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SUMMARY 

 

This dissertation presents an in-depth investigation into the cryogenic machining 

performance of thin-walled Ti6Al4V (Ti64) alloy using carbon dioxide (CO₂) as a 

sustainable cooling medium. The research aims to improve surface quality while 

minimizing environmental impact by replacing conventional cutting fluids with 

cryogenic CO₂. Both uncoated and AlCrN-coated carbide end mills were used to assess 

the influence of key machining parameters including cutting speed (Vc), feed rate (fz), 

radial depth of cut (ar), and axial depth of cut (ax) on surface roughness (Ra). A Central 

Composite Design (CCD) with 30 experimental runs was implemented, and surface 

roughness was measured at multiple axial depths on each workpiece. The optimization 

and modeling were carried out using Response Surface Methodology (RSM) and 

Genetic Algorithm (GA), with the aim of predicting optimal cutting conditions and 

minimizing Ra. For uncoated tools, the RSM model predicted a minimum surface 

roughness of 0.158 µm, while GA slightly improved it to 0.1568 µm after 64 

generations. In contrast, coated tools significantly enhanced machining performance, 

producing a minimum Ra of 0.132 µm through RSM and further reduced to 0.12725 

µm by GA within 96 generations, representing an 18.8% improvement over uncoated 

tools. The feed rate was found to be the most influential factor in both tool conditions, 

while cutting speed also contributed positively to surface quality. Although RSM 

models yielded higher predictive accuracy based on lower Mean Square Error (MSE), 

GA consistently produced lower Ra values, demonstrating superior global optimization 

capabilities. The application of AlCrN coating also helped suppress tool wear and 

thermal degradation, contributing to smoother surface finishes and greater process 

stability. Overall, the combination of CO₂ cryogenic cooling, advanced tool coating, 

and hybrid optimization techniques (RSM-GA) proves to be highly effective for the 

precision machining of thin-walled Ti64 alloy. This approach not only enhances surface 

integrity and tool life but also supports the broader goal of sustainable manufacturing 

by reducing dependence on traditional oil-based coolants. The findings offer valuable 

insights for machining difficult-to-cut aerospace materials and provide a foundation for 

integrating green technologies into high-performance manufacturing systems. This 

research contributes to the evolving field of intelligent, eco-friendly machining and sets 

the stage for further exploration of cryogenic processes in advanced material 

applications. 

 

Keywords: Titanium Alloy, Thin-Walled, Surface Roughness, Cryogenic, RSM, GA 
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 CHAPTER 1 

INTRODUCTION 

1.1 Overview 

This study investigates the machining performance of thin-walled Ti64 

alloy under carbon dioxide-based cryogenic cooling. Both coated and uncoated 

cutting tools are considered in the experimental setup. To analyze the influence 

of key machining variables on surface quality and process efficiency, Response 

Surface Methodology (RSM) and Genetic Algorithm (GA) are employed in 

combination, serving both as modelling frameworks and optimisation techniques 

to determine the most effective parameter settings.. 

1.2 Background of the Problems 

The manufacturing industry continually seeks to improve productivity 

while maintaining high product quality. One of the primary challenges in metal 

cutting processes is the generation of excessive heat at the tool and workpiece 

interface. This thermal buildup can negatively affect dimensional accuracy, 

accelerate tool wear, and degrade surface finish. Although conventional cutting 

fluids are widely used to manage this heat, their effectiveness diminishes at 

elevated cutting speeds, particularly because they struggle to reach the critical 

contact zone (Dhar, et al., 2006). Moreover, traditional oil-based coolants pose 

environmental and health risks. Their disposal can lead to soil and water 

contamination, and their use increases operational costs due to the need for 

complex storage, circulation, and filtration systems. Consequently, there is a 

growing demand for more sustainable and efficient cooling methods in 

machining operations.(Dilip Jerold and Pradeep Kumar, 2011). 
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Cryogenic cooling has emerged as a viable alternative. Utilizing extremely 

low-temperature substances such as liquid nitrogen or carbon dioxide, this 

approach efficiently removes heat from the cutting zone (Tazehkandi, et al., 

2015). Carbon dioxide at -78.5°C and liquid nitrogen at -196°C can significantly 

enhance tool life and surface quality by maintaining lower temperatures during 

the cutting process (MacHai and Biermann, 2011; Pusavec, et al., 2014) 

With increased global emphasis on environmentally friendly 

manufacturing, green machining practices are becoming more prevalent. Cutting 

fluids can contribute up to 20% of total production costs, making their reduction 

economically attractive. While complete elimination of cutting fluids is not yet 

feasible, cryogenic methods offer a path toward cleaner machining without 

compromising performance. (Maruda, et al., 2016; Fernández, et al., 2014). 

 

Though cryogenic machining has historical roots Reitz first reported the 

use of CO2 in 1919 it has seen renewed interest due to advancements in delivery 

systems and a greater focus on sustainability (Jawahir, et al., 2016). Compared 

to conventional coolants, cryogenic cooling offers superior thermal control, 

lower ecological impact, and potential cost reductions (Dilip Jerold and Pradeep 

Kumar, 2012). Numerous studies confirm that liquid nitrogen effectively 

reduces tool wear when machining materials like AISI 4140, while CO2 has 

demonstrated excellent performance in facilitating chip removal. Surface quality 

remains a key indicator of machining success, with attributes such as residual 

stress and roughness serving as critical benchmarks. These are influenced by 

factors including machining technique, tool type, and process parameters. 

(Kaynak and Gharibi, 2018). 

Surface quality plays a vital role in assessing the durability and 

performance of machined components throughout their service life (Kenda, et 

al., 2011; Ulutan and Ozel, 2011). It is commonly evaluated using parameters 

such as surface roughness and residual stress, which offer insights into the 

functional performance of a machined surface (Pusavec, et al., 2011; Umbrello, 

et al., 2012). Several factors can influence surface quality, including the selected 

cutting process, the type and condition of machine tools, the cutting parameters 
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applied, and the specific machining environment. These elements must be 

carefully controlled to ensure optimal surface integrity and product reliability 

(Benardos and Vosniakos, 2003). 

To systematically improve machining processes, researchers have moved 

away from empirical approaches toward data-driven modelling and 

optimisation. RSM provides a structured method for developing mathematical 

models that describe the interactions among process variables. GA, in turn, is 

well-suited for exploring large solution spaces to identify optimal parameter 

combinations. (Mokhtari Homami, et al., 2014; Pereira and Delijaicov, 2019). 

Statistical modelling and computational techniques estimate the machining 

process's surface integrity variables using a cryogenic cooling system (Jawahir, 

et al., 2016). Instead of relying solely on trial-and-error experimentation, 

machining processes can be optimized through mathematical modelling. 

Statistical and computational tools like RSM and GA are useful in predicting 

outcomes and guiding decision-making. These methods are especially relevant 

when machining advanced materials like titanium alloys, which are commonly 

used in aerospace applications. 

1.3 Statement of The Problems 

Thin-walled components are widely used in aerospace, energy, and 

precision engineering due to their high strength to weight ratio and structural 

flexibility. Typically fabricated through additive manufacturing, these parts 

require high-precision finishing processes to meet functional requirements. 

However, machining thin-walled structures made of titanium alloys presents 

challenges such as deformation, poor surface finish, and rapid tool wear. (Isaev, 

et al., 2016). The selection of appropriate cutting tools and cooling strategies 

becomes crucial in addressing these issues. Both coated and uncoated tools 

behave differently under cryogenic conditions, influencing the machining 

response. Therefore, it is essential to establish predictive models and optimize 
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machining parameters to improve overall process reliability. This study employs 

RSM and GA not only to model the machining performance but also to achieve 

multi-parameter optimisation. 

1.4 Objectives of The Study 

This study aims to: 

1. Develop predictive models using RSM to evaluate the effects of machining 

parameters on CO2-based cryogenic machining of thin-walled Ti64 alloy, 

utilizing both coated and uncoated cutting tools.. 

2. Apply RSM and GA to identify the optimal combination of process 

parameters for improved machining outcomes. 

3. Validate the accuracy of the predictive models through experimental trials, 

using mean square error (MSE) as the performance metric. 

1.5 Significance of The Study 

This study contributes to the field of sustainable manufacturing by 

examining the role of CO2-based cryogenic cooling in machining thin-walled 

Ti64 alloy. The findings demonstrate the potential of cryogenic systems to 

enhance surface finish, extend tool life, and reduce reliance on conventional 

lubricants. Furthermore, the combined use of RSM and GA provides a structured 

and effective approach to process optimisation, aligning with current trends in 

smart and green manufacturing. 
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1.6 Scopes of The Study 

The scope of this study encompasses the application of CO2 cryogenic 

cooling in machining aerospace-grade Ti-64 alloy. The research focuses on 

evaluating the influence of cutting speed (Vc), feed rate (fz), radial depth of cut 

(ar), and axial depth of cut (ax) on surface roughness (Ra). Both RSM and GA 

are used to construct predictive models and determine the optimal settings for 

these parameters. Limitations include the exclusion of other performance 

indicators such as cutting forces or temperature distributions, which may be 

addressed in future studies. 
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