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Introduction  

Increased urbanization and anthropogenic activity along 

urban rivers have led to a decline in environmental quality and aquatic 

ecosystem health.1,2 Water pollution, industrial waste discharges, and 

other chemical contaminants pose a serious threat to the organisms 

living in these ecosystems.3,4 Pollutants such as heavy metals, 

pesticides, and harmful organic compounds can enter aquatic 

systems.5,6 These pollutants can accumulate in sediments and aquatic 

organisms, causing cellular damage, reproductive impairment, and even 

death.7 Compounds like polycyclic aromatic hydrocarbons, 

polychlorinated biphenyls, and other industrial chemicals have the 

potential to induce oxidative stress in living organisms. This can result 

in inflammation, tissue injury, and disruption of normal physiological 

functions.8-10 Among aquatic organisms, crustaceans are important 

creatures exposed to environmental pollutants.11-13 Crabs being one of 

the most dominant groups, tend to accumulate significant amounts of 

pollutants due to their close association with the substrate in contrast to 

pelagic fauna that live in the water column.14-16  
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One genus that is often found in estuarine and estuary habitats is the 

fiddler crab.17,18Fiddler crabs a type of semi-terrestrial crustacean are 

commonly found along the coasts of tropical, subtropical, and warm 

temperate regions worldwide.19,20 These crabs are resilient ecosystem 

components because they can adapt to a wide range of habitat 

conditions, polluted, brackish, and saline environments.21,22 They play 

important ecological roles, including nutrient cycling, organic matter 

decomposition, and as a food source for various predators (birds, fish, 

and marine mammals).23,24 Fiddler crabs are recognized as ecosystem 

engineers because of their influence on sediment composition and their 

impact on the biodiversity of mangrove ecosystems.25 However, 

changes in water quality due to human activities have caused various 

challenges to their survival.26,27 Fiddler crabs play important roles in 

coastal ecosystems, including inorganic matter decomposition and as a 

food source for various predators.28,29 To survive in contaminated 

environments, fiddler crabs may have developed physiological and 

biochemical adaptations, including enhanced antioxidant responses and 

unique biochemical defense mechanisms.30,31 

Antioxidants are molecules that can scavenge free radicals, thereby 

preventing cellular damage caused by oxidative stress.32,33 In a polluted 

environment, the antioxidant defense system of fiddler crabs becomes 

very important to protect them from the damaging effects of chemical 

pollutants.34,35 In addition, biochemical compounds, which are natural 

chemical components in organisms, can play a key role in biological 

defense mechanisms.36,37 The biochemical profile of fiddler crabs, 

particularly their antioxidant and detoxification pathways, is crucial in 

mitigating oxidative stress and neutralizing pollutants. Flavonoids, 

terpenoids, and alkaloids are known for their antioxidant, anti-

inflammatory, and other medicinal properties, which could help fiddler 

crabs adapt to polluted environments.38-40 
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Fiddler crabs utilize bioactive compounds for defense against environmental stressors. The study 

aimed to determine the antioxidant activity, bioactive compound profile of fiddler crab extracts as 

a form of self-defense against various anthropogenic activities along urban rivers. The fiddler 

crabs (Uca spp.) were collected from the Tanjung Api-Api Port area and Sungsang Village, 

located in Banyuasin Regency, South Sumatra, Indonesia. Fiddler crab samples were extracted by 

maceration in ethanol. The antioxidant activity of the extracts was evaluated using the 2,2-

diphenyl-1-picryl hydrazyl (DPPH) radical scavenging assay. Bioactive compounds profile was 

determined by qualitative phytochemical screening, followed by gas chromatography-mass 

spectrometry (GC-MS). Fiddler crab extracts of samples obtained from both locations exhibited 

weak antioxidant activity with IC50 values of 174.617 μg/mL and 190.786 μg/mL for crab extracts 

from Tanjung Api-Api area, and Sungsang village, respectively. Phytochemical screening of crab 

extract from Tanjung Api-Api area revealed the presence of alkaloid, triterpenoids, and saponins. 

GC-MS analysis identified hexadecanoic acid, trans-13-octadecenoic acid, (E)-9-octadecenoic 

acid ethyl ester, and cholesterol as the major bioactive compound groups in Tanjung Api-Api 

Fiddler crab extract. This findings suggest that fiddler crabs produce bioactive chemicals that 

could help combat oxidative stress caused by pollutants in urban rivers. Further research is needed 

to characterize these compounds in greater depth and explore their mechanisms of facilitating the 

adaptation of fiddler crabs to stressful environmental conditions. 
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Research on the antioxidant activity and biochemical profile of fiddler 

crabs in urban rivers can provide important insights into how these 

organisms adapt to environmental stresses caused by human activities. 

This knowledge is not only beneficial for fiddler crab species 

conservation, but it can also provide indicators of ecosystem health and 

potential pollution mitigation strategies. This study aimed to explore the 

antioxidant activity and biochemical profile of fiddler crabs as a form 

of self-defense against various anthropogenic activities along urban 

rivers. Understanding their biochemical adaptations allows us to better 

appreciate the complexity of interactions between organisms and their 

environment and develop more effective approaches to protecting and 

managing urban aquatic ecosystems. 

 

Materials and Methods  
 

Sampling area 

Fiddler crabs were collected in December 2022 around the mangrove 

ecosystem area of Tanjung Api-Api Port and Sungsang Village, 

Banyuasin, South Sumatra (Figure 1). Tanjung Api-Api is surrounded 

by an extensive mangrove ecosystem that provides important habitats 

for various types of flora and fauna (fiddler crabs).32,41,42 In addition, 

Sungsang Village is surrounded by dense mangrove ecosystem, which 

are ideal habitats for fiddler crabs and various other marine species.43-45 

The mangrove ecosystem at these two sites are important habitats for 

fiddler crabs (Uca spp.), which are known for their unique behaviors, 

such as burrowing in mangrove mud, and their important role in the 

ecosystem as bioindicators of environmental health. According to 

Marochi et al. (2022)46, fiddler crabs usually inhabit mangrove habitats. 

Due to the uneven distribution of mangroves, understanding their 

connectivity and identifying local endemism is essential. 

 

 
Figure 1: Map of sampling locations in Tanjung Api-Api Port 

area and Sungsang Village,  Banyuasin District, South Sumatra, 

Indonesia.148 
 

Environmental quality measurement 

The condition of the aquatic environment at the sampling site was 

measured using multiparameters, including dissolved oxygen (DO), 

salinity, pH, and temperature parameters.47 Environmental parameters 

were assessed using a multiparameter device (Hanna HI 9829-01042, 

USA), and salinity was analyzed with a portable refractometer (ATC 

Portable, China).  

 

Preparation of fiddler crabs 

The sample preparation process was done according to the method 

described by Hamdi et al. (2020)48 with modification. Fiddler crabs 

were cleaned from dirt using running water, followed by separation of 

the shell from the meat, and then oven-dried at 40ºC. The dried sample 

was thereafter pulverized with the aid of an electric blender. 

 

Determination of weight loss on drying 

Briefly, samples were weighed before and after drying in an oven at 

40°C until a constant weight was achieved. The percentage of weight 

loss was then calculated.  

Extraction of fiddler crabs  

The dried powdered sample (500 g) was macerated in 2 L of ethanol 

(≥96% purity, Merck, Germany) at room temperature for 24 h. The 

extract solution was subsequently filtered through Whatman 40 filter 

paper (Whatman International Ltd, UK). The resulting extract was then 

subjected to evaporation using a rotary evaporator (DLAB RE100-Pro, 

China) at 40°C until the solvent has completely evaporated, yielding a 

concentrated paste. The percentage yield of the extract was calculated. 

This temperature is carefully selected to avoid degrading the 

compounds present in the extract49.  

 

Determination of antioxidant activity 

The antioxidant activity of the Fiddler crab extract was determined 

using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging 

assay as previously described with slight modification.50-52 DPPH stock 

solution (0.1 mM) was made by dissolving 0.002 g of DPPH crystals 

(Merck, Germany) in 50 mL of ethanol. Different concentrations (2000, 

1000, 500, 250, 125, and 62.5 ppm) of the crab extract were prepared 

in ethanol, and 1 mL of the extract solution was added to 1 mL of 0.1 

mM DPPH solution, followed by the addition of 1 mL of 96% ethanol 

in a vial.  The mixture was vortexed, then incubated at room 

temperature in the dark for 30 minutes. The absorbance of the reaction 

mixture was measured at 517 nm using a UV-Vis spectrophotometer 

(Shimadzu UV-1900, Japan). Ascorbic acid at same concentrations as 

the extract was used as the reference standard. The percentage inhibition 

of DPPH radical was calculated using the formula below (Equation 1).               

         

 % 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 =  
𝑏𝑙𝑎𝑛𝑘 𝑎𝑏𝑠−𝑠𝑎𝑚𝑝𝑙𝑒 𝑎𝑏𝑠.

𝑏𝑙𝑎𝑛𝑘 𝑎𝑏𝑠
 x 100 ……………………..    (1) 

 

The antioxidant capacity of the extract was reported in terms of IC50, 

which refers to the concentration in mg/mL of the extract required to 

reduce DPPH radical by 50%53,54. 

 

The IC50 value was obtained from a linear regression equation 

(Equation 2) of the plot of sample concentration (x-axis) versus the 

percentage inhibion  of DPPH radical (y-axis).55  

  

Y =  𝑎𝑥 + 𝑏  ………………………………………………………  (2) 

 

Phytochemical analysis 

Fiddler crab extract was subjected to qualitative phytochemical tests for 

alkaloids, flavonoids, saponins, tannins, and terpenoids/steroids 

according to standard procedures56-58. 

 

Gas chromatography-mass spectrometry (GC-MS) analysis  

The chemical profile of fiddler crab extract was determined by GC-MS 

analysis as described previously.59,60 The GC-MS analysis was 

conducted using a Shimadzu QP2010 Plus (Shimadzu Corp., Japan), 

equipped with a Rxi-5ms capillary column (30 m × 0.25 mm i.d., 0.25 

μm film thickness). Briefly, a 1 µL sample was injected into the column, 

with helium used as the carrier gas at a flow rate of 1 mL/min, and the 

split ratio was 1:50. The temperature program for the oven started at 

50°C for an initial 5 minutes, followed by a gradual increase of 5°C per 

minute until 280°C was reached, and held for 5 minutes. The MS 

transfer line was maintained at 200oC. The ionization mode used was 

electron ionization at 70eV and source temperature of 280oC. 

Compound identification was assessed using Total Ion Count (TIC). 

The spectra of the separated compounds were compared with the 

database of the NIST Reference Spectra Library. The relative 

percentage composition of the identified compounds was estimated 

from the GC peak area percentage. 

 

Results and Discussion 
Environmental quality 

The growth and development of fiddler crabs in estuary waters are 

ecologically influenced by the quality of the aquatic environment. Study 

on antioxidant activity in fiddler crabs must consider water quality 

because these factors have a direct effect on the physiological and 

biochemical conditions of animals. Temperature, salinity, pH, and DO 

not only affect the health and growth of marine organisms, but they also 
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determine their ability to produce and store bioactive compounds.61-63  

The aquatic environmental quality parameters including DO, pH, 

temperature, and salinity are presented in Table 1. 

 

Table 1: Environmental quality of the sampling sites 

Location 

Environmental quality parameter 

DO 

(mg/L) 

pH Temperature 

(°C) 

Salinity (PSU) 

Sungsang 

Village  

6.83 7.13 31 12 

Tanjung 

Api-Api 

Port  

6.94 7.3 31.5 10 

 

 

Based on environmental quality measurements, both sites showed DO 

levels > 5 mg/L. Most aquatic organisms depend on oxygen for survival 

and cannot endure for extended periods in water with DO levels below 

5 mg/L.64 Low DO levels significantly affect aquatic organisms, 

influencing respiration rates and overall survival.65-67 DO is an 

important indicator for water quality, as aquatic organisms depend on 

oxygen for respiration.68,69 DO values in Sungsang Village and Tanjung 

Api-Api Port area indicate an environment that supports the survival of 

aquatic organisms such as fish and fiddler crabs. 

The pH levels at both sites suggest neutral to mildly alkaline water 

conditions, with a pH range between 6.5 and 8.5 which is generally 

considered safe for most aquatic organisms.70 The pH values at 

Sungsang Village and Tanjung Api-Api Port are within the ideal range, 

indicating that there is no significant acidic or alkaline contaminants at 

these two sites. The causes of drastic changes in pH are pollution 

sources such as industrial waste, domestic waste, and agricultural 

watercourses that contain hazardous chemicals.71-73 The temperature at 

both sites was around 31°C. This temperature is within the range 

generally found in tropical waters. A stable water temperature that 

matches the thermal tolerance of aquatic organisms is essential for their 

physiological processes, including metabolism and reproduction.74,75 

Extremely high or low temperatures can lead to thermal stress in aquatic 

organisms.76,77 Temperature stability is essential for the physiological 

processes of aquatic organisms, including metabolism and 

reproduction.78 Elevated temperatures can accelerate metabolism, 

reduce oxygen availability, and affect sexual maturity. Salinity of 

Sungsang Village water sample was slightly higher (12 PSU) compared 

to that of Tanjung Api-Api Port (10 PSU). Both values indicate slightly 

brackish water conditions, which are common in estuarine habitats. 

Salinity affects the distribution and adaptation of aquatic organisms.79  

Results from previous studies have shown that fiddler crabs exhibit 

higher physiological tolerance to increased salinity levels, supporting 

their osmoregulatory capabilities.80,81 

Environmental quality is a key determinant of the survival and 

biological activities of fiddler crabs. Adequate DO enhances respiratory 

efficiency, a neutral to slightly alkaline pH stabilizes the chemical 

environment, temperature stability prevents thermal stress, and optimal 

salinity ensures osmoregulation. Monitoring these parameters is 

important because significant fluctuations could signal environmental 

changes due to anthropogenic activities.41,82 

 

Description of fiddler crabs 

The fiddler crab has an intact exoskeleton with a robust carapace, large 

chelipeds, and specialized legs adapted for sandy or muddy 

environments (Figure 2). Fiddler crab males are characterized by a large 

and strong body, which is adapted for various functions, such as 

attracting females and defense. The carapace surface is hardened, 

featuring distinct textures and colour patterns that enhance camouflage 

and provide mechanical protection from predators and environmental 

stressors. 

 

 
Figure 2: Body shape of the fiddler crab (Uca spp.). (A) Full 

body, (B) Claws, and (C) Carapace 
 

Based on the observations from the present study, the fiddler crabs 

discovered were Uca spp. Commonly found in estuarine environments 

like salt marshes and mangroves, play a significant role in ecosystem 

engineering and are recognized for their distinct sexual dimorphism.83 

Male crabs have one large cheliped, while females have two equally-

sized chelipeds.84-86 Male  crabs use their large chelipeds to attract 

females and compete with fellow males, while female crabs invest more 

energy in reproduction than growth.87  

Fiddler crabs construct above-ground sediment structures made of mud 

or sand, located within or slightly above the tidal zone.88 Male crabs  

use their large chelipeds for visual signals and other vibratory behaviors 

to repel intruders or attract females.83,89,90 Fiddler crab carapace and 

claw coloration have three main functions: thermoregulation, 

camouflage, and intraspecific communication.91,92 

Feeding behavior analysis reveals that fiddler crabs primarily consume 

organic material, including bacteria and microalgae, obtained from 

mangrove sediments.25 Mud fiddler crabs actively separate detritus 

from mineral particles, contributing to sediment aeration and organic 

matter decomposition.93,94 Fiddler crabs face daily and seasonal 

variations in salinity, temperature, and environmental contamination, 

making them an attractive model for studying the biochemical 

mechanisms of environmental adaptation.95-97 Due to their territorial 

nature, and lack of mobility, fiddler crabs are vulnerable to chronic 

environmental pollution.98 Exposure of fiddler crabs to extreme tidal 

conditions and elevated temperatures can induce dehydration, oxidative 

stress, and metabolic impairment, leading to reduced survival rates.99,100 

 

Characteristics of fiddler crab extract 

The weight loss of fiddler crabs was higher in the samples collected 

from Tanjung Api-Api Port area with a percentage weight loss of 

77.72%, while the samples from Sungsang Village had a percentage 

weight loss of 74.65% (Table 2). 

 

Table 2: Weight loss of fiddler crabs 

Location 

Sample weight (g) 

Weight loss (%) 

Wet Dry 

Sungsang Village  
200 50.7 74.65 

Tanjung Api-Api 

Port  100 22.28 77.72 

 

This weight loss is primarily due to the high water content of crabs. 

Environmental factors such as DO, pH, temperature, and salinity, as 

well as environmental stress from human activities, may have 

contributed to this difference. The lower salinity in Tanjung Api-Api 

Port may cause the crabs to absorb more water to maintain osmotic 

balance, resulting in higher weight shrinkage when dried. It has been 

opined that salinity fluctuations affect the physiology of aquatic 

organisms.101 In addition, slightly higher temperatures can increase 
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metabolism and water evaporation from the crab's body.99,102 Variations 

in pH and DO levels also influence crab adaptation and health, affecting 

physiological responses to environmental stress.103  

The fiddler crab extraction process using ethanol resulted in a higher 

extract yield (15.75%) in the crab sample collected in Tanjung Api-api 

port area compared to that of Sungsang Village sample which produced 

an extract yield of 13.75% (Table 3). 

 

Table 3: Percentage yield of fiddler crab ethanol extract 

Location  
Sample weight (g) Percentage 

yield (%) 

Dry powder Crude extract 

Sungsang Village  20 2.75 13.75 

Tanjung Api-Api 

Port  20 3.15 15.75 

 

This difference is likely due to variations in environmental factors, such 

as water quality and food availability. Solvent type, extraction 

conditions (temperature, duration, solvent-to-sample ratio), and crab 

biochemical composition has been shown to significantly influence 

extraction efficiency.104 For instance, ethanol as a polar solvent is 

widely used to extract bioactive compounds,105,106 and has been shown 

to be effectiveness in isolating various biochemicals in good yield.107 

Optimized extraction conditions enhance bioactive compound 

recovery, improving extract yield and chemical quality.108,109 

 

Antioxidant activity in fiddler crabs 

The results of the antioxidant activity test on fiddler crabs from two 

different areas, namely Sungsang Village and Tanjung Api-api Port are 

presented in Figure 3. The crab samples from both locations were found 

to possess weak antioxidant activity based on their IC50 values. The IC50 

values of the crab extracts from Sungsang village and Tanjung Api-Api 

Port area were 190.786 μg/mL and 174.617 μg/mL. 

 
Figure 3: Antioxidant activity of fiddler crab ethanol extract 
 

High IC50 values suggest that a higher concentration of the extract is 

needed to inhibit 50% of DPPH free radicals, implying a lower level of 

antioxidant activity. These results may have been influenced by 

environmental factors such as pollution levels, pollutants, and habitat 

conditions. A previous report on the antioxidant activity of Anadara 

granosa from Sungsang village area revealed a strong activity with  IC50 

value of 85 μg/mL.53 As for the Tanjung Api-Api Port area, a weak 

antioxidant activity was found for mangrove species Avicennia marina 

with IC50 value of  171.160 μg/mL, a moderate activity for Bruguiera 

gymnorrizha with IC50 of 105.090 μg/mL, and a strong activity for 

Sonneratia  alba with IC50 of 28.064 μg/mL.32 The difference may be 

due to different species and changing environmental conditions.  

The marked difference between the two areas may be due to variations 

in pollution levels and the types of pollutants present. Tanjung Api-Api 

Port is likely to have higher pollution levels due to intense port activities 

and vessel traffic, which can produce various pollutants, including 

heavy metals and toxic organic compounds.44,110 Changes in an 

organism's antioxidant capacity have a significant impact and have been 

regarded as a marker for assessing environmental pollution in aquatic 

ecosystems resulting from human activities.111 

Fiddler crabs living in an area may be exposed to various pollutants that 

can induce oxidative stress and damage their natural antioxidant 

capacity. Previous research has reported that there has been heavy metal 

pollution in the Tanjung Api-api Port area, with lead (Pb) concentration 

in sediment ranging from 7.0104 to 11.8186 mg/kg, and copper (Cu) 

concentration ranging from 3.7127 to 4.5347 mg/kg.27 Heavy metal 

contamination in biological and environmental samples has been widely 

studied due to its potential health risks. A study on RUZU bitters, a 

polyherbal extract with antidiabetic properties, reported the presence of 

heavy metals such as Cr (1.09 mg/L), Zn (0.10 mg/L), Fe (2.10 mg/L), 

Mn (0.23 mg/L), Cu (0.20 mg/L), Cd (0.06 mg/L), and others, but Pb 

and Cd were found to be absent.112 Various studies have highlighted that 

oxidative stress in organisms, caused by pollutant exposure, can impair 

the immune function of mud crabs by damaging the hepatopancreas, 

triggering antioxidant enzyme activity, and affecting immune gene 

expression.113 A research report explained that exposure to heavy metals 

leads to the accumulation of reactive oxygen species (ROS) in marine 

decapods, surpassing the capacity of antioxidant enzymes to neutralize 

them.114 It has also been reported that the effects of persistent organic 

pollutants in the cellular defense mechanisms and physiological 

functions in crustaceans differ based on the compound, tissue, and 

species involved.12 In addition to pollutant-induced factors, variations 

in diet and the nutrient content of their habitat may also play a role in 

low antioxidant activity.115-117 

 

Phytochemical constituents of fiddler crab extract 

The crude ethanol extracts of fiddler crabs with the stronger antioxidant 

activity from both areas were subjected to phytochemical tests. From 

the results of the phytochemical screening, fiddler crabs from the 

Tanjung Api-api harbor contained a group of bioactive compounds, 

including saponins, terpenoids, and alkaloids (Table 4).  

 

Table 4: Phytochemical compounds of fiddler crab ethanol 

extract from Tanjung api-api port area 

Phytochemical Inference 

Alkaloids + 

Flavonoids - 

Terpenoids + 

Steroids - 

Saponins + 

Tannins - 

         ‘+’ indicates presence of pytoconstituents;  

           ‘-’ indicates absence of pytoconstituents 

 

These compounds are known to have various beneficial biological 

activities. Alkaloids are known to have various pharmacological effects 

including antimicrobial, anticancer, and antioxidant activities.118,119 

Terpenoids are also recognized for their anti-inflammatory and 

anticancer activities.120-122 On the other hand, saponins are reported to 

have antimicrobial, anti-inflammatory, and antifungal activities.123-125 

The presence of these compounds in fiddler crabs indicates their 

potential as a source of biologically active compounds with applications 

in various medical and industrial fields. 

However, the preliminary phytochemical tests were unable to detect the 

presence of flavonoids, steroids, and tannins in the crab extract from 

Tanjung Api-api harbor. Flavonoids are commonly present in a range 

of plants and are known to have strong antioxidant activity.126,127 The 

absence of flavonoids may be due to environmental factors or the type 

of diet of fiddler crabs in the Tanjung Api-Api Port area, which may not 

support flavonoid biosynthesis. Steroids and tannins were also not 

detected, although previous studies reported them to have important 

roles in various biological activities (anti-inflammatory and 

antimicrobial), this could be due to species-specific metabolic 
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variations or differences in extraction efficiency using ethanol as a 

solvent.128-130 

 

Compounds identified from the GC-MS analysis of fiddler crab extract 

GC-MS analysis was conducted on fiddler crab samples collected from 

the Tanjung Api-Api Port area, which demonstrated higher antioxidant 

activity compared to that of Sungsang Village. The following classes of 

compounds were detected; alcohols, aliphatic amines, lactones, 

alkaloids, sugars, esters, steroids, ketones, and organic fatty acids. The 

compounds identified were determined by comparing the height of the 

chromatogram peaks and the mass spectra data of the chromatogram 

peaks with those in the WILEY 7 database library. The GC-MS analysis 

of the fiddler crab extract identified 13 secondary metabolites, with 

hexadecanoic acid and its derivatives, as well as unsaturated fatty acids 

such as trans-13-octadecenoic acid and (E)-9-octadecenoic acid ethyl 

ester, and cholesterol constituting the major compounds (Figure 4, 

Table 5). The presence of these compounds suggests that fiddler crabs 

from this pollution-exposed area have developed biochemical 

adaptations to harsh environmental conditions. In addition, these 

compounds have shown potentially significant biological activities. The 

presence of the compound 2-Piperidinone, which belongs to the 

alkaloid group,131,132 suggests that these crabs may have developed 

chemical defense mechanisms to fight predators or pathogens in 

polluted environments. Alkaloids are known to have antimicrobial and 

antiparasitic properties,133,134 which may help the crab defend itself in 

environmental conditions that may be rich in pathogenic 

microorganisms. 

 

 

 
Figure 4: GC-MS chromatogram of fiddler crab extract from 

Tanjung Api-Api Port area 
 

The presence of fatty acids such as hexadecanoic acid and its 

derivatives, as well as unsaturated fatty acids such as trans-13-

octadecenoic acid and (E)-9-octadecenoic acid ethyl ester may suggest 

an adaptation of the crab to oxidative stress that may be caused by 

pollutants. These compounds are recognized for their anti-inflammatory 

and antioxidant activities,135-137 and may help reduce cellular damage 

due to chemical and heavy metal pollutants that may be present in the 

harbor area. In addition, compounds such as arachidonic acid and 

eicosapentaenoic acid (EPA), which belong to the omega-3 fatty acid 

group, can help reduce cellular damage due to chemical pollution and 

heavy metals that may be present in the harbor area.138,139 These fatty 

acids also have an important role in reducing inflammation and 

maintaining cell membrane integrity,140,141 especially for crabs living in 

habitats that may be exposed to oil pollution and other chemicals.  

The high cholesterol content (40.32%) in this extract suggests an 

important adaptation in maintaining the composition and role of cell 

membranes under environmental stress conditions. Cholesterol helps to 

maintain cell membranes and protect cells from damage caused by 

pollutants and drastic environmental changes.142,143 Environmental 

conditions with high pollution levels due to port activities and ship 

traffic,144,145 may be the main factor that encourages fiddler crabs to 

produce these bioactive compounds. Contaminants like heavy metals, 

petroleum, and industrial chemicals can cause oxidative stress and 

damage crab cells, so crabs must develop chemical defense mechanisms 

to survive.114,146,147 Overall, these results suggest that fiddler crabs in the 

Tanjung Api-Api Port area have developed complex biochemical 

adaptations to deal with challenging environmental conditions. Further 

research is needed to characterize these compounds in greater depth and 

explore their mechanisms of facilitating the adaptation of fiddler crabs 

to stressful environmental conditions. 

 

Table 5: Compounds identified from the GC-MS analysis of 

fiddler crab extract from Tanjung Api-Api Port area 

Ret. 

time 

Peak 

area % 

Name of compound  Compound 

group 

6.57 2.36 2-Piperidinone Alkaloid 

15.3 5.94 Hexadecanoic acid, 

methyl ester 

Methyl palmitate 

15.76 13.76 n-Hexadecanoic acid Palmitic acid 

15.96 4.1 Hexadecanoic acid, 

ethyl ester 

Ethyl palmitate 

17.4 9.11 trans-13-Octadecenoic 

acid 

Fatty acid 

17.58 7.92 (E)-9-Octadecenoic 

acid ethyl ester 

Fatty acid ester 

18.41 2.14 Arachidonic acid Polyunsaturated 

fatty acid 

18.83 1.66 cis-5,8,11,14,17-

Eicosapentaenoic acid 

Omega-3 fatty 

acid 

23.57 1.44 9-Octadecenoid acid, 

1,2,3-propanetriyl ester, 

(E,E,E)- 

Triglyceride 

23.74 2.37 Hexadecenoid acid, 1-

(hydroxymethyl)-1,2-

ethanediyl ester 

Glyceride 

25.03 2.14 1-Heptatriacotanol Alcohol 

25.44 40.32 Cholesterol Sterol 

26.65 1.61 Ethyl iso-allocholate Bile acid 

derivative 

 

 

Conclusion 
Fiddler crabs collected from Tanjung Api-api Port and Sungsang village 

were found to possess weak antioxidant activity. Phytochemical 

screening of the crab extract from Tanjung Api-api harbor revealed the 

presence of alkaloids, terpenoids, and saponins. GC-MS analysis 

further revealed the presence of hexadecanoic acid, trans-13-

octadecenoic acid, (E)-9-octadecenoic acid ethyl ester, and cholesterol 

as major compounds in fiddler crab extract from Tanjung Api-api 

harbor.  These findings suggest that fiddler crabs have developed 

complex biochemical adaptations as a defense mechanism against 

various anthropogenic activities along urban rivers. The presence of 

these bioactive compounds may also have helped the crabs mitigate 

oxidative stress caused by pollutants, underscoring the significant 

impact of human activities on aquatic ecosystems and the adaptive 

responses of their inhabitants. Additional studies are required to 

thoroughly investigate the biological potentials of these compounds and 

their mechanisms of action in safeguarding against environmental 

stress. 
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