

564 metabolite signaling, immune response, and barrier function in suckling and weaned piglets 

565 under production conditions. Front. Vet. Sci. 10. doi:10.3389/fvets.2023.1184277. 

566 Liew, W.-P.-P., and S. Mohd-Redzwan. 2018. Mycotoxin: Its impact on gut health and 

567 microbiota. Front. Cell. Infect. Microbiol. 8. doi:10.3389/fcimb.2018.00060. 

568 Lu, D., Y. Pi, H. Ye, Y. Wu, Y. Bai, S. Lian, D. Han, D. Ni, X. Zou, J. Zhao, S. Zhang, B. 

569 Kemp, N. Soede, and J. Wang. 2022. consumption of dietary fiber with different 

570 physicochemical properties during late pregnancy alters the gut microbiota and relieves 

571 constipation in sow model. Nutrients. 14:2511. doi:10.3390/nu14122511.

572 Luo, Y., J. Li, H. Zhou, B. Yu, J. He, A. Wu, Z. Huang, P. Zheng, X. Mao, J. Yu, H. Li, H. 

573 Wang, Q. Wang, H. Yan, and D. Chen. 2021. The nutritional significance of intestinal fungi: 

574 alteration of dietary carbohydrate composition triggers colonic fungal community shifts in a 

575 pig model. Appl. Environ. Microbiol. 87:1–19. doi:10.1128/AEM.00038-21. 

576 Ma, J., Z. Zhang, Z. Pan, Q. Bai, X. Zhong, Y. Zhu, Y. Zhang, Z. Wu, G. Liu, and H. Yao. 

Page 25 of 44

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Journal of Animal Science



For Peer Review

26

577 2020. Streptococcus suis uptakes carbohydrate source from host glycoproteins by n-glycans 

578 degradation system for optimal survival and full virulence during infection. Pathogens. 9:1–

579 15. doi:10.3390/pathogens9050387.

580 Mann, E., S. Schmitz-Esser, Q. Zebeli, M. Wagner, M. Ritzmann, and B. U. Metzler-Zebeli. 

581 2014. Mucosa-associated bacterial microbiome of the gastrointestinal tract of weaned pigs 

582 and dynamics linked to dietary calcium-phosphorus. PLoS One. 9:e86950. 

583 doi:10.1371/journal.pone.0086950.

584 Mapuranga, J., J. Chang, and W. Yang. 2022. Combating powdery mildew: Advances in 

585 molecular interactions between Blumeria graminis f. sp. tritici and wheat. Front. Plant Sci. 

586 13:1–19. doi:10.3389/fpls.2022.1102908.

587 McCormack, U. M., T. Curião, T. Wilkinson, B. U. Metzler-Zebeli, H. Reyer, T. Ryan, J. A. 

588 Calderon-Diaz, F. Crispie, P. D. Cotter, C. J. Creevey, G. E. Gardiner, and P. G. Lawlor. 

589 2018. Fecal microbiota transplantation in gestating sows and neonatal offspring alters lifetime 

590 intestinal microbiota and growth in offspring. mSystems. 3:1–20. 

591 doi:10.1128/mSystems.00134-17.

592 Metzler-Zebeli, B. U., F. Lerch, F. Yosi, J. Vötterl, J. Ehmig, S. Koger, and D. Verhovsek. 

593 2023. Temporal microbial dynamics in feces discriminate by nutrition, fecal color, 

594 consistency and sample type in suckling and newly weaned piglets. Animals. 13:2251. 

595 doi:10.3390/ani13142251. 

596 National Research Council (NRC). 2012. Nutrient Requirements of Swine. 10th ed. National 

597 Academy Press, Washington, DC, USA.

598 Nilsson, R. H., K.-H. Larsson, A. F. S. Taylor, J. Bengtsson-Palme, T. S. Jeppesen, D. 

599 Schigel, P. Kennedy, K. Picard, F. O. Glöckner, L. Tedersoo, I. Saar, U. Kõljalg, and K. 

600 Abarenkov. 2019. The UNITE database for molecular identification of fungi: handling dark 

601 taxa and parallel taxonomic classifications. Nucleic Acids Res. 47:D259–D264. 

Page 26 of 44

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Journal of Animal Science



For Peer Review

27

602 doi:10.1093/nar/gky1022. 

603 Niu, J., X. Liu, J. Xu, F. Li, J. Wang, X. Zhang, X. Yang, L. Wang, S. Ma, D. Li, X. Zhu, C. 

604 Wang, Y. Shi, and Y. Cui. 2023. Effects of silage diet on meat quality through shaping gut 

605 microbiota in finishing pigs. Microbiol. Spectr. 11. doi:10.1128/spectrum.02416-22. 

606 Nowland, T., K. Plush, M. Barton, and R. Kirkwood. 2019. Development and function of the 

607 intestinal microbiome and potential implications for pig production. Animals. 9:76. 

608 doi:10.3390/ani9030076.

609 Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. 

610 Simpson, P. Sólymos, M. H. H. Stevens, and H. Wagner. 2022. vegan: Community Ecology 

611 Package R Package Version 2.6–4. 

612 Pérez, J. C. 2021. The interplay between gut bacteria and the yeast Candida albicans. Gut 

613 Microbes. 13:1–11. doi:10.1080/19490976.2021.1979877. 

614 Pietrusińska, A., and A. Tratwal. 2020. Characteristics of powdery mildew and its importance 

615 for wheat grown in Poland. Plant Prot. Sci. 56:141–153. doi:10.17221/99/2019-PPS.

616 Quast, C., E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer, P. Yarza, J. Peplies, and F. O. 

617 Glöckner. 2012. The SILVA ribosomal RNA gene database project: improved data 

618 processing and web-based tools. Nucleic Acids Res. 41:D590–D596. 

619 doi:10.1093/nar/gks1219.

620 Summers, K. L., J. Foster Frey, and A. M. Arfken. 2021. Characterization of Kazachstania 

621 slooffiae, a proposed commensal in the porcine gut. J. Fungi. 7:146. doi:10.3390/jof7020146.

622 Sun, Y., L. Zhou, L. Fang, Y. Su, and W. Zhu. 2015. Responses in colonic microbial 

623 community and gene expression of pigs to a long-term high resistant starch diet. Front. 

624 Microbiol. 6:1–10. doi:10.3389/fmicb.2015.00877. 

625 Tan, H., and S. Nie. 2020. Deciphering diet-gut microbiota-host interplay: Investigations of 

626 pectin. Trends Food Sci. Technol. 106:171–181. doi:10.1016/j.tifs.2020.10.010.

Page 27 of 44

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Journal of Animal Science



For Peer Review

28

627 Trachsel, J., C. Briggs, N. K. Gabler, H. K. Allen, and C. L. Loving. 2019. Dietary resistant 

628 potato starch alters intestinal microbial communities and their metabolites, and markers of 

629 immune regulation and barrier function in swine. Front. Immunol. 10:1–13. 

630 doi:10.3389/fimmu.2019.01381. 

631 Trochine, A., N. Bellora, P. Nizovoy, R. Duran, G. Greif, V. de García, C. Batthyany, C. 

632 Robello, and D. Libkind. 2022. Genomic and proteomic analysis of Tausonia pullulans 

633 reveals a key role for a GH15 glucoamylase in starch hydrolysis. Appl. Microbiol. 

634 Biotechnol. 106:4655–4667. doi:10.1007/s00253-022-12025-7.

635 Umu, Ö. C. O., J. A. Frank, J. U. Fangel, M. Oostindjer, C. S. da Silva, E. J. Bolhuis, G. 

636 Bosch, W. G. T. Willats, P. B. Pope, and D. B. Diep. 2015. Resistant starch diet induces 

637 change in the swine microbiome and a predominance of beneficial bacterial populations. 

638 Microbiome. 3:16. doi:10.1186/s40168-015-0078-5. 

639 Valeriano, V. D. V., M. P. Balolong, and D.-K. Kang. 2017. Probiotic roles of Lactobacillus 

640 sp. in swine: insights from gut microbiota. J. Appl. Microbiol. 122:554–567. 

641 doi:10.1111/jam.13364.

642 Wang, K., V. Espinosa, and A. Rivera. 2023. Commander-in-chief: monocytes rally the 

643 troops for defense against aspergillosis. Curr. Opin. Immunol. 84:102371. 

644 doi:10.1016/j.coi.2023.102371.

645 Xie, X., C. Yang, L. L. Guan, J. Wang, M. Xue, and J. X. Liu. 2018. Persistence of 

646 cellulolytic bacteria Fibrobacter and Treponema after short-term corn stover-based dietary 

647 intervention reveals the potential to improve rumen fibrolytic function. Front. Microbiol. 9:1–

648 15. doi:10.3389/fmicb.2018.01363. 

649 Yeh, Y.-W., P.-Y. Chou, H.-Y. Hou, and R. Kirschner. 2021. First records of powdery 

650 mildew fungi (Erysiphales) on medicinal plants in Taiwan. Bot. Stud. 62:1. 

651 doi:10.1186/s40529-020-00307-0.

Page 28 of 44

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Journal of Animal Science



For Peer Review

29

652 Zaman, S., M. Gohar, H. Kanwal, A. Chaudhary, and M. Imran. 2022. Impact of probiotic 

653 Geotrichum candidum QAUGC01 on health, productivity, and gut microbial diversity of 

654 dairy cattle. Curr. Microbiol. 79:376. doi:10.1007/s00284-022-03074-2. 

655 Zhang, Q., R. Vasquez, J. M. Yoo, S. H. Kim, D.-K. Kang, and I. H. Kim. 2022. Dietary 

656 supplementation of Limosilactobacillus mucosae LM1 enhances immune functions and 

657 modulates gut microbiota without affecting the growth performance of growing pigs. Front. 

658 Vet. Sci. 9:1–12. doi:10.3389/fvets.2022.918114.

659 Zúñiga, M., V. Monedero, and M. J. Yebra. 2018. Utilization of host-derived glycans by 

660 intestinal Lactobacillus and Bifidobacterium species. Front. Microbiol. 9:1–23. 

661 doi:10.3389/fmicb.2018.01917. 

Page 29 of 44

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Journal of Animal Science



For Peer Review

30

662 Figure legends

663 Figure 1. Non-metric multidimensional scaling (NMDS) plot of pairwise Bray–Curtis 

664 dissimilarities between communities of bacteriome (A) and mycobiome (B) in sow feces across 

665 days postpartum (DPP) and in the gastric and cecal digesta of piglets across days of life (DoL). 

666 Ellipses represent the standard deviation. Feces on DPP3 (dark blue), 7 (yellow), 14 (green), 

667 21 (purple), and 28 (dark gray). Gastric digesta on DoL3 (green), 7 (purple), 14 (red), 21 (blue), 

668 and 28 (gray). Cecal digesta on DoL3 (red), 7 (blue), 14 (dark gray), 21 (dark blue), and 28 

669 (yellow). Weaning took place on DoL28. Number 1 indicates sow feces, 2 is piglet’s gastric 

670 digesta, and 3 is piglet’s cecal digesta.

671 Figure 2. Differences in relative abundance (%) of bacterial (> 0.2% of all reads; A) and fungal 

672 (> 0.05% of all reads; B) genera in sow feces across days postpartum. Weaning took place on 

673 day 28 postpartum. Effect (P < 0.05) of day postpartum is indicated by ‘*’.

674 Figure 3. Differences in the relative abundance (%) of bacterial genera (> 0.2% of all reads) 

675 in gastric (A) and cecal (C) digesta as well as fungal genera (> 0.05% of all reads) in gastric 

676 (B) and cecal (D) digesta of suckling and newly weaned piglets across days of life. Weaning 

677 took place on day 28 of life. Effect (P < 0.05) of day of life is indicated by ‘*’. 

678 Figure 4. Differences in fecal scores of weaned piglets between days 30 and 34 of life (A) and 

679 Pearson’s correlation heat map showing significant associations (P < 0.05) of fecal scores with 

680 cecal bacterial genera (B) of weaned piglets on day 30 of life, as well as with cecal fungal (C) 

681 and bacterial (D) genera on day 34 of life. The fecal scoring system consisted of 0 (balls 

682 normal), 1 (shaped soft), 2 (pasty), 3 (shaped very soft), 4 (mild diarrhea), and 5 (watery 

683 diarrhea). Piglets were weaned on day 28 of life. Fecal score values are least squares means 

684 and standard error of the mean.
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5. GENERAL DISCUSSION

5.1. Advantages of using multiple experimental models in this PhD thesis

In order to gain a comprehensive understanding of the complex interactions between gut

microbes and the host in monogastric farm animals, in particular in chickens and pigs, three

complementary experimental models were used in this thesis: ex vivo (manuscript 1), in vivo

(manuscript 3) and meta-analytical (manuscript 2) models.

In recent years, various techniques and gut models have been developed to simulate the in

vivo environment of animals. This is done to gain a better understanding of animal gut

physiology and to find ways to improve animal welfare, gut health, and production outcomes.

Among the models available, the ex vivo model has been widely adopted. This model refers to

experiments performed directly on animal-derived tissues (Shi et al., 2019). Ex vivo models

provide a more detailed description of the mechanisms and interactions between gut microbes

and hosts in the gastrointestinal tract (Ghiselli et al., 2021). Ex vivo models offer advantages

as "screening" devices or techniques to investigate mechanisms that may help explain in vivo

results. Thus, ex vivo techniques can provide a simplified and controlled way to elucidate

specific interactions involving gut tissues, microbes, and their metabolites (Ghiselli et al.,

2021). By implementing Ussing chamber and organ bath techniques, the primary objective of

the current ex vivo experiments were to assess whether short chain fatty acids (SCFA) at

different acetate: butyrate ratios and concentrations can improve intestinal barrier function in

chickens. In addition, this ex vivo study is also useful to confirm whether SCFA exhibit the

same mechanism as demonstrated in previous studies in other animals to modify intestinal

contractibility, particularly in the jejunum and cecum using laying hens as an animal model.

In addition to ex vivo models, in vivo experiments were also conducted for this thesis. In vivo

experiments are preferred because, unlike ex vivo models, they represent a complete living

biological system (Xu et al., 2021). In vivo studies are also crucial because they allow

experiments on intact organisms that embody complex interactions between different

physiological processes (Xu et al., 2021). Therefore, this model can provide relevant

information on gut microbe-mucosa interactions, mechanisms of action, and interactions with

organ systems. In the current in vivo study, sows and suckling and weaned piglets were used

as animal models. This in vivo study had several objectives. The first was to obtain detailed

information on the evolution of bacteria and fungi in sow feces during lactation, which has been

little described before. The second was to obtain information on the development of gastric

and cecal microbes, especially fungi, in suckling and newly weaned piglets, which has not been

studied in detail, and then to assess whether this development was driven by maternal fecal
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microbes. The third was to assess bacterial and fungal taxa in cecal digesta of the piglets

postweaning that were associated with the fecal consistency. This could identify potential

candidate bacterial and fungal markers for soft and firm feces as indicators of lower and higher

gut homeostatic conditions after weaning. The last model included in the thesis is a meta-

analysis. The main target of this meta-analysis was to obtain valid conclusions on the different

results of direct-fed microbial (probiotic) studies, including parameters such as expression of

genes related to gut barrier and immune functions, histomorphological measurements and

growth performance in broiler chickens. To gain a better understanding of probiotic efficacy,

the analysis separated studies with and without pathogen challenge. Additionally, it is

important to consider other factors, such as dietary metabolizable energy (ME), crude protein

(CP), and days post-pathogen infection (DPI) when evaluating the efficacy of probiotics.

Altogether, by implementing three complementary study models, i.e., ex vivo, in vivo, and

meta-analysis in this PhD thesis, a more comprehensive overview of the role of SCFA,

maternal microbes and probiotics on the development of gut microbes and their interactions

with the host, particularly chickens and piglets, was obtained.

5.2. The present ex-vivo study supports the modulating effect of short-chain fatty

acids on intestinal barrier function and contractibility in chickens

Gut microbes and their metabolites have been shown to affect chicken gut health in vivo,

including modulating intestinal barrier function (Ali et al., 2022). This is indicated, for example,

by a change in the expression of genes related to metabolite transporters, such as sodium

monocarboxylate transporters, which function to transport SCFA into epithelial cells (Ali et al.,

2022). Unfortunately, studies to clarify the transport mechanism of SCFA in the chicken

gastrointestinal tract are still limited. In other animals, such as mice, ex vivo studies using the

Ussing chamber have been performed and have shown that SCFA is able to modify net ion

flux and intestinal permeability (Larraufie et al. 2017; Blakeney et al. 2019). However, the

modulating effects of these factors on the chicken intestine, whether they are the same or not,

have not been investigated. The present Ussing chamber experiment showed that both more

butyrate and higher SCFA concentrations led to an increase in mucosal-serosal cation flux

and improved barrier function in the jejunum (manuscript 1). The increase in cation flux is likely

related to the activation of sodium monocarboxylate transporters expressed at the apical

membrane of the small intestine (Sivaprakasam et al. 2017; Metzler-Zebeli et al. 2019b). In

addition to intestinal barrier function, intestinal contractibility (i.e., jejunal and cecal segments)

was also investigated using organ bath. The peristaltic motility in the intestinal tract depends
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on the contraction and relaxation of intestinal smooth muscle (Röhm et al., 2021). The present

study confirmed that higher butyrate and SCFA concentrations promoted cecal contractibility

(manuscript 1), which might help in mixing and emptying the cecal contents in vivo.

Additionally, another ex vivo study on porcine fetal intestine showed that the addition of SCFA

can reduce jejunal permeability and cause muscle relaxation in fetal jejunal tissue (Metzler-

Zebeli et al., 2022). In conclusion, the present ex vivo study confirmed the modulatory effects

of short-chain fatty acids on intestinal barrier function and contractability, whereby increasing

butyrate proportion and SCFA concentration improved jejunal barrier function and stimulated

cecal muscle contractibility in laying hens.

5.3. Microbial dynamics of sow feces during lactation and its contribution to the

establishment of intestinal colonization in neonatal piglets

Sow feces are one of the sources of microbial colonization of the postnatal piglet gut (Li et al.,

2022). A recent study showed that access to maternal feces could improve piglet immune

competence and growth performance (Aviles-Rosa et al., 2019). To date, some studies have

investigated the influence of maternal microbes, including feces, on microbial development in

piglets (Chen et al., 2022b; Lim et al., 2023). However, they focused more on the dynamics of

bacterial communities in fecal samples. Information is still lacking on the development of the

other microbial communities, especially fungi, in sows during lactation and their contribution to

the development of microbial communities in neonatal piglets. The present study showed that

bacterial and fungal communities were separately clustered between sows and piglets, as well

as between ages (i.e., day postpartum/DPP and day of life/DoL) and gut segments (i.e., feces,

stomach, and cecum) (manuscript 3). In sow feces, bacterial diversity increased from DPP1 to

6 but then decreased to DPP27, whereas fungal abundance and diversity decreased from

DPP1 to 13 but increased thereafter until the last day of lactation. In piglets, bacterial and

fungal diversity in the gastric digesta decreased from DoL14 to 31 and from DoL28 to 35,

respectively. In the cecal digesta, richness and diversity of the bacterial and fungal

communities were affected differently by age. This is consistent with a previous study

describing age to be the dominant factor leading to variation in the porcine gut microbiome

(Gaire et al., 2023). Furthermore, shared bacterial and fungal taxa were found in the feces of

lactating sows and in the gastric and cecal digesta of suckling piglets, suggesting that microbes

in sow feces contribute to the gut colonization of newborn piglets.

In terms of bacterial communities, Lactobacillus and Streptococcus were the predominant

genera in sow feces during lactation. In piglets, the gastric digesta was dominated by
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Streptococcus and genera from the family Lactobacillaceae, such as Lactobacillus,

Limosilactobacillus, HT002, and Ligilactobacillus. The dominant bacteria in the cecal digesta

were more diverse, such as Lactobacillus, Fusobacterium, Prevotella, and Bacteroides, which

belonged to several families. The high abundance of Lactobacillaceae genera is beneficial to

gut health as they regulate the immune system, increase metabolic capacity, and enhance

barrier function (Chen et al., 2018; Zhang et al., 2022). The increased lactic acid-producing

bacteria, e.g., Lactobacillus, are also beneficial to eliminate harmful microbes by lowering the

intestinal pH and produce SCFA through a cross-feeding mechanism (Foushe et al., 2016;

Vasquez et al., 2022). The increased Ligilactobacillus after weaning may be useful to modulate

innate immune responses in piglets (Indo et al., 2021). The higher abundance of

Streptococcus, Bacteroides, and Prevotella increased utilization of dietary or host-related

glycans (Guevarra et al., 2018; Ma et al., 2020).

For the fungal communities, Kazachstania and Tausonia were the most abundant genera in

sow feces during lactation. In piglets, both gastric and cecal digesta were dominated by

Kazachstania, Tausonia, Candida, and Fungi genus Incertae sedis. Kazachstania is a

commensal yeast in the pig intestine (Summers et al., 2021) and, together with Tausonia,

utilizes dietary or host-derived sugars (Kondybayev et al., 2023). Previous research has shown

that Kazachstania is symbiotic with beneficial bacteria, such as Lactobacillus and Prevotella,

and provides amino acids as an energy source for microbial and piglet growth (Summers et

al., 2021). It is possible that other fungal genera may also have a symbiotic relationship with

other beneficial bacteria, but more research is needed to confirm this assumption. As

opportunistic fungi (Pérez, 2021), the presence of Candida in the intestinal digesta of piglets

should be monitored as they may act as pathogens under certain circumstances. After

evaluating the postweaning feces, we found that the firm to soft feces correlated with certain

bacteria and fungi in the cecal digesta, including starch-, fiber-, and protein-degrading bacterial

genera as well as plant-pathogenic and mold fungi.

In conclusion, the present in vivo study demonstrated that the bacterial and fungal communities

in sow feces changed during lactation and contributed to gut colonization of the neonatal

piglets. Therefore, it is important to monitor the microbial composition of sow feces when

conducting gut microbiome studies in suckling piglets. It is also crucial to consider the role of

fungi, not only bacteria, and their potential symbiosis when studying the gut microbiome in

newborn piglets.
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5.4. A meta-analysis confirms the efficacy of dietary probiotics in improving gut health

in chickens at the gene and structural levels

Data published in the literature over the past few decades regarding the beneficial effects of

dietary probiotics on gut health and growth performance in broiler chickens have been

inconsistent. The present meta-analysis was conducted in two steps, including meta-

regression and backward elimination analysis. This procedure was advantageous in that we

could first identify parameters that were positively or negatively influenced by probiotics. In the

second step, we used backward elimination analysis to assess whether other factors

influenced the effect of probiotics. After the initial process, we selected studies that investigated

the effect of dietary probiotics on the expression of genes related to intestinal barrier and

immune function as the primary parameters for this meta-analysis. From the selected studies,

we also extracted data related to histomorphological measures and growth performance as

additional parameters. To better understand the effects of probiotics on the observed

parameters, we categorized studies into those with and without pathogen challenge. The study

included a total of 9 probiotic genera: Bacillus, Lactobacillus, Enterococcus, Clostridium,

Pediococcus, Bifidobacterium, Paenibacillus, Streptococcus, and Saccharomyces.

The present meta-regression showed that dietary probiotics may effectively improve intestinal

barrier function by upregulating the expression of genes for mucins and tight junction proteins

in the small intestine under non-pathogen-challenged conditions (manuscript 2). The increase

in mucin expression indicates an increased mucus layer produced by goblet cells, which serves

as a physical barrier to protect the intestinal epithelium from harmful microbes

(Duangnumsawang et al., 2021). Likewise, the upregulation of tight junction proteins indicates

improved regulation of paracellular permeability across the intestinal epithelium (Awad et al.,

2017). Under conditions of pathogen and mycotoxin challenge, probiotics not only enhanced

intestinal barrier function but also exerted anti-inflammatory effects by modulating cytokine

expression in the small intestine and ceca. Enhancing immune function during pathogen

infection is desirable because it can help fight disease and reduce the risk of death (Song et

al., 2021). Additionally, dietary probiotics have been demonstrated to improve

histomorphological measures of the small intestine at certain ages, which may improve the

absorption and secretion processes of the small intestinal epithelium (Fathima et al., 2022).

Unfortunately, the current meta-analysis did not find evidence supporting the effect of

probiotics on growth performance in broiler chickens, such as feed intake, body weight gain,

and feed conversion.
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The backward elimination analysis included three additional predictors: levels of dietary

metabolizable energy (ME) and crude protein (CP), and days post-infection (DPI), particularly

in challenge studies. Based on our analysis, we discovered that feeding probiotics to diets

with higher ME and CP reduced their efficacy in promoting gut immune and barrier function-

related gene expression. However, it has a positive impact on histomorphological parameters.

Higher dietary levels of ME and CP have been shown to decrease the number of butyric

acid-producing bacteria while increasing the number of gram-negative and proteolytic bacteria

(Zhang et al., 2020b; Xi et al., 2022). This shift in bacterial populations may lead to

inflammation and ultimately affect gene expression. Additionally, the observed

histomorphological changes may be attributed to the potential effect of probiotics on the growth

and proliferation of intestinal epithelial cells. The results further showed that the longer the

DPI, the higher the expression of genes that improved intestinal immune and barrier function,

possibly due to the sufficient time needed for cells to recover after pathogen infection.

In conclusion, this meta-analysis supports the idea that dietary probiotics have a beneficial

effect on gut barrier function and structure in broiler chickens. Additionally, probiotics also

effectively improved immune function during pathogen challenge. When investigating

probiotics, it is important to consider the levels of dietary metabolizable energy and crude

protein, as they greatly affect the efficacy of probiotics.

5.5. Limitations of each experimental model used in this PhD thesis

5.5.1. Ex vivo model

The ex vivo models offer the advantage of serving as a screening tool to investigate

mechanisms to reduce the number of in vivo trials. Nevertheless, there are limitations to the

ex vivo studies, both in the Ussing chamber and organ bath, which are described below:

In the present ex vivo studies, only the jejunum and cecum were examined due to their

important role in birds. The jejunum, as the longest part of the intestine, is critical for nutrient

assimilation, while the cecum has the highest microbial activity (Oakley et al. 2014; Metzler-

Zebeli et al. 2019). In addition, these segments are less studied than others. For a more

comprehensive overview, it is recommended that future measurements be performed in other

parts of the gastrointestinal tract, including the stomach. This is because tissues from different

segments of the gut may elicit different physiological responses (Metzler-Zebeli et al. 2017b).

In addition, we did not have the opportunity to examine the signaling pathways involved in

muscle contraction in more detail, which should be done in a future study. Theoretically, there

are several activation pathways that could mediate the effects of SCFA, including activation of
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transcription factors or G protein receptors that have different affinities for different SCFA

(Kumar et al., 2020). Therefore, these activation routes should be followed at the molecular

level. Another limitation of the current ex vivo experiment is that it was not possible to

determine the extent to which SCFA affect longitudinal and circular smooth muscle

contractions in the jejunum and cecum, both of which play an important role in controlling

intestinal peristaltic motility (Röhm et al., 2021). A previous study examined the effects of SCFA

on circular and longitudinal smooth muscle contractions in the canine colon (McManus et al.,

2002), which may serve as a reference for further research.

In conclusion, to improve our understanding of the modulatory effects of SCFA on

gastrointestinal barrier function and contractibility, it is recommended that results from Ussing

chamber and organ bath experiments be supported by additional experiments and gene-level

laboratory analyses, especially for receptors or transporters associated with SCFA.

5.5.2. In vivo model

As previously stated, in vivo studies have confirmed that the microbial community in sow feces

undergoes changes during lactation. Additionally, maternal fecal microbes contribute to the

age-specific gut colonization of suckling piglets. This is evidenced by the similarity of certain

bacterial and fungal taxa in sow feces and piglet gastric and cecal contents (manuscript 3).

Similar to the ex vivo experiments, the current in vivo study of the mother-offspring axis in

establishing gut microbial colonization in newborn piglets also has limitations. These limitations

are discussed below:

The present in vivo study did not examine whether the development of microbial communities

from other sources in sows, such as vagina, skin surface, and colostrum/milk, followed the

same pattern as feces. As these maternal sources also contribute to the postnatal colonization

of the piglet gut (Jost et al., 2014), it is recommended that this study be conducted in the future.

Apart from sows, other microbial sources that may influence piglet’s gut colonization, such as

environmental aspects and handling by farm personnel (Chen et al., 2018b), are also worth

investigating to gain a holistic understanding of piglet microbial development during the

suckling and early postweaning periods. In addition, the study did not investigate how often

piglets consumed sow feces or whether this behavior occurred daily during the suckling period

or was limited to certain ages. As mentioned above, the consistency of piglet feces in the early

postweaning period ranges from hard to soft. Since watery fecal consistency as an indicator of

diarrhea was not found in the current study (Pedersen and Toft, 2011), we could not identify

microbial biomarkers for dysbiotic conditions. Another limitation of the current research is the
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lack of exploration of the impact of changes in piglet gut microbial composition, especially those

driven by sow microbes, on piglet gut function and development. This includes aspects such

as barrier and immune function as well as histomorphological development. Further studies

are needed to investigate these aspects.

In conclusion, sow feces have been shown to play an important role in postnatal colonization

of the piglet gut, but other maternal sources and external factors need to be considered to get

a complete overview of the mother-offspring axis. Additionally, further studies on gut structure

and genes are necessary to better understand gut microbe-mucosal interactions in piglets.

5.5.3. Meta-analysis

A meta-analysis is a statistical technique that combines and synthesizes the results of multiple

studies (Haidich, 2010; Lee, 2019). This method increases the sample size, and thus the

power, to examine the effects of interest by combining the primary studies and providing

precise estimates of those effects. Meta-analyses provide more reliable data than narrative

reviews (Yuan and Hunt, 2009; Lee, 2019). They provide transparent decision making and

objective measures of quantitative evidence through statistical analysis. Meta-analyses can

limit or overcome the biases of narrative reviews (Lee, 2019). The systematic approach and

transparency of meta-analyses help to resolve conflicts and uncertainties between studies,

leading to powerful conclusions (Lee, 2019, Paul and Barari, 2022). However, meta-analyses

have limitations, which are outlined below.

The present meta-analysis only shows general trends for the use of probiotics in chicken feed

(manuscript 2). This is due to the fact that the available data for individual probiotics did not

meet the minimum requirements, therefore single and multi-species probiotic data from

individual studies were combined for the meta-analysis. The same limitation applies to

pathogens and aflatoxins in challenge studies. It is important to remember that meta-analysis

should be avoided when studies are too heterogeneous to be comparable (Lee, 2019), as the

results of meta-analysis may be meaningless, and the true effect may be obscured. Therefore,

it is recommended that this study is re-evaluated in the future as more data become available

for both single-strain and multi-strain probiotics as well as for the specific pathogen.

Before conducting a meta-analysis, it is important to consider the comparability of data to

ensure valid conclusions (Jones et al., 2008; Lee, 2019). To do this, the data must be grouped

accordingly. For example, in this meta-analysis, studies were categorized into pathogen-

challenged and unchallenged groups. Gene expression and histomorphology were analyzed

by intestinal segment and age, while growth performance was separated by stage of rearing.
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Unfortunately, due to data limitations in the included literature, not all histomorphology and

gene expression parameters could be regressed for all intestinal segments and ages of

chickens in both pathogen and non-pathogen challenge groups. Additionally, SCFA, which are

the most important parameter to explain probiotic-host mucosal interaction, could not be

included in the analysis due to insufficient data. It is also important to note that the dependent

variable may be influenced by multiple predictors, not just one. For this reason, to obtain more

accurate prediction, this meta-analysis evaluated other potential predictors in addition to

probiotics, using backward elimination procedures to evaluate dietary metabolizable energy,

crude protein, and days post infection specifically for the pathogen challenge dataset.

Unfortunately, only these three additional predictors could be included due to the lack of data

provided in the literature.

In conclusion, this meta-analysis provides a general trend for the use of different probiotics

and therefore should be verified in the future when more data from the literature become

available. Due to insufficient SCFA data, this study could not verify the mechanism of action of

probiotics in modulating the observed parameters. This study was also less comprehensive

because the datasets did not have complete information on all parts of the intestine and the

ages of the chickens. Therefore, to support future meta-analysis studies, it is important to

provide more information about the experimental design and set-ups in original articles.

5.6. Transferability of the obtained results to the field situation

This thesis uses various methodological approaches to provide a comprehensive

understanding of the role of gut microbes and their metabolites in monogastric farm animals,

specifically chickens and pigs. The present results reinforce previous research and offer

potential practical applications in the field of poultry and swine production. For example, when

SCFA are used as supplemental feed for poultry (e.g., laying hens), it is recommended that

SCFA are provided as a mixture rather than as single SCFA, reflecting their combined

production during microbial fermentation in the gastrointestinal tract. Based on the general

trend of our meta-analysis, dietary supplementation with probiotics may improve intestinal

function and health in broiler chickens, but not growth performance. However, these findings

need to be re-evaluated when more literature is available. The backward elimination analysis

showed that when administering probiotics, farmers should also consider balancing the

nutrients in the diet, including levels of metabolizable energy and crude protein. Excessive

levels of these nutrients may interfere with the effectiveness of probiotics in improving the

function and health of the chicken gut. The information obtained about changes in the maternal



114

microbiome during lactation is useful for formulating diets to specifically increase certain

bacterial and fungal taxa in sow feces to modulate gastrointestinal colonization in neonatal

piglets. It is important for the farmer to monitor the feeding behavior of the piglets, as the

development of gut microbes from suckling to weaning is a dynamic process that is susceptible

to environmental factors. Considering that the study on pigs was conducted under production

conditions, it is more applicable in the field.

5.7. Synopsis and outlook

In general, this PhD thesis focuses on three different topics related to the gut microbiome-host

interplay. First, investigating the local effect of SCFA on gut barrier function and contractibility

in laying hens using ex vivo models. Second, assessing the mother-offspring axis in

establishing gut microbial colonization in suckling and newly weaned piglets using in vivo

models. Third, assessing the modulatory effect of dietary probiotics on gut barrier and immune

response, histomorphology, and growth performance in broiler chickens using a meta-

analytical model. The ex vivo study found that higher proportions of butyrate and SCFA

concentrations could improve jejunal barrier function and enhance cecal muscle contractibility,

which may promote fermentative processes in the cecum, if true in vivo. In the present in vivo

study, there were significant changes in the bacterial and fungal communities in sow feces

during lactation. As the microbes from sow feces were also present in the gastric and cecal

digesta of the suckling piglets, it can be assumed that they contributed to the intestinal

colonization of the piglets. A meta-analysis study confirmed that probiotics may have beneficial

effects on gut integrity and structure in chickens. The effects of probiotics were found to be

influenced by dietary metabolizable energy, crude protein, and days post-infection. However, it

is important to note that this study has limitations and requires further research. For instance,

the current meta-analysis provides only general trends. Therefore, it should be verified in the

future when more data are available for different single and multi-strain probiotics. In addition,

further research is needed toelucidate the signaling pathways of SCFA in modulating intestinal

contractibility. Furthermore, it is necessary to study the effects of changes in the gut bacterial

and fungal communities of neonatal piglets in relation to gut development and function. This

will provide a comprehensive understanding of the interaction between host and gut microbes.

Overall, results from this PhD thesis are useful for dietary strategies to improve gut health in

chickens and suckling piglets. 
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Table S2. Descriptive statistics for predictive and response variables of jejunal and ileal gene expression (fold-change) 

related to barrier function and immune response in broiler chickens at week 3 and 6 of life without pathogen challenge. 

Variable1,2 nTreat Mean SEM Min. Max. Median 

Jejunum, Week 3       
Dietary probiotics (log10 CFU/kg) 17 4.8 1.16 0 11.0 6.6 

Dietary ME (MJ/kg) 17 12.4 0.06 12.1 12.9 12.4 

Dietary CP (%) 17 21.3 0.14 20.5 22.1 21.0 

MUC2 10 1.2 0.13 0.9 2.3 1.0 

ZO1 11 1.1 0.04 0.9 1.4 1.0 

OCLN 13 1.4 0.20 0.9 3.5 1.0 

CLDN1 11 1.2 0.10 0.9 1.9 1.0 

Jejunum, Week 3       
Dietary probiotics (log10 CFU/kg) 22 4.7 0.96 0 11.0 6.8 

Dietary ME (MJ/kg) 22 12.4 0.05 12.1 12.9 12.3 

Dietary CP (%) 22 21.3 0.11 20.5 22.0 21.0 

IL1B 11 1.0 0.04 0.6 1.1 1.0 

IFNG 14 1.0 0.04 0.8 1.4 1.0 

TLR2 11 1.1 0.12 0.7 2.1 1.0 

Jejunum, Week 6       
Dietary probiotics (log10 CFU/kg) 24 5.8 0.95 0 11.0 8.7 

Dietary ME (MJ/kg) 24 13.0 0.06 12.6 13.4 13.2 

Dietary CP (%) 24 19.5 0.15 18.2 20.7 19.3 

MUC2 10 1.8 0.37 1.0 4.5 1.3 

ZO1 14 1.7 0.33 1.0 5.6 1.2 

OCLN 16 1.4 0.18 0.6 3.1 1.0 

CLDN1 12 1.4 0.18 0.5 2.6 1.3 

Ileum, Week 3       
Dietary probiotics (log10 CFU/kg) 13 5.7 1.32 0 11.3 8.0 

Dietary ME (MJ/kg) 13 12.3 0.05 12.1 12.6 12.2 

Dietary CP (%) 13 21.5 0.18 21.0 22.4 21.0 

MUC2 10 2.0 0.64 0.7 7.5 1.0 

ZO1 11 1.2 0.19 0.1 2.3 1.0 

OCLN 13 1.8 0.62 0.7 9.0 1.0 

CLDN1 10 1.3 0.15 0.7 2.2 1.0 

Ileum, Week 6       
Dietary probiotics (log10 CFU/kg) 19 6.2 0.99 0 10.4 8.5 

Dietary ME (MJ/kg) 19 12.9 0.06 12.6 13.3 12.8 

Dietary CP (%) 19 19.4 0.18 18.1 20.7 19.2 

MUC2 15 1.9 0.39 0.7 5.2 1.0 

ZO1 14 2.3 0.63 0.5 8.6 1.0 

OCLN 16 1.3 0.17 0.7 3.4 1.1 
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CLDN1 11 1.5 0.26 0.6 3.1 1.0 

nTreat, number of treatments mean; SEM, standard error of means; Min, minimum; Max, maximum; ME, metabolizable energy; CP, 

crude protein; CFU, colony-forming unit; MUC2, mucin-2; ZO1, zonula occludens-1; OCLN, occludin; CLDN1, claudin-1; IL1B, inter-

leukin-1beta; TLR2, toll-like receptor-2; IFNG, interferon-gamma. 
1Probiotic genera included for these response variables were Bacillus, Bifidobacterium, Lactobacillus, Clostridium, Enterococcus, Pediococ-

cus, Paenibacillus, and Saccharomyces. 
2Data were calculated as log2fold change between probiotic and control treatments and then expressed in fold-change using a loga-

rithmic scale to base 2. 
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Table S3. Descriptive statistics for predictive and response variables of jejunal and ileal histomorphology (fold-change) 

in broiler chickens at week 3 and 6 of life without pathogen challenge. 

Variable1,2 nTreat Mean SEM Min. Max. Median 

Jejunum, Week 3       

Dietary probiotics (log10 CFU/kg) 15 5.0 1.27 0 11.0 6.6 

Dietary ME (MJ/kg) 15 12.5 0.07 12.1 12.9 12.5 

Dietary CP (%) 15 21.3 0.19 19.9 22.1 21.5 

Villus Height 15 1.1 0.04 1.0 1.5 1.0 

Crypt Depth 15 1.0 0.04 0.7 1.3 1.0 

Villus Height/Crypt Depth 15 1.2 0.08 0.9 1.9 1.0 

Jejunum, Week 6       
Dietary probiotics (log10 CFU/kg) 19 5.9 1.08 0 11.0 9.0 

Dietary ME (MJ/kg) 19 12.9 0.06 12.5 13.2 12.9 

Dietary CP (%) 19 19.4 0.16 18.2 20.4 19.2 

Villus Height 19 1.1 0.03 0.9 1.3 1.0 

Crypt Depth 19 1.1 0.04 0.7 1.5 1.0 

Villus Height/Crypt Depth 19 1.0 0.04 0.8 1.5 1.0 

Ileum, Week 3       
Dietary probiotics (log10 CFU/kg) 11 5.1 1.50 0 11.0 8.5 

Dietary ME (MJ/kg) 11 12.4 0.06 12.1 12.7 12.4 

Dietary CP (%) 11 21.6 0.16 21.0 22.1 22.0 

Villus Height 11 1.0 0.03 0.9 1.3 1.0 

Crypt Depth 11 0.9 0.04 0.6 1.1 1.0 

Villus Height/Crypt Depth 11 1.1 0.06 0.9 1.7 1.0 

Ileum, Week 6       
Dietary probiotics (log10 CFU/kg) 17 6.1 1.14 0 11.0 9.0 

Dietary ME (MJ/kg) 17 13.0 0.06 12.6 13.2 13.0 

Dietary CP (%) 17 19.6 0.15 18.9 20.7 19.2 

Villus Height 17 1.1 0.04 0.9 1.5 1.0 

Crypt Depth 17 1.0 0.03 0.7 1.2 1.0 

Villus Height/Crypt Depth 17 1.1 0.04 0.8 1.4 1.1 

nTreat, number of treatments means; SEM, standard error of means; Min, minimum; Max, maximum; ME, metabolizable energy; CP, 

crude protein; CFU, colony-forming unit. 
1Probiotic genera included for these response variables were Bacillus, Bifidobacterium, Lactobacillus, Clostridium, Enterococcus, and Sac-

charomyces. 
2Data were calculated as log2fold change between probiotic and control treatments and then expressed in fold-change using a loga-

rithmic scale to base 2.  
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Table S4. Descriptive statistics for predictors and response variables of growth performance in broiler chickens at 

starter, finisher, and overall periods without pathogen challenge. 

Variable1 nTreat Mean SEM Min. Max. Median 

Starter (1-3 Weeks)       
Dietary probiotics (log10 CFU/kg) 33 5.6 0.80 0 11.0 8.5 

Dietary ME (MJ/kg) 33 12.4 0.03 12.1 12.8 12.5 

Dietary CP (%) 33 21.5 0.13 21.0 23.0 21.1 

ADFI (g) 33 50.2 1.52 35.9 65.3 49.6 

ADG (g) 30 33.7 0.82 25.8 44.6 33.7 

FCR 33 1.5 0.03 1.1 1.8 1.4 

Finisher (4-6 Weeks)       
Dietary probiotics (log10 CFU/kg) 29 5.7 0.86 0 11.0 8.5 

Dietary ME (MJ/kg) 29 12.8 0.04 12.5 13.2 12.8 

Dietary CP (%) 29 19.5 0.11 18.9 20.7 19.2 

ADFI (g) 29 151.8 4.69 105.9 199.7 153.0 

ADG (g) 26 77.6 2.98 51.0 107.2 77.2 

FCR 29 2.0 0.04 1.5 2.3 1.9 

Overall (1-6 Weeks)       
Dietary probiotics (log10 CFU/kg) 32 5.7 0.80 0 11.0 8.5 

Dietary ME (MJ/kg) 32 12.7 0.03 12.3 13.0 12.6 

Dietary CP (%) 32 20.6 0.11 19.7 21.5 20.3 

ADFI (g) 32 100.5 2.79 71.4 132.0 99.5 

ADG (g) 26 56.5 1.57 42.1 71.3 56.7 

FCR 32 1.7 0.02 1.4 2.0 1.7 

nTreat, number of treatments means included; SEM, standard error of means; Min, minimum; Max, maximum; ME, metabolizable 

energy; CP, crude protein; CFU, colony-forming unit; ADFI, average daily feed intake; ADG, average daily weight gain; FCR, feed 

conversion ratio. 
1Probiotic genera included for these response variables were Bacillus, Bifidobacterium, Lactobacillus, Clostridium, Enterococcus, and Sac-

charomyces.  
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Table S5. Descriptive statistics for predictive and response variables of jejunal, ileal, and caecal gene expression (fold-

change) related to barrier function in broiler chickens from week 2 to 5 with pathogen challenge. 

Variable1-3 nTreat Mean SEM Min. Max. Median 

Jejunum, Week 2       
Dietary probiotics (log10 CFU/kg) 18 4.9 1.07 0 10.7 8.2 

Days post-infection 18 6.6 0.78 3.0 12.0 6.0 

Dietary ME (MJ/kg) 18 12.5 0.05 12.1 12.8 12.6 

Dietary CP (%) 18 21.8 0.24 20.0 23.0 21.8 

ZO1 14 1.1 0.04 0.7 1.3 1.0 

OCLN 16 1.6 0.62 0.6 10.8 1.0 

CLDN1 14 1.1 0.17 0.6 3.3 1.0 

CLDN3 10 1.5 0.17 1.0 2.3 1.2 

Jejunum, Week 3       
Dietary probiotics (log10 CFU/kg) 19 5.3 1.07 0 10.7 8.7 

Days post-infection 19 7.0 0.59 4.0 12.0 7.0 

Dietary ME (MJ/kg) 19 12.5 0.06 12.1 12.9 12.4 

Dietary CP (%) 19 20.9 0.12 20.0 22.0 21.0 

MUC2 10 1.2 0.19 0.7 2.8 1.0 

ZO1 17 1.2 0.08 0.9 2.0 1.0 

OCLN 17 1.3 0.14 0.7 3.1 1.0 

CLDN1 14 1.6 0.45 0.4 7.3 1.0 

Jejunum, Week 4       
Dietary probiotics (log10 CFU/kg) 12 5.0 1.28 0 9.2 7.7 

Days post-infection 12 12.0 1.69 7.0 21.0 10.0 

Dietary ME (MJ/kg) 12 12.6 0.07 12.4 13.0 12.5 

Dietary CP (%) 12 20.0 0.28 19.0 21.2 19.8 

ZO1 12 1.3 0.10 0.9 2.0 1.1 

OCLN 12 1.3 0.20 0.6 2.8 1.0 

Jejunum, Week 5       
Dietary probiotics (log10 CFU/kg) 13 6.9 1.10 0 9.6 9.0 

Days post-infection 13 28.8 2.26 17.0 34.0 34.0 

Dietary ME (MJ/kg) 13 12.7 0.03 12.5 12.8 12.8 

Dietary CP (%) 13 19.0 0.02 19.0 19.2 19.0 

MUC2 13 1.1 0.20 0.2 2.7 1.0 

Ileum, Week 3       
Dietary probiotics (log10 CFU/kg) 16 5.6 1.12 0 9.7 8.4 

Days post-infection 16 14.3 1.62 4.0 20.0 16.0 

Dietary ME (MJ/Kg) 16 12.3 0.04 12.1 12.6 12.2 

Dietary CP (%) 16 21.4 0.13 21.0 22.4 21.2 

ZO1 16 1.3 0.15 0.4 2.7 1.0 

OCLN 16 1.3 0.16 0.4 2.7 1.0 

CLDN1 11 1.0 0.14 0.5 2.1 1.0 
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Ileum, Week 4       
Dietary probiotics (log10 CFU/kg) 11 5.1 1.50 0 11.3 8.0 

Days post-infection 11 11.6 0.85 8.0 14.0 14.0 

Dietary ME (MJ/kg) 11 12.8 0.15 12.1 13.2 13.2 

Dietary CP (%) 11 20.5 0.17 20.0 21.2 20.0 

ZO1 11 1.2 0.11 1.0 2.2 1.1 

OCLN 11 1.3 0.18 0.8 2.9 1.0 

CLDN1 11 1.3 0.21 0.5 2.7 1.0 

Caeca, Week 4       
Dietary probiotics (log10 CFU/kg) 10 4.6 1.29 0 8.7 6.5 

Days post-infection 10 7.6 0.16 7.0 8.0 8.0 

Dietary ME (MJ/Kg) 10 12.7 0.08 12.6 13.2 12.6 

Dietary CP (%) 10 19.2 0.13 19.0 20.0 19.0 

ZO1 10 2.6 1.05 1.0 11.9 1.5 

nTreat, number of treatments means; SEM, standard error of means; Min, minimum; Max, maximum; ME, metabolizable energy; CP, 

crude protein; CFU, colony-forming unit; MUC2, mucin-2; ZO1, zonula occludens-1; OCLN, occludin; CLDN1, -3, claudin-1, -3. 
1Probiotic genera included for these response variables were Bacillus, Bifidobacterium, Lactobacillus, Paenibacillus, Clostridium, Entero-

coccus, Pediococcus, and Saccharomyces. 
2Pathogens included for these response variables were E. coli, C. perfringens, S. enteritidis, E. maxima, E. tenella, E. acervulina, E. mivati, 

E. brunetti, E. mitis, E. praecox, F. graminearum, S. pullorum, and Aflatoxin B1. 
3Data were calculated as log2fold change between probiotic and control treatments and then expressed in fold-change using a loga-

rithmic scale to base 2.  
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Table S6. Descriptive statistics for predictive and response variables of jejunal, ileal, and caecal gene expression (fold-

change) related to immune response in broiler chickens from week 2 to 4 of life with pathogen challenge. 

Variable1-3 nTreat Mean SEM Min. Max. Median 

Jejunum, Week 2       
Dietary probiotics (log10 CFU/kg) 14 4.8 1.15 0 8.9 8.2 

Days post-infection 14 7.0 0.96 3.0 12.0 6.0 

Dietary ME (MJ/kg) 14 12.4 0.05 12.1 12.6 12.5 

Dietary CP (%) 14 21.9 0.21 21.0 23.0 21.8 

IL1B 10 1.0 0.03 0.7 1.2 1.0 

IL10 14 1.2 0.20 0.2 2.9 1.0 

IFNG 10 0.9 0.06 0.5 1.0 0.9 

Jejunum, Week 3       
Dietary probiotics (log10 CFU/kg) 25 5.2 0.95 0 10.7 8.5 

Days post-infection 25 8.2 0.85 4.0 20.0 7.0 

Dietary ME (MJ/kg) 25 12.4 0.05 12.1 12.9 12.4 

Dietary CP (%) 25 21.0 0.13 20.0 22.0 21.0 

IL1B 17 0.8 0.07 0.2 1.3 1.0 

IL6 12 0.9 0.08 0.4 1.1 1.0 

IL10 13 1.7 0.33 0.5 4.6 1.0 

IFNG 18 0.9 0.07 0.4 1.5 1.0 

TNFA 10 0.9 0.06 0.6 1.2 1.0 

Jejunum, Week 4       
Dietary probiotics (log10 CFU/kg) 14 5.1 1.23 0 10.0 7.7 

Days post-infection 14 11.8 1.04 7.0 17.0 13.5 

Dietary ME (MJ/kg) 14 12.7 0.09 12.4 13.2 12.6 

Dietary CP (%) 14 19.7 0.21 19.0 21.0 19.5 

IL1B 10 1.4 0.14 1.0 2.2 1.2 

IFNG 14 1.2 0.13 0.6 2.4 1.0 

Ileum, Week 2       
Dietary probiotics (log10 CFU/kg) 12 4.6 1.39 0 9.7 4.1 

Days post-infection 12 3.5 0.77 1.0 7.0 2.5 

Dietary ME (MJ/kg) 12 12.6 0.12 12.1 13.2 12.8 

Dietary CP (%) 12 21.6 0.18 20.9 22.1 21.6 

IFNG 10 1.0 0.16 0.4 2.2 1.0 

TLR4 10 0.9 0.10 0.5 1.6 1.0 

Ileum, Week 3       
Dietary probiotics (log10 CFU/kg) 12 5.1 1.32 0 9.7 8.0 

Days post-infection 12 13.7 2.27 4.0 20.0 20.0 

Dietary ME (MJ/kg) 12 12.3 0.05 12.1 12.5 12.2 

Dietary CP (%) 12 21.4 0.17 21.0 22.4 21.1 

IL10 10 1.1 0.11 0.7 2.0 1.0 

IFNG 12 0.9 0.05 0.6 1.1 0.9 
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Ileum, Week 4       
Dietary probiotics (log10 CFU/kg) 10 5.9 1.63 0 11.3 9.0 

Days post-infection 10 17.3 2.60 8.0 27.0 17.0 

Dietary ME (MJ/kg) 10 12.4 0.11 12.1 12.8 12.1 

Dietary CP (%) 10 19.8 0.41 19.0 22.1 19.0 

TNFA 10 0.8 0.09 0.2 1.0 1.0 

Caeca, Week 2       
Dietary probiotics (log10 CFU/kg) 22 5.5 1.04 0 12.4 8.0 

Days post-infection 22 3.4 0.60 0.2 7.0 3.0 

Dietary ME (MJ/kg) 22 12.0 0.10 11.4 12.8 12.1 

Dietary CP (%) 22 20.8 0.25 19.2 23.0 21.0 

IL6 18 0.9 0.07 0.1 1.5 1.0 

IL8 10 0.9 0.19 0.1 2.1 1.0 

IL10 10 2.4 0.42 1.0 4.7 2.5 

nTreat, number of treatments means; SEM, standard error of means; Min, minimum; Max, maximum; ME, metabolizable energy; CP, 

crude protein; CFU, colony-forming unit; IL6, -8, -10, -1B, interleukin-6, -8, -10, -1B; TLR4, toll-like receptor -4; IFNG, interferon-

gamma; TNFA, tumor necrosis factor-alpha. 
1Probiotic genera included for these response variables were Bacillus, Bifidobacterium, Lactobacillus, Paenibacillus, Clostridium, Entero-

coccus, Pediococcus, Streptococcus, and Saccharomyces. 
2Pathogens included for these response variables were E. coli, C. perfringens, S. enteritidis, E. maxima, E. tenella, E. acervulina, E. mivati, 

E. brunetti, F. graminearum, S. minnesota, and L. monocytogenes. 
3Data were calculated as log2fold change between probiotic and control treatments and then expressed in fold-change using a loga-

rithmic scale to base 2.  
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Table S7. Descriptive statistics for predictive and response variables of duodenal, jejunal and ileal histomorphology 

(fold-change) in broiler chickens at week 2, 3 and 5 of life with pathogen challenge. 

Variable1-3 nTreat Mean SEM Min. Max. Median 

Duodenum, Week 5       

Dietary probiotics (log10 CFU/kg) 15 7.2 0.97 0 9.4 9.0 

Days post-infection 15 32.0 1.07 24.0 34.0 34.0 

Dietary ME (MJ/kg) 15 12.8 0.02 12.8 13.0 12.8 

Dietary CP (%) 15 19.2 0.11 19.0 20.0 19.0 

Villus Height 15 1.1 0.02 1.0 1.3 1.1 

Crypt Depth 15 1.1 0.03 0.8 1.2 1.0 

Villus Height/Crypt Depth 15 1.0 0.03 0.9 1.3 1.0 

Jejunum, Week 2       

Dietary probiotics (log10 CFU/kg) 11 5.2 1.50 0 10.7 8.7 

Days post-infection 11 5.2 0.48 3.0 7.0 5.0 

Dietary ME (MJ/kg) 11 12.4 0.09 12.1 12.8 12.4 

Dietary CP (%) 11 21.2 0.25 20.0 22.1 21.0 

Villus Height 11 1.0 0.04 0.9 1.4 1.0 

Crypt Depth 11 0.9 0.03 0.7 1.0 1.0 

Villus Height/Crypt Depth 11 1.1 0.08 1.0 1.8 1.0 

Jejunum, Week 3       

Dietary probiotics (log10 CFU/kg) 17 5.3 1.12 0 10.7 8.2 

Days post-infection 17 9.8 1.34 4.0 20.0 7.0 

Dietary ME (MJ/kg) 17 12.3 0.03 12.1 12.5 12.3 

Dietary CP (%) 17 21.1 0.12 20.0 22.0 21.0 

Villus Height 17 1.1 0.04 0.9 1.5 1.0 

Crypt Depth 17 1.0 0.03 0.7 1.1 1.0 

Villus Height/Crypt Depth 17 1.2 0.07 1.0 2.2 1.1 

Jejunum, Week 5       

Dietary probiotics (log10 CFU/kg) 17 6.9 0.96 0 9.4 9.0 

Days post-infection 17 30.6 1.35 20.0 34.0 34.0 

Dietary ME (MJ/kg) 17 12.8 0.03 12.6 13.0 12.8 

Dietary CP (%) 17 19.2 0.09 19.0 20.0 19.0 

Villus Height 17 1.0 0.02 0.9 1.2 1.0 

Crypt Depth 17 1.0 0.03 0.7 1.1 1.0 

Villus Height/Crypt Depth 17 1.1 0.04 0.8 1.4 1.1 

Ileum, Week 3       

Dietary probiotics (log10 CFU/kg) 13 5.5 1.26 0 9.7 8.5 

Days post-infection 13 10.3 1.73 4.0 20.0 7.0 

Dietary ME (MJ/kg) 13 12.3 0.04 12.1 12.5 12.3 

Dietary CP (%) 13 21.2 0.10 21.0 22.0 21.1 
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Villus Height 13 1.0 0.02 1.0 1.2 1.0 

Crypt Depth 13 1.0 0.04 0.9 1.4 1.0 

Villus Height/Crypt Depth 13 1.0 0.02 0.9 1.2 1.0 

Ileum, Week 5       

Dietary probiotics (log10 CFU/kg) 15 7.2 0.97 0 9.4 9.0 

Days post-infection 15 32.0 1.07 24.0 34.0 34.0 

Dietary ME (MJ/kg) 15 12.8 0.02 12.8 13.0 12.8 

Dietary CP (%) 15 19.2 0.11 19.0 20.0 19.0 

Villus Height 15 1.0 0.03 0.8 1.2 1.0 

Crypt Depth 15 1.1 0.03 0.9 1.3 1.1 

Villus Height/Crypt Depth 15 0.9 0.03 0.7 1.1 1.0 

nTreat, number of treatments means; SEM, standard error of means; Min, minimum; Max, maximum; ME, metabolizable energy; CP, 

crude protein; CFU, colony-forming unit.  
1Probiotic genera included for these response variables were Bacillus, Lactobacillus, Enterococcus, and Saccharomyces. 
2Pathogens included for these response variables were E. coli, C. perfringens, S. enteritidis, E. maxima, E. tenella, E. acervulina, E. mitis, 

E. praecox, and F. graminearum.  
3Data were calculated as log2fold change between probiotic and control treatments and then expressed in fold-change using a loga-

rithmic scale to base 2.  
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Table S8. Descriptive statistics for predictors and response variables of growth performance in broiler chickens at 

starter, finisher, and overall periods with pathogen challenge. 

Variable1,2 nTreat Mean SEM Min. Max. Median 

Starter (1-3 Weeks)       
Dietary probiotics (log10 CFU/kg) 22 5.5 1.00 0 9.7 9.0 

Days post-infection 22 10.8 1.00 5.0 20.0 10.0 

Dietary ME (MJ/kg) 22 12.4 0.04 12.1 12.7 12.4 

Dietary CP (%) 22 21.1 0.05 21.0 21.8 21.0 

ADFI (g) 22 52.6 1.57 40.6 63.3 52.3 

ADG (g) 22 36.2 1.46 28.4 50.2 33.2 

FCR 22 1.5 0.04 1.1 1.9 1.4 

Finisher (4-6 Weeks)       
Dietary probiotics (log10 CFU/kg) 13 5.0 1.33 0 9.6 9.0 

Days post-infection 13 33.2 1.50 27.0 41.0 33.0 

Dietary ME (MJ/kg) 13 12.7 0.05 12.5 13.0 12.8 

Dietary CP (%) 13 19.3 0.10 19.0 19.8 19.0 

ADFI (g) 13 149.8 11.04 108.2 219.4 142.7 

ADG (g) 13 72.1 7.54 31.7 114.3 80.7 

FCR 13 2.0 0.09 1.7 2.8 1.9 

Overall (1-6 Weeks)       
Dietary probiotics (log10 CFU/kg) 17 4.8 1.13 0 9.6 8.1 

Days post-infection 17 34.9 1.38 27.0 41.0 36.0 

Dietary ME (MJ/kg) 17 12.7 0.06 12.4 13.0 12.5 

Dietary CP (%) 17 20.3 0.08 19.9 20.8 20.1 

ADFI (g) 17 95.6 2.78 75.6 119.5 93.8 

ADG (g) 17 57.0 3.26 31.7 75.7 55.2 

FCR 17 1.7 0.06 1.4 2.3 1.7 

nTreat, number of treatments means; SEM, standard error of means; Min, minimum; Max, maximum; ME, metabolizable energy; CP, 

crude protein; CFU, colony-forming unit; ADFI, average daily feed intake; ADG, average daily weight gain; FCR, feed conversion 

ratio. 
1Probiotic genera included for these response variables were Bacillus, Bifidobacterium, Lactobacillus, Enterococcus, and Saccharomyces. 
2Pathogens included for these response variables were E. coli, C. perfringens, S. enteritidis, E. maxima, E. tenella, E. acervulina, E. mivati, 

E. mitis, and E. praecox.  
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22 Supplementary Materials:

23 Table S1. Ingredient composition of gestation, lactation and prestarter diets 

Ingredients, % Gestation diet1 Lactation diet2 Prestarter3

Barley meal 50.0 20.0 29.7
Wheat bran 15.8 6.4 –
Corn meal 10.0 29.0 10.8
Wheat meal 8.1 10.0 10.0
Soybean meal 4.2 9.3 –
Fullfat soy – – 14.1
Wheat pressure cooked – – 9.9
Sweet whey powder – – 3.0
Potato protein – – 5.0
Rapeseed meal – 5.0 –
Dried pulp 4.0 1.5 –
Commercial breeding premix 2.8 3.5 –
Lignocellulose – 0.5 0.9
Palm kernel – – 2.0
Dried vinasse4 1.5 – 1.9
Dextrose – – 5.0
Lactose – – 3.0
Apple pomace 1.5 1.0 –
Bakery products 1.2 12.8 –
Hay cobs 0.5 – –
Oil 0.3 0.5 –
Rapeseed oil – – 0.5
Lysine HCl – 0.2 0.7
Threonine – 0.06 0.3
Methionine – 0.02 0.3
Tryptophane – – 0.1
Limestone (calcium carbonate) – 0.2 0.6
Sodium chloride 0.03 – 0.5
Mono calcium phosphate – – 1.4
Magnesium phosphate – – 0.2
Vitamin E 0.02 0.02 –
Vitamin/trace element premix – – 0.4

24 1Vitamin and mineral composition per kg feed: 9,600 IE of vitamin A, 1,600 IE of vitamin D3, 

25 156 mg of vitamin E, 82 mg of Fe as iron(II) sulfat monohydrate, 12 mg of Cu as copper(II) 

26 sulfat pentahydrate, 90 mg of Zn as zinc oxide, 2.6 mg of Mn as manganese(II) oxide. 

27 Technological additives: 700 FTU of 6-phytase, 60 mg of butylated hydroxytoluene.
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28 2Vitamin and mineral composition per kg feed: 12,000 IE of vitamin A, 2,000 IE of vitamin 

29 D3, 170 mg of vitamin E, 100 mg of Fe as iron(II) sulfat monohydrate, 15.1 mg of Cu as 

30 copper(II) sulfat pentahydrate, 110 mg of Zn as zinc oxide, 0.7 mg of Mn as manganese(II) 

31 oxide. Technological additives: 880 FTU of 6-phytase, 70 mg of butylated hydroxytoluene.

32 3Vitamin and mineral composition per kg feed: 16,000 IE of vitamin A, 2,000 IE of vitamin D3, 

33 150 mg of vitamin E, 4.0 mg of vitamin K3, 2.8 mg of vitamin B1, 8.2 mg of vitamin B2, 

34 5.0 mg of vitamin B6, 50 mg of vitamin B12, 60 mg of nicotinic acid, 20 mg of panthothenic 

35 acid, 500 mg of cholin chloride, 1,050 mcg of folic acid, 150 mcg of biotin, 124 mg of Fe as 

36 iron(II) sulfat monohydrate, 80 mg of Mn as manganese(II) oxide, 3.1 mg of I as calcium iodate, 

37 121 mg of Zn as zinc oxide, 0.45 mg of Se as sodium selenite, 124 mg of Cu as copper(II) sulfat 

38 pentahydrate. Technological additives: 250 FTU of phytase (4a16), 100 mg of butylated 

39 hydroxytoluene.

40 4CITROFEED, dried residues from citric acid production.
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41 Table S2. Analyzed nutrient composition of gestation and lactation diets for sows as well as 

42 the milk replacer and prestarter diet for piglets

Chemical composition, % dry 

matter

Gestation 

diet

Lactation 

diet

Milk 

replacer1,2

Prestarter 

diet2

Dry matter, % 90.4 89.3 91.6 89.8

Crude protein 14.7 17.8 23.3 18.2

Crude fiber 6.5 4.6 1.9 4.9

Ether extract 5.1 4.9 10.3 7.3

Crude ash 5.7 6.6 6.8 5.1

Nitrogen-free extract 68.2 66.2 57.9 65.0

Starch 44.3 46.7 25.4 42.5

Metabolizable energy, MJ/kg 14.2 14.9 16.9 15.4

Macro minerals, %

Calcium 0.89 1.20 0.80 0.73

Phosphorus 0.63 0.67 0.80 0.72

Magnesium 0.23 0.26 0.20 0.21

Potassium 0.78 0.78 1.09 0.67

Sodium 0.28 0.36 0.50 0.24

Trace minerals, ppm

Iron 264.0 324.7 264.2 333.2

Manganese 95.2 96.9 87.3 118.1

Zinc 142.2 166.9 128.8 181.7

Copper 18.3 24.1 146.3 152.1

43 1NuriStart Sweet, BIOMIN Holding GmbH, Part of dsm-firmenich, Getzersdorf, Austria

44 2Piglets were fed with 100% milk replacer from day of life (DoL) 3 to 23; combinations milk 

45 replacer and prestarter diet with a ratio of 70:30 (w/w) on DoL24, 50:50 (w/w) on DoL25, and 

46 30:70 (w/w) on DoL26, respectively; and 100% prestarter diet on DoL27 and 28.
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47 Table S3. Descriptive statistics for average daily feed intake of sows during the gestation and 

48 lactation period

Average daily feed intake, kg/DM1 Mean SD

Pre-farrowing (gestation period)

26 to 5 days before farrowing 3.5 1.30

5 days before farrowing 2.5 0.43

Post-farrowing (lactation period)2

Days 1 to 7 3.8 0.95

Days 8 to 14 6.3 1.68

Days 15 to 21 8.2 1.22

Days 22 to 28 8.3 1.93

49 DM, dry matter; SD, standard deviation.

50 1Sows were fed with gestation diet from 26 to 5 days prior to farrowing, and the lactation diet 

51 from 5 days before farrowing until 28 days postfarrowing. 

52 2Mean values for the feed intake postfarrowing are provided. The feed intake that was offered 

53 to the sows was gradually increased in the first three weeks of lactation.
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54 Table S4. Descriptive statistics for average daily creep feed intake of piglets during the 

55 suckling period

Average daily feed intake, g/DM1,2 Mean SE

DoL3 to 9 19.7 1.14

DoL10 to 16 16.5 0.77

DoL17 to 23 20.9 0.88

DoL24 to 26 23.5 1.79

DoL27 to 28 17.4 1.92

56 DM, dry matter; DoL, day of life; SE, standard error.

57 1Creep feed intake was estimated on litter basis. 

58 2Piglets were fed with 100% milk replacer from DoL3 to 23; combinations of milk replacer 

59 and prestarter diet with a ratio of 70:30 (w/w) on DoL24, 50:50 (w/w) on DoL25, and 30:70 

60 (w/w) on DoL26, respectively; and 100% prestarter diet on DoL27 and 28.
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61 Table S5. Body weight and average daily gain of suckling and newly weaned piglets

Item Female Male SEM P-value

Body weight, kg

Birth 1.4b 1.5a 0.032 0.014

DoL4 1.7 1.7 0.016 0.678

DoL6 2.1 2.1 0.015 0.140

DoL13 3.7 3.7 0.048 0.861

DoL20 5.5 5.4 0.055 0.207

DoL27 7.2 7.3 0.065 0.619

DoL30 7.1 7.2 0.041 0.289

DoL34 7.4 7.3 0.038 0.434

Average daily gain, kg

DoL1 to 4 0.13 0.13 0.006 0.902

DoL4 to 6 0.19 0.20 0.007 0.186

DoL1 to 6 0.16 0.16 0.006 0.210

DoL6 to 13 0.23 0.23 0.007 0.823

DoL13 to 20 0.25 0.24 0.008 0.255

DoL20 to 27 0.27 0.27 0.010 0.588

DoL27 to 30 0 0 0.026 0.782

DoL30 to 34 0.05 0.03 0.031 0.630

Average daily gain: birth to day 34 of life, kg

DoL1 to 27 0.24 0.24 0.008 0.795

DoL28 to 34 0.02 0.01 0.021 0.647

DoL1 to 34 0.18 0.18 0.007 0.986

62 Values are presented as least squares means ± standard error of the mean (SEM). DoL, day of 

63 life. Piglets were weaned on DoL28. 

64 a,bMeans without a common superscript in the same row differ (P < 0.05).

Page 43 of 44

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Journal of Animal Science



For Peer Review

8

65
T

able S6. Perm
utational m

ultivariate analysis of variance (PER
M

A
N

O
V

A
) results for dissim

ilarities in the bacterial and fungal com
m

unities in 

66
sow

 feces and gastric and cecal digesta of piglets during the suckling phase

Source of variation
df

Sum
 of squares

R
2

F
P-value

B
acterial com

m
unity

D
ay × anim

al × gut segm
ent 1

14
36.93

0.651
36.013

0.001

R
esidual

270
19.78

0.349

Total
284

56.71
1.000

Fungal com
m

unity 

D
ay × anim

al × gut segm
ent 1

14
30.38

0.444
13.245

0.001

R
esidual

232
38.01

0.556

Total
246

68.39
1.000

67
The analysis based on pairw

ise distance of a m
ultivariate data set and values w

ere obtained using type III sum
s of squares w

ith 999 perm
utations 

68
of residuals, considering significant difference at P < 0.05; df, degrees of freedom

; F, F-value by perm
utation.

69
1D

ay, days of life for piglets and days postpartum
 for sow

s; anim
al, piglet and sow

; gut segm
ent, sow

’s feces and gastric and cecal digesta of 

70
piglets.
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