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1. Introduction

Producer gas is an alternative used for substituting fossil
fuels, specifically biomass gasification [1]. It has certain
environmental advantages when used on the burner [2]. The
combustion process results can be used for various
applications, such as drying, gas turbines, and boilers.
Several factors affect the flame, such as the amount of
combusted air and heat released from the burner [3].
Simulation is a good method to detect the combustion
process's specific temperature. This can also be obtained
through various parameters. duces the design time and
the experimental cost [4]. The amount of heat released
during the combustion process and the quantity of nitrogen
in the air are factors that specifically affect the flame
temperature. It can be thermodynamically modelled to
ascertain the effect of heat release and the quantity of
nitrogen.

Several preliminary studies have been carried out on
thermodynamic simulations. Vitazek [5] performed a similar
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analysis on biogas combustion using the mass and energy
balance principle. Caligiuri [6] carried out a thermodynamic
simulation of dual fuel diesel and producer @& in an internal
combustion engine. This was performed by applying the
first law of thermodynamics to a clo? system. Larionov
[7] carried out a similar analysis on the combustion of a
mixture offmethane and hydrogen fuel. This was also
performed based e first law of thermodynamics. Rahim
[8] simulated the burning speed of the methane-air diluent
mixture, while its mass fraction and temperature in the
combustion chamber were determined by applying the
conservation mass and energy equation. Saghaei [9] also
mvestigated a porous-medium chamber using
thermodynamic simulation, including energy and single-step
equations, to explain the combustion process in a diesel
engine. Hariram [10] carried out a zero-dimensional
thermodynamic simulation of a compressed ignition engine.
This was performed by using the first law of
thermodynamics. Feng [11] simulated a zero-dimensional
marine two-stroke engine by applying mass and energy
conservation as well as ideal gas equations. Papagiannakis
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[12] performed a thermodynamic simulation on a wood gas
spark ignition engine using similar processes.

This study performed a thermodynamic simulation of
single producer gas from biomass gasification by applying
mass, and energy balar§f in an open system. It aims to
determine the general effect of excessive air on flame
temperature. The specific objective is to obtain the heat
released during the combustion process at temperatures
between 600 and 800°C.

2. Methodology

The combu sti(amx:ess was analysed by applying the mass
balance and the first law of thermodynamics (energy
balance). The mass balance for the steady state condition is
shown in Equation 2

My — Moye = AMeyarem @
for steady state condition =0, then
M = Mue 2)
The first law of thermodynamics is shown as follows:
Ein - Eow = ASycten (3)

Furthermore, this combustion process occurs in an open
system by applying the control volume. For steady flow
(AEsystem = 0), the first law of thermodynamics 1s stated as
follows:

Ein = Egu (G
The components of inlet and outlet energies are heat,
work, and mass flow. The equation then becomes:

Y 2
Qin + Wit E(h +‘—M +g:) =Qout + Wou + L fh +—u +g:} (5)
: i = - . SUT
By ignoring kinetic and potential energies, including
work done and heat entering the system, the earlier stated
equation becomes:
Qout = (h'in - huur) (6)
During the combustion process, a change was detected in
the internal energy. This includes chemical and sensible
energies. Based on this, the combustion process consists of
formation and sensible enthalpies, as shown in the following
equation:
h=&f +(E—5") (7
When the combustion process occurs adiabatically, the
value of Quu = 0. The equation 1s further stated as follows:

INg (R +R-F) = ENg, (RR+R- H=-)m (8)

in
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The flame’s temperature and quantity of heat released is
started to calculate based on the fuel composition that
written on chemical reaction equation. The fuel used in this
simulation is producer gas from palm oil shell Eification.
Its constituents are shown in Table 1 with a gas heating
value of 6.1 MJ/Nm?®.

Table 1. Fuel Composition

No Species % Vol
1 CO 22.55
2 Ha 8.35
3 CHs 8.21
4 CO, 14.1
5 0 1.32
6 N> 4547

The stoichiometric equation 1s obtained by applying
mass conservation, which is stated as follows:

(0,2255 CO + 0,0835 Hz + 0,0821 CHs + 0,141
CO2+ 0,4547 N2 + 0,0132 O2 + 0,3055 (02 +
3,76N3) — 04486 CO2+ 0,2477 H20 +
1,6033 N2 (%)

The mass and energy equation is applied using the
earlier stated chemical reaction. The initial flame’s
temperature is used base on temperature of Nitrogen
composition.

Simulations are carried out in accordance with varying
excess air, namely 0%, 10%. 20%, 30%, 40%, and 50%.
The mass flow of air and fuel is shown in Table 2. In the
non-adiabatic simulation, the heat released from the burner
gas is assumed to be relatively 70000 kJ/h (19.4 kW). This
is within the range of the results obtained from the
experiments carried out by [13-14]. N()l]-ildiilbil
simulations are performed using two methods. The first is to
determine the effect of excess air on the fame’s temperature
at a constant heat value of 70000 klJ/h. The second is to
determine the effect of an excess of air and the flame's
temperature on the heat release rate. The simulation process
is carried out based on a constant flame’s temperature. A
flow chart of the calculating procedure is shown in Figure 1.

Table 2. Parameter of Simulation

Excess of  Air mass flow  Fuel mass flow
Air (%) rate (kg/h) rate (kg'h)
0 41.8169 27.1659
10 45.9984 27.1659
20 50.1799 27.1659
30 54.3615 27.1659
40 58.5430 27.1659
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Figure 1. Flow Chart of Thermodynamic Model
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3. Results and Discussion

3.1 The Thermodynamic Evaluaiion?
Excess of Air on Flame Temperature of
Producer Gas Combustion

1
Figures 2 and 3 show Ee effect of excess air on the
flame's temperature under non-adiabatic and adiabatic
conditions. Furthermore, excess air increases and
reduces the flame temperature under both conditions.
This is similar to the reports made by [15-18]. It is
because an increase in excess air triggers the nitrogen
content of the combustion product. This further
absorbs the heat from the combustion process,
reducing the flame temperature. In non-adiabatic
conditions, with the heat released at 70000 klJ/h, the
maximum flame temperature is 986.68°C with excess
air at 0%. Each increase in excess air at 10°C reduces
the temperature by 40 to 43°C. Meanwhile, in adiabatic
conditions, the maximum flame temperature is 1725
at excess air of 0%. Each increase in excess air at 10°C
reduces the temperature by 60 to 78°C.
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Figure 2. The Influence of Excess of Air to Non-
adiabatic Flame Temperature
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Figure 3. The Influence of Excess of Air to Adiabatic
Flame Temperature

3.2 The Thermodynamic Evaluation of Flame

Temperature on The Heat Release in Various
of Excess Air

5

Figure 4 shows the effect of the flame temperature on the
quantity of heat rel d from the combustion chamber at
varying excess air. An increase in the flame temperature
reduces the amount of heat released for various excess air. It
is evident that for each flame temperature, the maximum
quantity of heat released occurs at the lowest excess of air.
This is because the energy from the combustion process is
the least absorbed by excess air. The flame's temperature is
within the range of 600 to 800°C. The heat released during
the process is 72490 kJ/h to 103800 kJ/h (20.1 kW to 28.8
kW). Similar studies reported a similar temperature range
for the combustion of producer gas [19-20]. Excess air at
40% with a flame temperature of 1400°C proved that the
heat released is close to zero. However, in this circumstance,
the adiabatic flame temperature for the excess air of 40% is
1447.78°C.
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Figure 4. The Influence of Flame Temperature to Heat
Release on Variation of Excess of Air

3.3 The Comparation of Thermodynamic
Simulation and Experimental

Figure 5 compares the experimental by [21] and simulation
processes carried out in adiabatic conditions. Punnarapong
[21] reported that the experimental adiabatic flame
temperatures  obtained  were 1260°C. Meanwhile, this
simulation resulted were 1725°C, the differences is due to

difference in the producer gas composition, which uses
an average heating value of 5.2 MI/Nm® and 6.1 MJ/Nm®
during the experimental and simulation processes,
respectively. The simulation method adopted was also
referenced [7, 22-25]. To remedy this situation, the future
study must equalize the operating parameters and improve
both the simulation and experimental aspects.
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Figure 5. The Comparison of simulation and
Experimental [21]

4. Conclusion
1

An Increase in excess air causes a reduction in both
adiabatic and non-adiabatic temperatures of biomass
producer gas. The maximum and minimum adiabatic flame
temperature are 1725.43°C and 1447.78°C at 0% and 40%
excess air, respectively. The greater the resulting non-
adiabatic temperature, the lesser the heat released during the
combustion process for the excess air constant. The non-
adiabatic flame temperature is usually 600 to 800°C, while
the quantity of heat released is within 20.1 kW to 28.8 kW,
and the excess air is approximately 0 to 40%.
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Nomenclature

Ein - Total Energy Entering the System

Eout - Total Energy Leaving the System

ABgmem - Change in the Total Energy of the System

Qin - Energy Entering the System by Heat

Qo - Energy Leaving the System by Heat

Win - Energy Entering the System by Work

Wou - Energy Leaving the System by Work

my, - Mass Entering the System

Mg, - Mass Entering the System

h - Enthalpy

hy, - Enthalpy Entering the System

by - Enthalpy Leaving The System

R - Enthalpy Formation at the Standard
Reference Temperature

h - Enthalpy at Specific State Temperature

'S - Enthalpy at the Standard Reference
Temperature

Nout - Mole Entering the System

N - Mole Entering the System
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